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m6A regulator-mediated RNA
methylation modification
patterns are involved in immune
microenvironment regulation of
coronary heart disease

Zhaoshui Li1,2, Yanjie Song2, Meng Wang2, Ruxin Shen1,

Kun Qin1, Yu Zhang1, Ting Jiang2* and Yifan Chi2*

1Qingdao Medical College, Qingdao University, Qingdao, China, 2Heart Center Department,

Qingdao Hiser Hospital A�liated to Qingdao University, Qingdao, China

Background: Although the roles of m6A modification in the immune

responses to human diseases have been increasingly revealed, their roles in

immune microenvironment regulation in coronary heart disease (CHD) are

poorly understood.

Methods: The GSE20680 and GSE20681 datasets related to CHD were

acquired from theGene ExpressionOmnibus (GEO) database. A total of 30m6A

regulators were used to perform LASSO regression to identify the significant

genes involved in CHD. Unsupervised clustering analysis was conducted using

the m6A regulators to distinguish the m6A RNA methylation patterns in

patients with CHD. The di�erentially expressed genes (DEGs) and biological

characteristics, including GO and KEGG enrichment results, were assessed for

the di�erent m6A patterns to analyse the impacts of m6A regulators on CHD.

Hub genes were identified, and subsequent microRNAs-mRNAs (miRNAs–

mRNAs) and mRNAs-transcriptional factors (mRNA-TFs) interaction networks

were constructed by the protein and protein interaction (PPI) network method

using Cytoscape software. The infiltrating proportion of immune cells was

assessed by ssGSEA and the CIBERSORT algorithm. Quantitative real-time PCR

(qRT-PCR) was performed to detect the expression of the significant m6A

regulators and hub genes.

Results: Four of 30 m6A regulators (HNRNPC, YTHDC2, YTHDF3, and

ZC3H13) were identified to be significant in the development of CHD. Two

m6A RNA methylation clusters were distinguished by unsupervised clustering

analysis based on the expression of the 30 m6A regulators. A total of 491

genes were identified as DEGs between the two clusters. A PPI network

including 308 mRNAs corresponding to proteins was constructed, and 30

genes were identified as hub genes that were enriched in the bioprocesses

of peptide cross-linking, keratinocyte di�erentiation. Twenty-seven hub genes

were found to be related to miRNAs, and seven hub genes were found to

be related to TFs. Moreover, among the 30 hub genes, eight genes were

found to be upregulated in CHD, and three were found to be downregulated

in CHD compared to the normal people. The high m6A modification

pattern was associated with a higher infiltrated abundance of immune cells.
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Conclusion: Our findings demonstrated that m6A modification plays crucial

roles in the diversity and complexity of the immunemicroenvironment in CHD.

KEYWORDS

m6A RNA methylation, immune microenvironment, LASSO regression, unsupervised

clustering, coronary heart disease

Introduction

Cardiovascular disease (CVD) is a chronic disease of the

heart and circulatory system, and for many years, it has been

the leading cause of premature death worldwide (1). Coronary

heart disease (CHD) is the most common type of CVD (2), and

it is caused by atherosclerotic plaque, atherosclerotic erosion,

unstable atheroma, and vessel lumen stenosis (3). Arterial

inflammation is caused by the recruitment of cells in the innate

(e.g., monocytes, macrophages) and adaptive (e.g., CD4+ T

helper cells and cytotoxic CD8+ T cells) immune systems into

the intima of the artery (4). Therefore, understanding immune

regulation in patients with CHD might be critical for revealing

the molecular mechanism of its pathogenesis and might be

conducive to uncovering novel immune therapies for CHD.

N6-methyladenosine (m6A) is the most prevalent type of

internal RNA posttranscriptional modification in eukaryotic

cells, and can occur in multiple types of RNA, including

messenger RNA (mRNAs), ribosomal RNA (rRNAs), transfer

RNA (tRNAs), long non-coding RNAs (lncRNAs) and

microRNAs (miRNAs) (3, 5–7). This modification is a reversible

process (8) that is controlled by three main components:

adenosine methyltransferases (writers), m6A-binding proteins

(readers), and m6A demethylating enzymes (erasers) (9, 10).

The “writers” are m6A methyltransferases that catalyse the

formation of the m6A modification (5), while the “erasers”

are m6A demethylases that regulate the demethylation of

the m6A modification (11, 12). The “readers” are m6A RNA

binding proteins (RBPs) that recognize the target m6A-modified

mRNA and promote its function in subsequent biological

processes (13). Additionally, m6A RNA modification exerts

diverse functions in normal bioprocesses and under disease

conditions, including gene expression regulation, RNA stability,

and RNA processing (14–17). Recently, m6A regulators have

been reported to be linked to the immune microenvironment

and participate in the regulation of human diseases (18). For

instance, the results of Sun D’s group suggested that m6A

modification plays a key role in severe asthma, and may be able

to guide future immunotherapy strategies (19).

Multiple independent studies have found increased levels

of m6A RNA methylation in various CADs, including heart

failure (20, 21), cardiac hypertrophy (22), myocardial infarction

(23, 24), and CHD (25), indicating that m6A RNA methylation

is closely linked to the occurrence and development of CADs.

For example, the loss of the m6A methyltransferase METTL5

promotes cardiac hypertrophy through the epitranscriptomic

control of SUZ12 expression (26). Zhao X’s group found that

METTL3 attenuated cardiomyocyte apoptosis in myocardial

ischaemia–reperfusion (I/R) injury through miR-25-3p and

miR-873-5p (27). Another study found that loss of m6A

methyltransferase METTL3 promoted heart regeneration and

repair after myocardial injury (28). Recently, a study by

Mo’s group (29) identified 304 CHD-associated m6A-SNPs

that might alter the expression of local genes, which might

subsequently affect CHD risk (29). Guo M’s group found that

the enhanced m6A RNA modification of circ_0029589 helped

IFN regulatory factor-1(IRF-1) facilitate macrophage pyroptosis

and inflammation in CHD (30). A study of the transcriptome-

wide m6A landscape of CHD identified differentially methylated

m6A sites in both mRNAs and lncRNAs between CHD

and control groups (25). Another study found that loss of

m6A methyltransferase METTL3 promoted heart regeneration

and repair after myocardial injury (28). Although relevant

studies have proposed the existence of expression changes

in m6A regulators changes in CHD, their specific roles

in the development and progression of CHD still need to

be expounded.

This study aimed to systematically evaluate the modification

patterns of m6A RNA methylation in patients with CHD by

using bioinformatics to analyse CHD sequencing data from the

Gene Expression Omnibus (GEO) database. The infiltration of

immune cells in the different m6A patterns was further analyzed

to illustrate the impacts of m6A RNA modification on the

immune environment of CHD. The results lay a theoretical

foundation for the regulation of m6A modification in the

pathogenesis of CHD and provide a novel immune therapy

approach for CHD.

Materials and methods

Data acquisition and preprocess

Coronary heart disease was retrieved from GEO database

and human whole blood sequencing data were screened.

The data used in this study were acquired from GSE159657

(31), GSE20680 (32), and GSE20681 (33) data sets of Gene
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TABLE 1 The detailed information of the GEO data sets.

GEO ID Platforms Number of

patients

Number of

control

Species

GSE20680 GPL4133 143 52 Homo sapiens

GSE20681 GPL4133 99 99 Homo sapiens

GSE159657 GPL24676 8 10 Homo sapiens

Expression Omnibus (GEO) database (34). Among these,

GSE20680 data set contains 143 human CHD samples

and 52 control samples, GSE20686 data set contains 99

human CHD samples and 99 control samples, which

were both sequenced via GPL4133 platform. The gene

expression levels of the above two datasets were normalized

signal intensity of Log2 transformation. R “sva” package

(35) was used for the batch removal of the two data

sets, and the integrated GEO data sets was obtained as

the training set, that included 242 human CHD samples

and 99 control samples. As a validation set, GSE159657

data set contains 8 human CHD samples and 10 control

samples, with the sequencing platform of GPL24676. All

data were obtained by R “GEOquery” (36) package. The

detailed information of the GEO data sets was shown

in Table 1.

Construction of forest model and
nomogram model

The univariate logistic regression was used to select

candidate m6A regulators from the 30 m6A regulators to

predict the occurrence of CHD and the cut-off criteria are

P-value < 0.05. The least absolute shrinkage and selection

operator (LASSO) regression (37) was used for feature selection

and dimension reduction to establish the predictive scoring

formula. R “glmnet” package (38) was used to implement the

method and select the best lambda value. After regression, only

genes with non-zero coefficients were retained. Then, a rosette

model was constructed based on the selected candidate m6A

regulator to predict the prevalence of CHD by R “forestplot”

package (39).

R “rms” package (40) was used for nomogram visualization

to directly reflect the clinical significance of this model.

Receiver operating characteristic (ROC) curve (41) was used

to evaluate the distinguishing performance of the signature,

and the area under the curve was calculated using R

“pROC” package (42). Decision curve analysis (DAC) curve

(43) was used to assess whether model-based decision

making was beneficial to patients, drawing by R “ggDCA”

package (44).

Identification of m6A modification
pattern

Unsupervised clustering analysis (45) was performed to

identify diverse m6A modification pattern based on the

expression of the 30 m6A regulators. The consistency clustering

algorithm was used to evaluate the clustering number and

robustness. R “Consensus Cluster Plus” package (46) was used

to identify different m6A modification pattern. The above steps

were performed 1,000 iterations to ensure the robustness of

the classification. PCA was performed 20 times to further

verify 30 m6A regulator expression patterns under different

modification modes.

Identification of DEGs between the two
m6A modification patterns

To identify m6A regulator meditated genes, samples of

two distinct m6A modification patterns were analyzed by the

empirical Bayesian approach of the R “limma” package (47) to

identify the differentially expressed genes (DEGs) between the

two m6A modification patterns, with the threshold of log2FC >

1.5 and Padj < 0.05. For the visualization of data, “Ggplot 2” R

package was used to perform the volcano plot, and “Pheatmap”

R package was used to perform the heatmap.

Biological characteristics assessment
between the two m6A modification
patterns

The biological function of m6A phenotype-related genes was

analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis. GO analysis

is a common method for large-scale functional enrichment

studies, including biological process (BP), molecular function

(MF) and Cellular Component (CC) (48). KEGG is a widely

used database that stores information about genomes, biological

pathways, diseases and drugs (49). The gene name was firstly

transited to be entrez ID using the R “org.hs.eg.db” package.

R “clusterProfiler” package (50) was used for GO annotation

analysis and KEGG pathway enrichment analysis of DEGs, FDR

<0.05 was considered to be statistically significant.

To study the differences in biological processes between

different m6A modification patterns, Gene Set Enrichment

Analysis (GSEA) (51) was performed based on the data set of

gene expression profiles in patients with CHD. The gene sets

of “c2.cp.kegg.v7.4.symbols.gmt” and “c5.go.v7.2.symbols.gmt”

were downloaded from MSigDB database (51) for the GSEA

analysis, discovery rate< 0.1, and P-value< 0.05 was considered

to be statistically significant.
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Protein-protein interaction network
construction

The STRING (https://cn.string-db.org/) (52) is a database

that searches for known proteins and predicts interactions

between proteins. STRING database was used, and genes with

combined score >400 were selected to construct the protein-

protein interaction (PPI) network. Cytoscape (v3.7.2) (53) was

used for the visualization of PPI network. CytoHubba (54) is

used to rank nodes according to their attributes in the network

to identify the central elements in the network and discover the

key targets and sub-networks of the complex network. The top

30 genes were identified ad hub genes.

For the miRNA-mRNA interaction network, miRNAs and

lncRNAs were obtained from miRNet database (https://www.

mirnet.ca/) (55), and the interaction network was performed by

Cytoscape (v3.7.2). For the mRNA-transcription factor (mRNA-

TF) interaction network, the relationship between TF and hub-

genes was retrieved from miRNet database, the interaction

network was performed by Cytoscape (v3.7.2). Different icons

were used to label mRNAs, miRNAs and TFs.

Functional similarity analysis

The functional similarity among proteins was evaluated

using the geometric mean of semantic similarities in BPs, CCs,

and MFs through GOSemSim R package (56).

Immune cell infiltration analysis

Single sample gene set Enrichment analysis (ssGSEA) (57)

is used to calculate the abundance of 28 immune cells in CHD

with different m6A patterns. The immune reaction gene-sets

were got from the ImmPort databses (http://www.immport.org)

(58). The composition of immune cells in patients with different

m6A patterns was visualized by box diagram. The difference in

proportion of immune cells was calculated byWilcoxon test, and

P-value < 0.05 was considered as statistically significant.

CIBERSORT algorithm is a deconvolution algorithm for

the expression matrix of immune cell subtypes based on the

principle of linear support vector regression, using RNA-seq

data to estimate the abundance of immune cells in samples (59).

CIBERSORT algorithm was used to estimate the abundance of

22 types of immune cells in patients with different m6A patterns,

and the composition of immune cells in patients with different

m6A patterns was visualized by box diagram. The difference in

proportion of immune cells was calculated byWilcoxon test, and

P-value < 0.05 was considered as statistically significant.

The peripheral blood collection and the
whole blood cells isolation

The peripheral blood was collected in the anticoagulant tube

from 14 patients with CHD and 9 normal people. The whole

blood cells were isolated form the collected peripheral blood

using the Lymphocyte Separation Medium (#P8620, Solarbio)

according to the manufacturer’s protocol. The fresh blood and

normal saline were mixed in a ratio of 1:1, the lymphocyte

separation medium was carefully added to the top of the page,

and centrifuged for 20min, 1,500 r/min. The circular milky

lymphocyte layer at the second layer was sucked out and placed

in a new centrifuge tube containing 4–5ml normal saline, and

centrifuged for 20min, 1,500 r/min. The desired whole blood

cells were obtained after the precipitate was washed twice.

Total RNA extraction, CDNA synthesis
and quantitative real-time PCR

Total RNA was isolated using TRizol (#R401-01-AA,

Vazyme Biotech) following the manufacturer’s protocol. RNAs

were then reverse transcribed using HiScript II Q RT SuperMix

for qPCR Reverse Transcription Kit (#R223-01, Vazyme

Biotech) following the manufacturer’s protocol. Quantitative

real-time PCR (qRT-PCR) was performed using AceQ R©

Universal SYBR R© qPCR Master Mix (#Q511, Vazyme Biotech).

Primers were synthesized by Integrated DNA Technologies.

Target gene expression was normalized to the GAPDH reference

gene and relative expression levels were determined using the

2−11Ct method. The primers used in qRT-PCR were listed in

Supplementary Table 13.

Statistical analysis

All data calculations and statistical analysis were performed

using R programming (https://www.r-project.org/, version

4.1.1). For the comparison of the two groups of continuous

variables, the statistical significance of the normally distributed

variables was estimated using the independent Student t test,

and the differences between the non-normally distributed

variables were analyzed using the Mann-Whitney U test

(i.e., Wilcoxon rank-sum test). The Chi-square test or

Fisher’s exact test was used to compare and analyze the

statistical significance between the two groups of categorical

variables. The correlation coefficients of different genes were

calculated by Pearson correlation analysis. All statistical

P values were bilateral, and P < 0.05 was considered

statistically significant.
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Results

Landscape of m6A RNA methylation
regulators in CHD

The detailed processes used for the m6A regulator cluster

construction and data analyses are shown in Figure 1A. The

training data were obtained from the merged and batch-

normalized GSE20680 and GSE20681 sets, and contained 242

disease samples and 151 normal samples (Figures 1B–E).

A total of 37 m6A regulators (60) were extracted from the

dataset, including 11 writers (METTL3, METTL14, WTAP,

VIRMA, ZC3H13, CBLL1, RBM15, RBM15B, METTL16,

ZCCHC4, and PCIF1) (Figure 2A; Supplementary Table 1),

23 readers (YTHDF2, FMR1, RBMX, YTHDF1, IGF2BP1,

HNRNPC, NUDT21, CPSF6, NXF1, EIF3A, YTHDF3,

HNRNPA2B1, IGF2BP3, YTHDC2, YTHDC1, IGF2BP2,

XRN1, SETD2, LRPPRC, PRRC2, SRSF3, TRMT112, and

SRSF10) (Figure 2B; Supplementary Table 1, among these, only

19 genes can be annotated for location on human chromosome),

and 3 erasers (FTO, ALKBH5, and ALKBH3) (Figure 2C;

Supplementary Table 1). However, 30 m6A regulators were

overlapped with genes in the CHD expression profiles, and

these m6A regulators were used for the subsequent analysis

(Figure 2D; Supplementary Table 2). Seven CHD susceptibility

genes (ALOX5AP, LTA4, MEF2A, LTA, LGALS2, PCSK9,

CFH) (61) were used to analyse the possible susceptibility to

CHD associated with these m6A regulators by mapping the

chromosomal locations of these genes and the m6A genes

(Figure 2E). Among the examined genes, PCSK9 was obviously

close to the m6A “reader” YTHDF2, with both located on chr1.

ALOX5AP and the “writer” ZC3H13were both located on chr13.

Other CHD susceptibility genes were located at varying close

distances to m6A regulators (Figure 2E). These results suggested

that the m6A regulators may have potential regulatory effects

on these genes. Then, we analyzed the correlations of these m6A

regulators in the 242 CHD samples, and the results showed

that these m6A regulators were strongly correlated in patients

with CHD (Figure 2F). Among the examined genes, 3 m6A

RNA methylation writers (WTAP, ZCCHC4, and ZCCHC4) and

6 m6A RNA methylation readers (XRN1,YTHDF1, YTHDF2,

YTHDF3, YTHDC1, and YTHDC2) were significantly and

positively correlated with each other (marked by blue line,

Figure 2F); the writer PCIF1 was negatively correlated with

almost all regulators (marked by green line, Figure 2F); the

readers IGF2BP1-3 had similar patterns that were negatively

correlated with other regulators (marked by red line, Figure 2F);

while HNRNPC, CPSF6, EIF3A, HNRNPA2B1, and FMR1

had similar patterns that were also positively correlated with

other regulators (marked by yellow line, Figure 2F). The results

indicated that these similar m6A RNA methylation modifiers

might have a synergistic effect on gene expression regulation by

m6A RNA methylation.

m6A RNA methylation regulators are
involved in CHD progression

To analyse the roles of these m6A regulators in CHD, least

absolute shrinkage and selection operator (LASSO) regression

was performed on the 30 m6A regulators for feature selection

and dimension reduction to identify the significant genes,

and we found that four genes, including HNRNPC, YTHDC2,

YTHDF3, and ZC3H13, were significant in CHD (Figures 3A–

C; Supplementary Table 3). The classifier consisted of these four

significant genes that could well distinguish healthy people

from CHD patients, with CHD patients presenting higher risk

scores than healthy people (Figure 3D). The receiver operating

characteristic (ROC) curve also illustrated that the model could

better predict patients with CHD (Figure 3E). The nomogram

line diagram model was applied to predict the occurrence of

CHD (Figures 3F,G), and it showed that four significant m6A-

related genes had predictive value for CHD. The decision curve

analysis (DCA) analysis also verified that decisions based on

the nomogram model may be beneficial for CHD patients

(Figure 3H). Finally, the risk model based on the four m6A-

related significant genes was validated based on the GSE159657

dataset, and the ROC curve suggested the feasibility of the model

(Figure 3I). These results indicate that m6A RNA modification

plays important roles in the development and progression

of CHD.

m6A RNA modification clusters in CHD

Based on the expression levels of the 30 m6A regulators,

unsupervised consensus clustering was conducted to investigate

the m6A RNA modification clusters in the CHD samples.

Two distinct subgroups were identified based on qualitative

differences in expression among the 30 m6A-related genes, with

83 samples included in Cluster 1 and 159 samples included in

Cluster 2 (Figures 4A–C; Supplementary Table 4). The principal

component analysis (PCA) results showed that the two clusters

had visible distinctions (Figure 4D). All 30 m6A regulators had

remarkable differences in expression between the two m6A

modification clusters (Figures 4E,F), and the four significant

m6A-related genes were expressed at higher levels in Cluster

2 than in Cluster 1 (Figure 4E). These results validate the

different m6A RNA modification patterns in the two clusters of

CHD patients.

Biological enrichment analysis of distinct
m6A RNA modification clusters

To assess the biological characteristics of the two m6A RNA

modification clusters, the differentially expressed genes (DEGs)
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FIGURE 1

The data preprocessing and analysis process. (A) The work flow of this study. (B) Box plot showing the two GEO data sets before

standardization. (C) Box plot showing the two GEO data sets after standardization. (D) PCA analysis of the two data sets before standardization.

(E) PCA analysis of the two data sets after standardization.
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FIGURE 2

The landscape of m6A regulators in CHD. (A–C) The location of m6A RNA methylation writers (A), readers (B), and erasers (C) on the

chromosome. (D) Venn showing the overlapped m6A regulators in the GEO-CHD cohort. (E) The location of m6A regulators and the CHD

susceptibility genes. The red labeled genes were CHD susceptibility gene, and the black labeled genes were m6A regulators. (F) The correlation

of the m6A regulators in CHD.

between the clusters were identified. Based on the threshold of a

fold change >1.5 and an adjusted P < 0.05, a total of 491 genes

were found to be significantly differentially expressed between

the two clusters (Figures 5A,B; Supplementary Table 5). The

subsequent Gene Ontology (GO) enrichment results showed

that these DEGs belonged to the biological processes of

epidermal cell differentiation, keratinocyte differentiation,

keratinization, and skin development signaling pathways

(Figures 5C,D; Table 2; Supplementary Table 6). Additionally,

these DEGs were enriched in the cellular component categories

of anchored components of the membrane, intermediate

filaments, intermediate cytoskeleton filaments, keratin

filaments, and rough endoplasmic reticulum (Figures 5C,E;

Table 2; Supplementary Table 6), and the molecular function

categories of G-protein coupled receptor activity, neuropeptide

receptor activity, and peptide receptor activity (Figures 5C,F;

Table 2; Supplementary Table 6).

Then, gene set enrichment analysis (GSEA) enrichment

was performed for the two clusters, and the results showed

that the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways of ubiquitin-mediated proteolysis, peroxisomes,

colorectal cancer, and autoimmune thyroid disease were

enriched in Cluster 2 (Figure 6A; Supplementary Table 7),

whereas the pathways of steroid hormone biosynthesis and

retinol metabolism were enriched in Cluster 1 (Figure 6B;

Supplementary Table 7). In the biological processes category,
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FIGURE 3

Cox model construction based on m6A regulators in CHD. (A,B) LASSO regression to identify significant m6A RNA methylation modification

genes related to CHD. (C) Forest diagram showing the four significant m6A regulators in patients with CHD. (D) The risk score between the

disease and normal samples. (E) ROC curve of the four significances. (F) Nomogram of diagnostic scores for patients with CHD. (G) Nomogram

of the four m6A regulator significance for the diagnosis of CHD. (H) PCA analysis of the nomogram model. (I) ROC curve of the cox model of

the validation set (GSE159657).

the terms DNA repair, mitochondrial matrix, and RNA

catabolic process were enriched in Cluster 2 (Figure 6C;

Supplementary Table 8), whereas the terms voltage-gated cation

channel activity and skin development were enriched in Cluster

C1 (Figure 6D; Supplementary Table 8). These results indicate

that the examined m6A RNA modifications influenced these
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FIGURE 4

Unsupervised clustering analysis of CHD samples based on the four-gene significance. (A–C) Unsupervised clustering result of CHD samples.

(D) PCA analysis of the two m6A RNA modification patterns. (E) Box plot showing the expressional levels of the 30 m6A regulators in the two

m6A RNA modification patterns. The statistical significance was calculated via Wilcoxon rank sum test, ***P < 0.001, **P < 0.01, *P < 0.05. (F)

Heatmap showing the expressional levels of the 30 m6A regulators in the two m6A RNA modification patterns.

biological processes and pathways, which further impacted the

development and progression of CHD.

Hub gene identification and
MiRNA–MRNA and MRNAs–transcription
factor network construction

To identify the hub genes among the DEGs, a protein–

protein interaction (PPI) network was constructed by using

the STRING database and Cytoscape software. A total

of 499 interaction pairs and 308 genes were identified

in the PPI network (Figure 7A). Among these genes and

interactions, NK2 homeobox 5 (NKX2-5) was closely related

to 16 DEGs while glutamate ionotropic receptor NMDA

type subunit 1 (GRIN1), solute carrier family 4 member 1

(SLC4A1), and urotensin 2 receptor (UTS2R) were closely

related to 15 DEGs (Figure 7A). CytoHubba was used to

extract the functional interaction subnet containing 30 hub

genes (Figure 7B; Supplementary Table 9). The GO enrichment

results showed that these hub genes were linked to the

biological processes of keratinization, chromatin, and sequence-

specific double-stranded DNA binding (Figure 7C; Table 3;

Supplementary Table 10). Moreover, we ranked the hub genes

based on the average functional similarity (Figure 7D). Late

cornified envelope 1A (LCE1A) was the top protein that

potentially played a key role in CHD (Figure 7D). Moreover, the

ROC results showed that these hub genes could distinguish the

two RNA modification patterns well (Supplementary Figure 1).

The important roles of microRNAs (miRNAs) in the

development and treatment of human diseases have been

determined in recent years. A previous study predicted potential

miRNA-disease associations by using a novel unsupervised

deep learning framework with a variational autoencoder (62).

To study the ncRNAs associated with the selected hub genes,

Frontiers inCardiovascularMedicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.905737
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Li et al. 10.3389/fcvm.2022.905737

FIGURE 5

Identification and function analysis of DEGs between the two m6A RNA modification patterns. (A) Volcano Plot showing the DEGs in cluster 1 vs.

cluster 2 subgroups. The red dots represent up-regulated genes, the gray dots represent genes with no significant di�erence. DEGs were

identified with the threshold of adjust P-value < 0.05 and Fold change > 1.5. (B) Heatmap showing the DEGs in cluster 1 vs. cluster 2 subgroups.

(C) GO functional enrichment analysis of the DEGs. The node size represents the number of genes contained in the current GO Term. BP,

biological process; CC, cellular component; MF, molecular function. (D–F) Top 5 terms of BP (D), CC (E), and MF (F).

we acquired the associated miRNAs and lncRNAs from the

miRNet database and constructed the mRNA-miRNA-lncRNA

interaction network (Supplementary Figure 2). Among the hub

genes, 27 were found to be correlated with ncRNAs. A total

of 308 miRNAs (Supplementary Table 11 sheet 1) and 883

lncRNAs (Supplementary Table 11 sheet 1) were found to be

associated with the 27 mRNAs (Supplementary Figure 2). We

then analyzed the miRNA–mRNA interaction network, which
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TABLE 2 Top 10 GO and KEGG enrichment of DEGs.

Category ID Description p-value

BP GO:0031424 Keratinization 1.04E-08

BP GO:0030216 Keratinocyte differentiation 3.07E-07

BP GO:0043588 Skin development 1.26E-06

BP GO:0009913 Epidermal cell differentiation 1.43E-06

BP GO:0007218 Neuropeptide signaling pathway 5.07E-06

BP GO:0008544 Epidermis development 2.49E-05

BP GO:0014821 Phasic smooth muscle contraction 4.64E-05

BP GO:0038003 Opioid receptor signaling pathway 5.42E-05

BP GO:0007188 Adenylate cyclase-modulating G protein-coupled receptor signaling pathway 0.000123

BP GO:0007204 Positive regulation of cytosolic calcium ion concentration 0.00027

BP GO:0031424 Keratinization 1.04E-08

BP GO:0030216 Keratinocyte differentiation 3.07E-07

BP GO:0043588 Skin development 1.26E-06

CC GO:0045095 Keratin filament 8.18E-05

CC GO:0005882 Intermediate filament 0.000227

CC GO:0045111 Intermediate filament cytoskeleton 0.000370

CC GO:0031225 Anchored component of membrane 0.001451

CC GO:0005791 Rough endoplasmic reticulum 0.002869

CC GO:0001533 Cornified envelope 0.009983

CC GO:0097060 Synaptic membrane 0.010234

CC GO:0005667 Transcription regulator complex 0.010977

CC GO:0017146 NMDA selective glutamate receptor complex 0.014357

CC GO:0062023 Collagen-containing extracellular matrix 0.014529

MF GO:0008528 G protein-coupled peptide receptor activity 3.09E-05

MF GO:0001653 Peptide receptor activity 4.02E-05

MF GO:0008188 Neuropeptide receptor activity 0.000214

MF GO:0005436 Sodium:phosphate symporter activity 0.001049

MF GO:0001228 DNA-binding transcription activator activity, RNA polymerase II-specific 0.001051

MF GO:0001216 DNA-binding transcription activator activity 0.001167

MF GO:0005244 Voltage-gated ion channel activity 0.001600

MF GO:0022832 Voltage-gated channel activity 0.001600

MF GO:0036041 Long-chain fatty acid binding 0.001766

MF GO:0015370 Solute: sodium symporter activity 0.002657

included 396 interactions involving 27mRNAs and 308miRNAs

(Figure 7E; Supplementary Table 11 sheet 2). According to the

results, SLC4A1 had the largest number of interactional miRNAs

at 63, while hsa-mir-146a-5p had the most target mRNAs at 8

(Figure 7E).

Then, we established the mRNA–TF network to analyse

the regulation of gene expression modes by the hub

genes. The mRNA–TF interaction network included 29

interactions involving 7 mRNAs and 23 TFs (Figure 7F;

Supplementary Table 12). According to the results, GATA

binding protein 1 (GATA1) regulated 9 TFs, and it also served

as a TF and interacted with 3 hub genes (Figure 7F). The results

suggest that these m6A-related hub genes are involved in the

gene regulatory network in CHD.

Immune microenvironment
characteristics in the two m6A RNA
modification clusters

To further determine the differences in immune

microenvironment characteristics between the two m6A

RNA modification clusters, single-sample GSEA (ssGSEA)
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FIGURE 6

The GSEA enrichment analysis in the two clusters. (A,B) Top 10 GSEA-KEGG enrichment of genes in cluster 2 (A) and cluster 1 (B). (C,D) Top 10

GSEA-GO enrichment of genes in cluster 2 (C) and cluster 1 (D).

was performed to calculate the infiltrated proportions of

28 types of immune cells. The results showed that the

infiltrated proportions of multiple types of immune cells were

significantly lower in Cluster 1 than in Cluster 2 (Figure 8A).

Moreover, the hub genes were strongly correlated with

the immune cell infiltration abundance (Figure 8B). For

example, the infiltrated abundance of activated CD4T cells,

activated CD8T cells, effector memory CD8T cells, central

memory CD4T cells, regulatory T cells, gamma delta T cells,

immature dendritic cells, memory B cells, monocytes, natural

killer T cells, and type 2 T helper cells were significantly

and negatively correlated with the hub genes (Figure 8B,

green). The abundances of infiltrated natural killer T cells,

CD56dim natural killer cells, type 1 T helper cells and type

17 T helper cells were positively correlated with the hub genes

(Figure 8B, red).

The CIBERSORT algorithm was further applied to analyse

the infiltrated abundance of 22 types of immune cells in

patients in the two clusters. The landscape of immune cell

infiltration showed that monocytes and neutrophils were

predominant among the 22 immune cell types in those with

CHD (Figure 9A). Compared with the patients in Cluster 1,

the proportion of infiltrated M0 macrophages and plasma cells

were lower in Cluster 2 (Figure 9B). The correlation results

showed that the hub genes were positively correlated with

macrophages (Figure 9C) in patients in Cluster 1, and negatively
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FIGURE 7

Identification of the hub-genes and the miRNA-mRNA-TF network construction. (A) PPI network analysis of DEGs in the two clusters. (B)

Hub-gene network among the DEGs. (C) GO functional enrichment analysis of the Hub-genes. The node size represents the number of genes

contained in the current GO Term. BP: biological process; CC: cellular component; MF: molecular function. (D) Functional similarity analysis of

the hub-genes. The horizontal axis is the correlation size, the vertical axis is the gene name. (E) The miRNA-mRNA interaction network of the

hub-genes. The green label represents miRNAs, the orange label represents mRNAs. (F) The mRNA-TF interaction network of the hub-genes.

The blue label represents TFs, the orange label represents mRNAs.

correlated with follicular helper T cells and Tregs (Figure 9D)

in patients in Cluster 2. These findings demonstrated a

strong link between m6A RNA modification and immune cell

infiltration in patients with CHD, thus indicating that this

type of modification further functions in the development and

progression of CHD.
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TABLE 3 Top 3 GO enrichment of hub-genes.

Category ID Description p-value

BP GO:0031424 Keratinization 1.31E-09

BP GO:0009653 Anatomical structure

morphogenesis

9.44E-06

CC GO:0000785 Chromatin 3.40E-09

MF GO:1990837 Sequence-specific double-stranded

DNA binding

5.26E-07

MF GO:0000981 RNA polymerase II transcription

factor activity, sequence-specific

DNA binding

1.27E-06

The related hub genes were di�erentially
expressed in CHD

To verify the potential role of m6A RNA modification

in the development of CHD, the whole blood cells isolated

from patients (n = 8) with CHD piror to undergoing

cardiac catheterization and normal people (n = 8) were

collected, and the mRNA expression levels of the related hub

genes in the patients with CHD were detected by qRT-PCR.

The result showed that eight hub genes were upregulated

in patients with CHD compared to the normal people

(Figure 10A), including alpha hemoglobin stabilizing protein

(AHSP), carbonic anhydrase 1 (CA1), solute carrier family 4

member 1 (SLC4A1), selenium binding protein 1 (SELENBP1),

erythrocyte membrane protein band 4.2 (EPB42), tropomodulin

1 (TMOD1), late cornified envelope 5A (LCE5A), dematin

actin binding protein (DMTN). In addition, three hub genes

were downregulated in CHD patients, and they were late

cornified envelope 1A (LCE1A), G protein-coupled receptor 153

(GPR153), late cornified envelope 1D (LCE1D) (Figure 10B).

This indicated that these genes may have critical roles in the

development of CHD, thus further confirming the potential

regulatory role of m6A RNA modification in CHD progression.

Discussion

m6A RNA methylation, in which a methyl group is added

to the nitrogenous base at the sixth position of the adenine

residue in RNA, has emerged as one of the most common

internal modifications of RNAs (63) and is linked to multiple

human diseases, including CVD (3, 20, 21, 64, 65), chronic

obstructive pulmonary disease (66), neurodegenerative disease

(67), periodontitis (18), cancers (68), and metabolic syndromes

(69). The so-called “writer,” “eraser,” and “reader” proteins can

respectively add, remove, or recognize m6A-modified sites and

impact important biological processes (70, 71). The discovery of

these regulators increased our perception of the function of the

m6A RNA modification.

According to LASSO regression, the current study first

identified four m6A regulators that were significant in the

development and progression of CHD, including three m6A

“readers” (HNRNPC, YTHDC2, and YTHDF3) and one “writer”

(ZC3H13) among the 30 differentially expressed m6A regulators

in CHD samples. Compared with previous models (62), LASSO

regression is characterized by its use of multidimensional

continuous dependent variables to build linear models. LASSO

regression requires minimal data formatting and is widely used.

Additionally, LASSO regression can also screen variables to

reduce the model complexity and selectively include variables

in the model to obtain better performance parameters, and

the complexity of the model can be controlled by a series

of parameters to avoid overfitting. Based on the expression

of the four genes, CHD patients had significantly higher risk

scores than healthy people. Meanwhile, the expression levels

of the four m6A regulators, especially that of YTHDC2, were

predictive of high CHD risk. The results indicate that these

genes might be related to the prognoses of CHD patients and

could play prodevelopmental roles in CHD. As an m6A “reader,”

HNRNPC belongs to the subfamily of ubiquitously expressed

heterogeneous nuclear ribonucleoproteins (hnRNPs) and is

implicated in oncogenic functions in various tumor (72). CHD

is associated with a higher incidence of brain pathologies. For

example, depression and CHD are highly comorbid conditions.

A new study showed that brain-derived neurotrophic factor

(BDNF) plays an important role in cardiovascular processes

(73). HNRNPC was recently shown to have enriched binding

sites in the brain (74). This strengthens our finding that

HNRNPC is a potential biomarker and prognostic signature.

YTHDC2 belongs to the YT521-B homology superfamily,

contains the YTH domain, which is typical of eukaryotes.

The protein has a conserved m6A-binding domain (75) and

preferentially binds to m6A-modified RNA, modulates the

stability of m6A-containing mRNAs and facilitates their efficient

translation (75). Recent studies have shown that YTHDC2 can

improve the translation efficiency of hypoxia-inducible factor-

1alpha (HIF-1a) mRNA (76). HIF-1a has been shown to have the

potential function of promoting coronary collateral formation,

and might be helpful in predicting the prognoses of patients

with CHD (77). Moreover, the important role of hypoxia in

CAD development has been reported in previous papers (78).

Similar to YTHDC2, YTHDF3 is also a member of the YTH

superfamily, and it works closely with other readers to influence

the metabolism of m6A-modified mRNA (79, 80). ZC3H13 is

an m6A “writer” that facilitates nuclear localization of the writer

complex (81). In addition, we found that YTHDF3 and ZC3H13

were chromosomally located close to CHD susceptibility genes,

indicating that they had potential regulatory effects on CHD

development. Although these genes have been known for many

years, this is the first study to demonstrate the importance of
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FIGURE 8

Immune microenvironment characteristics of immune cells in CHD patients of the two m6A RNA modification patterns according to ssGSEA. (A)

Box plot showing the immune cell levels in the two m6A RNA modification patterns based on ssGSEA result. The statistical significance was

calculated via Wilcoxon rank sum test, ***P < 0.001, **P < 0.01, *P < 0.05. (B) The correlation between hub-genes and immune cell levels. The

horizontal axis represents immune cells, the vertical axis represents Hub gene, the node color represents correlation, and the node size

represents significance level.

these four m6A regulators in the development and progression

of CHD.

Consensus cluster analysis using the 30 m6A regulators

divided the CHD patient samples into two distinct clusters

with different m6A regulator expression levels, indicating

that two totally distinct m6A modification patterns occur

in patients with CHD. A total of 491 genes were found

to be significantly upregulated in the samples in Cluster 1

compared with those in Cluster 2, suggesting that these 491

genes might be the target genes for regulation by m6A RNA

modifications. Subsequent GO analysis showed that these genes

were enriched in the following biological processes: epidermal
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FIGURE 9

Infiltrating proportion of immune cells in CHD patients of the two m6A RNA modification patterns according to CIBERSORT algorithm. (A) The

landscape of immune cells infiltration in patients with CHD based on CIBERSORT algorithm. (B) Box plot showing the proportion of immune

cells infiltration between cluster 1 and cluster 2. The statistical significance was calculated via Wilcoxon rank sum test, ***P < 0.001. (C,D) The

correlation between hub-genes and immune cell levels in cluster 1 (C) and cluster 2 (D). The horizontal axis represents immune cells, the

vertical axis represents Hub gene, the node color represents correlation, and the node size represents significance level.
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FIGURE 10

qRT-PCR to detect the relative expression of the 30 hub genes in CHD. (A) The relative expressional levels of the eight up-regulated hub genes

in CHD. (B) The relative expressional levels of the three down-regulated hub genes and genes that were not changed in CHD compared to the

normal people. The statistical significance was calculated via one-way ANOVA, ***P < 0.001, **P < 0.01, *P < 0.05.

cell differentiation, keratinocyte differentiation, keratinization,

and skin development signaling pathways. Among the 491

m6A RNA modification-related DEGs, 30 were identified as

hub genes by PPI network analysis. These hub genes were

enriched in the following biological processes: keratinization,

chromatin, and sequence-specific double-stranded DNA

binding. The GO results suggested that keratinization,

epidermal cell differentiation, and skin development signaling

pathways may be the common bioprocesses that influence

m6A RNA modification in CHD. Skin lesions are frequent

manifestations of underlying systemic conditions, including

systemic autoimmune vasculitis (82). For example, patients

with psoriasis are up to 50% more likely to develop CVD, and

this CVD risk increases with skin symptom severity (83). Our

results showed that the dysregulation of keratinization and

skin development may be a result of m6A RNA modification

disorder. This may be a pathway by which m6A RNA

modification impacts CHD development. Moreover, LCE1A

protein was ranked as the top protein playing a key role in CHD,

which was found to be downregulated in CHD by qRT-PCR.

LCE1A belongs to the LCE gene cluster within the EDC on

chromosome 1. The LCE cluster contains multiple conserved

genes that encode stratum corneum proteins, and these genes

are expressed relatively late during fetal assembly of the skin

cornified envelope (84). These results all indicate that the

dysregulation of m6A RNA modification impacts biological

processes in patients with CHD that ultimately influence the

development of this disease.

Notably, we found that manymiRNAs were closely related to

the hub genes that were affected bym6A regulators. For example,

hsa-mir-146a-5p was the most common miRNA and was linked

to eight target hub genes. Sang J’s team found that hsa-mir-146a-

5p was regulated by the m6A “writer” METTL14 to function in

cancer invasion and migration (85). In addition, hsa-miR-146a-

5p was reported to be involved in the innate immune response

by regulating IFN-β signaling (86). ThemiRNA–mRNAnetwork

constructed in this study indicates that hsa-miR-146a-5p might

be an m6A regulator target that regulates CHD development,

although this hypothesis requires further verification. Several

miRNA polymorphisms have been associated with susceptibility

to specific health disorders, including CHD (87). Several papers

have established that miRNAs regulate various cardiovascular

development processes and functions, and a deregulated

cardiac-enriched miRNA profile plays a critical role in the

pathogenesis of CHD and biological aging (88). By constructing

the competing endogenous RNA (ceRNA) regulation network,

308 miRNAs and 883 lncRNAs were found to be associated

with the hub genes. Among these ncRNAs, hsa-miR-6884-

5p, hsa-miR-485-5p, hsa-miR-16-5p, hsa-miR-497-5p, and hsa-

miR-665 regulate multiple miRNAs and are regulated by

various lncRNAs. For example, we found that 107 miRNAs

were regulated by lnc-NEAT1. A recent study showed that

NEAT1/miR-140-3p/MAPK1mediates the viability and survival

of coronary endothelial cells and affects coronary atherosclerotic

heart disease (89). miR-140-3p was identified as a valuable

biomarker for risk estimation in CHD to predict mortality

in secondary prevention settings (90). miR-140-3p was also

found to be the target miRNA of lnc-SNHG1 in this study,

with the latter regulated by METTL3 (91). Additionally, we

found that miR-140-3p was correlated with six hub genes

(CD4, GRIN1, ZEPM1, SLC17A7, EPB42, and SLC4A1). These

findings may explain the potential regulatory effects of m6A

RNA modifications on the development of CHD. Based on the

mRNAs-TFs network, GATA1 was found to be prominent and

interact with nine TFs and three hub genes. GATA1 is one of the

most meaningful TFs for biologists because it interacts with a
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large number of other TFs and regulates many haematopoietic

genes (92). The common role of GATA1 in human disease is its

procancer function (93). The potential role of this gene in CHD

was first revealed in our study and should be further investigated.

These findings provide a prospective theoretical basis for further

research on CHD.

Emerging evidence has indicated that inflammation and

immune activation appear to be important in the pathogenesis

of CHD (94). Various types of immune cells play specific roles

in the human immune response and are involved in the strong

crosstalk network of the immune system (70, 95). Recently,

m6A RNA modification has attracted increasing attention in

the regulation of the human immune system (96) based on

its important role in the pathogenesis and development of

human diseases (97). In the present study, we found that the

proportion of infiltrated immune cells differed between the

two patient clusters constructed based on the m6A regulators.

The proportions of 28 types of immune cells were calculated

by ssGSEA, and the results showed that patients in Cluster

2 had an activated immune level with higher infiltrating

proportions of activated CD4T cells, activated CD8T cells,

effector memory CD8T cells, central memory CD4T cells,

regulatory T cells, gamma delta T cells, immature dendritic

cells, memory B cells, monocytes, natural killer cells, and

type 2 T helper cells, while patients in Cluster 1 had higher

infiltrating proportions of natural killer T cells, CD56dim

natural killer cells, type 1 T helper cells and type 17 T helper

cells. Previous studies showed that the infiltration of CD8+

T cells could enhance the accumulation of macrophages and

inflammation in a human disease model (98, 99). CD4+ T

cells are subdivided into two main subsets according to their

functions: effector cells and regulatory T (Treg) cells (100).

The main function of Treg cells is to avoid autoimmune

reactions and to stop the effector response against exogenous

antigens, when the response itself becomes dangerous to the

host (100). Type 1 T helper (Th1) and type 17 T helper (Th17)

cells are involved in chronic inflammatory disorders and the

pathogeneses of autoimmune diseases, whereas type 2 T helper

(Th2) cells play a critical role in allergies (100). Additionally, the

CIBERSORT algorithm was applied to analyse the 22 types of

infiltrating immune cells. The results showed that the infiltrated

proportions of M0 macrophages and plasma cells were lower

in the immune microenvironment of CHD patients in Cluster

2 than those of patients in Cluster 1. Macrophages are the

primary contributors to potentially pathological inflammatory

processes, which produce large numbers of inflammatory

cytokines in response to danger signals (101). These cytokines

can initiate a cascade of inflammatory mediator release to

cause wholesale tissue destruction (101). Both algorithms used

in this study showed significant correlations between m6A

RNA modification and these proinflammatory lymphocytes,

providing evidence that the infiltrating proportions of these

lymphocytes were higher in CHD patients in Cluster 2,

and these patients also had higher levels of m6A regulators.

The enhanced expression of m6A regulators leads to a

high level of m6A RNA methylation, which further changes

the expression of target genes and ultimately influences the

immune microenvironment.

A previous study identified differentially methylated m6A

sites within both mRNAs and lncRNAs between CAD and

control groups by methylated RNA immunoprecipitation

sequencing (MeRIP-seq) (25). This finding indicates that

m6A RNA modification plays an important role in the

CHD process. Our results are consistent with it. However,

our study aimed to analyse distinct clusters based on m6A

RNA modifications, including examinations of DEGs and

the immune microenvironment. We systematically revealed

the heterogeneity of m6A RNA modifications in CHD and

indicated the corresponding biological processes influenced

in CHD by analyzing DEGs between the distinct clusters.

This study provides a novel theoretical basis for revealing the

pathogenesis of CHD regulated by m6A regulators. It also

provides a prospective theoretical basis for further studies on

the regulatory pathway of m6A RNA modification. Moreover,

the influence of CHD-related m6A RNA modification on

immune system disorders was clarified for the first time,

thus providing a potentially significant research foundation

for elucidating the pathogenesis of CHD. Finally, many target

miRNAs and TFs regulated by m6A RNA modifications were

identified in this study. These results will provide multiple

potential approaches for further studies on the mechanisms of

m6A modification.

However, this study had certain limitations. First, due

to the lack of disease-related prognostic indices in the

GEO datasets, the clinical indicators of CHD were not

analyzed. Therefore, a large amount of clinical information

from CHD patients should be collected to construct a

validation set, and additional clinical information should

be collected through follow-ups to further analyse the

relationships between m6A modification and clinical

parameters in CHD patients. The effect of m6A RNA

modification on the prognosis of CHD needs to be further

explained. Second, in vivo and in vitro experiments were

performed to further explain the specific roles of the

four significant m6A regulators in the development of

CHD. Additionally, methylated RNA immunoprecipitation

sequencing (MeRIP-seq) may be conducted to identify the

m6A RNA modification patterns in CHD and to identify the

significant genes involved in m6A modification. Finally, we

found 308 miRNAs that were closely related to the m6A-

related DEGs. These miRNAs might be linked to CHD in

future analyses.

In conclusion, the current study suggests that changes in

m6A RNA modification patterns mediated by regulators are

involved in the immune microenvironment of patients with

CHD and play significant roles in the progression of the
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disease. These findings provide potential novel biomarkers for

the diagnosis of CHD.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found in the

article/Supplementary materials.

Ethics statement

The studies involving human participants were reviewed

and approved by Ethics Committee of Qingdao Hiser Hospital

Affiliated to Qingdao University. The patients/participants

provided their written informed consent to participate in

this study.

Author contributions

ZL, TJ, and YC designed experiments and interpreted

data. ZL, YS, MW, RS, KQ, YZ, and TJ conducted

bioinformatic and statistical analyses. ZL wrote the paper.

All authors have read and approved the manuscript

for publication.

Funding

This work was supported by grants from the Natural Science

Foundation of Shandong Province [ZR2021MH253 to YC].

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fcvm.2022.905737/full#supplementary-material

References

1. Francula-Zaninovic S, Nola IA. Management of measurable variable
cardiovascular disease’ risk factors. Curr Cardiol Rev. (2018) 14:153–63.
doi: 10.2174/1573403X14666180222102312

2. Wong ND. Epidemiological studies of CHD and the evolution of preventive
cardiology. Nat Rev Cardiol. (2014) 11:276–89. doi: 10.1038/nrcardio.2014.26

3. Wu S, Zhang S, Wu X, Zhou X. m6A RNA Methylation in Cardiovascular
diseases.Mol Ther. (2020) 28:2111–9. doi: 10.1016/j.ymthe.2020.08.010

4. Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol.
(2017) 13:368–80. doi: 10.1038/nrneph.2017.51

5. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated
through reversible m6A RNA methylation. Nat Rev Genet. (2014) 15:293–306.
doi: 10.1038/nrg3724

6. Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N, et al. Principles of
RNA methylation and their implications for biology and medicine. Biomed
Pharmacother. (2020) 131:110731. doi: 10.1016/j.biopha.2020.110731

7. Wei W, Ji X, Guo X, Ji S. Regulatory role of N6-methyladenosine (m6

A) methylation in RNA processing and human diseases. J Cell Biochem. (2017)
118:2534–43. doi: 10.1002/jcb.25967

8. Peng L, Long T, Li F, Xie Q. Emerging role of m6 a modification in
cardiovascular diseases. Cell Biol Int. (2022) 46:711–22. doi: 10.1002/cbin.11773

9. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing
mRNA methylation. Nat Rev Mol Cell Biol. (2019) 20:608–24.
doi: 10.1038/s41580-019-0168-5

10. Shi H, Wei J, He C. Where, when, and how: context-dependent functions
of RNA methylation writers, readers, and erasers. Mol Cell. (2019) 74:640–50.
doi: 10.1016/j.molcel.2019.04.025

11. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in
nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol.
(2011) 7:885–7. doi: 10.1038/nchembio.687

12. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a
mammalian RNA demethylase that impacts RNA metabolism and mouse fertility.
Mol Cell. (2013) 49:18–29. doi: 10.1016/j.molcel.2012.10.015

13. Zhao Y, Shi Y, Shen H, Xie W. m6A-binding proteins: the
emerging crucial performers in epigenetics. J Hematol Oncol. (2020) 13:35.
doi: 10.1186/s13045-020-00872-8

14. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine
and its role in cancer.Mol Cancer. (2019) 18:176. doi: 10.1186/s12943-019-1109-9

15. Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical
role of RNA m6A methylation in cancer. Cancer Res. (2019) 79:1285–92.
doi: 10.1158/0008-5472.CAN-18-2965

16. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA
methylation directs translational control of heat shock response. Nature. (2015)
526:591–4. doi: 10.1038/nature15377

17. Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC,
et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent
translation control. Nature. (2017) 552:126–31. doi: 10.1038/nature24678

18. Zhang X, Zhang S, Yan X, Shan Y, Liu L, Zhou J, et al. m6A regulator-
mediated RNA methylation modification patterns are involved in immune
microenvironment regulation of periodontitis. J Cell Mol Med. (2021) 25:3634–45.
doi: 10.1111/jcmm.16469

19. Sun D, Yang H, Fan L, Shen F, Wang Z. m6A regulator-mediated RNA
methylation modification patterns and immune microenvironment infiltration

Frontiers inCardiovascularMedicine 19 frontiersin.org

https://doi.org/10.3389/fcvm.2022.905737
https://www.frontiersin.org/articles/10.3389/fcvm.2022.905737/full#supplementary-material
https://doi.org/10.2174/1573403X14666180222102312
https://doi.org/10.1038/nrcardio.2014.26
https://doi.org/10.1016/j.ymthe.2020.08.010
https://doi.org/10.1038/nrneph.2017.51
https://doi.org/10.1038/nrg3724
https://doi.org/10.1016/j.biopha.2020.110731
https://doi.org/10.1002/jcb.25967
https://doi.org/10.1002/cbin.11773
https://doi.org/10.1038/s41580-019-0168-5
https://doi.org/10.1016/j.molcel.2019.04.025
https://doi.org/10.1038/nchembio.687
https://doi.org/10.1016/j.molcel.2012.10.015
https://doi.org/10.1186/s13045-020-00872-8
https://doi.org/10.1186/s12943-019-1109-9
https://doi.org/10.1158/0008-5472.CAN-18-2965
https://doi.org/10.1038/nature15377
https://doi.org/10.1038/nature24678
https://doi.org/10.1111/jcmm.16469
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Li et al. 10.3389/fcvm.2022.905737

characterization in severe asthma. J Cell Mol Med. (2021) 25:10236–47.
doi: 10.1111/jcmm.16961

20. Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, et al.
Changes in m6A RNA methylation contribute to heart failure progression by
modulating translation. Eur J Heart Fail. (2020) 22:54–66. doi: 10.1002/ejhf.1672

21. Zhang B, Xu Y, Cui X, Jiang H, LuoW,Weng X, et al. Alteration of m6A RNA
methylation in heart failure with preserved ejection fraction. Front Cardiovasc
Med. (2021) 8:647806. doi: 10.3389/fcvm.2021.647806

22. Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M,
et al. The N6-methyladenosine mRNA methylase METTL3 controls
cardiac homeostasis and hypertrophy. Circulation. (2019) 139:533–45.
doi: 10.1161/CIRCULATIONAHA.118.036146

23. Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y,
Agarwal N, et al. FTO-dependent N6-methyladenosine regulates cardiac
function during remodeling and repair. Circulation. (2019) 139:518–32.
doi: 10.1161/CIRCULATIONAHA.118.033794

24. Li T, Zhuang Y, Yang W, Xie Y, Shang W, Su S, et al. Silencing
of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via
inhibiting the activation of cardiac fibroblasts. FASEB J. (2021) 35:e21162.
doi: 10.1096/fj.201903169R

25. Deng K, Ning X, Ren X, Yang B, Li J, Cao J, et al. Transcriptome-wide N6-
methyladenosine methylation landscape of coronary artery disease. Epigenomics.
(2021) 13:793–808. doi: 10.2217/epi-2020-0372

26. Han Y, Du T, Guo S, Wang L, Dai G, Long T, et al. Loss
of m6A methyltransferase METTL5 promotes cardiac hypertrophy through
epitranscriptomic control of SUZ12 Expression. Front Cardiovasc Med. (2022)
9:852775. doi: 10.3389/fcvm.2022.852775

27. Zhao X, Yang L, Qin L. Methyltransferase-like 3 (METTL3) attenuates
cardiomyocyte apoptosis with myocardial ischemia-reperfusion (I/R) injury
through miR-25-3p and miR-873-5p. Cell Biol Int. (2021).

28. Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, et al. Loss
of m6A methyltransferase METTL3 promotes heart regeneration and
repair after myocardial injury. Pharmacol Res. (2021) 174:105845.
doi: 10.1016/j.phrs.2021.105845

29. Mo XB, Lei SF, Zhang YH, Zhang H. Detection of m6A-associated SNPs
as potential functional variants for coronary artery disease. Epigenomics. (2018)
10:1279–87. doi: 10.2217/epi-2018-0007

30. Guo M, Yan R, Ji Q, Yao H, Sun M, Duan L, et al. IFN regulatory
Factor-1 induced macrophage pyroptosis by modulating m6A modification of
circ_0029589 in patients with acute coronary syndrome. Int Immunopharmacol.
(2020) 86:106800. doi: 10.1016/j.intimp.2020.106800

31. He GD, Huang YQ, Liu L, Huang JY, Lo K, Yu YL, et al. Association
of circulating, inflammatory-response exosomal mRNAs with acute myocardial
infarction. Front Cardiovasc Med. (2021) 8:712061. doi: 10.3389/fcvm.2021.712061

32. Beineke P, Fitch K, TaoH, ElashoffMR, Rosenberg S, KrausWE, et al. A whole
blood gene expression-based signature for smoking status. BMC Med Genomics.
(2012) 5:58. doi: 10.1186/1755-8794-5-58

33. Elashoff MR, Wingrove JA, Beineke P, Daniels SE, Tingley WG, Rosenberg S,
et al. Development of a blood-based gene expression algorithm for assessment of
obstructive coronary artery disease in non-diabetic patients. BMC Med Genomics.
(2011) 4:26. doi: 10.1186/1755-8794-4-26

34. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, et al.
NCBI GEO: mining tens of millions of expression profiles–database and tools
update. Nucleic Acids Res. (2007) 35:D760–5. doi: 10.1093/nar/gkl887

35. Chakraborty S, Datta S, Datta S. Surrogate variable analysis using partial least
squares (SVA-PLS) in gene expression studies. Bioinformatics. (2012) 28:799–806.
doi: 10.1093/bioinformatics/bts022

36. Davis S, Meltzer PS. GEOquery: a bridge between the gene expression
omnibus (GEO) and bioconductor. Bioinformatics. (2007) 23:1846–7.
doi: 10.1093/bioinformatics/btm254

37. van Egmond MB, Spini G, van der Galien O, IJpma A, Veugen T,
Kraaij W, et al. Privacy-preserving dataset combination and Lasso regression
for healthcare predictions. BMC Med Inform Decis Mak. (2021) 21:266.
doi: 10.1186/s12911-021-01582-y

38. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized
linear models via coordinate descent. J Stat Softw. (2010) 33:1–22.
doi: 10.18637/jss.v033.i01

39. Fang Y, Huang S, Han L, Wang S, Xiong B. Comprehensive analysis of
peritoneal metastasis sequencing data to identify LINC00924 as a prognostic
biomarker in gastric cancer. Cancer Manag Res. (2021) 13:5599–611.
doi: 10.2147/CMAR.S318704

40. Pajouheshnia R, Pestman WR, Teerenstra S, Groenwold RH. A
computational approach to compare regression modelling strategies in prediction
research. BMCMed Res Methodol. (2016) 16:107. doi: 10.1186/s12874-016-0209-0

41. Mandrekar JN. Receiver operating characteristic curve in diagnostic test
assessment. J Thorac Oncol. (2010) 5:1315–6. doi: 10.1097/JTO.0b013e3181ec173d

42. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC:
an open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinformatics. (2011) 12:77. doi: 10.1186/1471-2105-12-77

43. Van Calster B, Wynants L, Verbeek JFM, Verbakel JY, Christodoulou E,
Vickers AJ, et al. Reporting and interpreting decision curve analysis: a guide for
investigators. Eur Urol. (2018) 74:796–804. doi: 10.1016/j.eururo.2018.08.038

44. Fitzgerald M, Saville BR, Lewis RJ. Decision curve analysis. JAMA. (2015)
313:409–10. doi: 10.1001/jama.2015.37

45. Testa D, Jourde-Chiche N, Mancini J, Varriale P, Radoszycki L, Chiche L.
Unsupervised clustering analysis of data from an online community to identify
lupus patient profiles with regards to treatment preferences. Lupus. (2021)
30:1837–43. doi: 10.1177/09612033211033977

46. Wilkerson MD, Hayes DN. Consensusclusterplus: a class discovery tool
with confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3.
doi: 10.1093/bioinformatics/btq170

47. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

48. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. the gene ontology consortium. Nat
Genet. (2000) 25:25–9. doi: 10.1038/75556

49. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

50. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS. (2012) 16:284–7.
doi: 10.1089/omi.2011.0118

51. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A. (2005) 102:15545–50.
doi: 10.1073/pnas.0506580102

52. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,
et al. STRING v11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic
Acids Res. (2019) 47:D607–13. doi: 10.1093/nar/gky1131

53. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,
et al. Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. (2003) 13:2498–504. doi: 10.1101/gr.1239303

54. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba:
identifying hub objects and sub-networks from complex interactome. BMC Syst
Biol. (2014) 8:S11. doi: 10.1186/1752-0509-8-S4-S11

55. Chang L, ZhouG, SoufanO, Xia J. miRNet 2.0: network-based visual analytics
for miRNA functional analysis and systems biology. Nucleic Acids Res. (2020)
48:W244–51. doi: 10.1093/nar/gkaa467

56. Yu G. Gene ontology semantic similarity analysis using GOSemSim.Methods
Mol Biol. (2020) 2117:207–15. doi: 10.1007/978-1-0716-0301-7_11

57. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al.
Systematic RNA interference reveals that oncogenic KRAS-driven cancers require
TBK1. Nature. (2009) 462:108–12. doi: 10.1038/nature08460

58. Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, Pontius J, et al.
ImmPort: disseminating data to the public for the future of immunology. Immunol
Res. (2014) 58:234–9. doi: 10.1007/s12026-014-8516-1

59. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F,
et al. Determining cell type abundance and expression from bulk tissues with
digital cytometry. Nat Biotechnol. (2019) 37:773–82. doi: 10.1038/s41587-019-
0114-2

60. Zhang C, Fu J, Zhou Y. A review in research progress concerning
m6A methylation and immunoregulation. Front Immunol. (2019) 10:922.
doi: 10.3389/fimmu.2019.00922

61. Topol EJ, Smith J, Plow EF, Wang QK. Genetic susceptibility to myocardial
infarction and coronary artery disease. Hum Mol Genet. (2006) 15:R117–23.
doi: 10.1093/hmg/ddl183

62. Zhang L, Chen X, Yin J. Prediction of potential miRNA-disease
associations through a novel unsupervised deep learning framework
with variational autoencoder. Cells. (2019) 8:1040. doi: 10.3390/cells8
091040

Frontiers inCardiovascularMedicine 20 frontiersin.org

https://doi.org/10.3389/fcvm.2022.905737
https://doi.org/10.1111/jcmm.16961
https://doi.org/10.1002/ejhf.1672
https://doi.org/10.3389/fcvm.2021.647806
https://doi.org/10.1161/CIRCULATIONAHA.118.036146
https://doi.org/10.1161/CIRCULATIONAHA.118.033794
https://doi.org/10.1096/fj.201903169R
https://doi.org/10.2217/epi-2020-0372
https://doi.org/10.3389/fcvm.2022.852775
https://doi.org/10.1016/j.phrs.2021.105845
https://doi.org/10.2217/epi-2018-0007
https://doi.org/10.1016/j.intimp.2020.106800
https://doi.org/10.3389/fcvm.2021.712061
https://doi.org/10.1186/1755-8794-5-58
https://doi.org/10.1186/1755-8794-4-26
https://doi.org/10.1093/nar/gkl887
https://doi.org/10.1093/bioinformatics/bts022
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1186/s12911-021-01582-y
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.2147/CMAR.S318704
https://doi.org/10.1186/s12874-016-0209-0
https://doi.org/10.1097/JTO.0b013e3181ec173d
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1016/j.eururo.2018.08.038
https://doi.org/10.1001/jama.2015.37
https://doi.org/10.1177/09612033211033977
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1093/nar/gkaa467
https://doi.org/10.1007/978-1-0716-0301-7_11
https://doi.org/10.1038/nature08460
https://doi.org/10.1007/s12026-014-8516-1
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.3389/fimmu.2019.00922
https://doi.org/10.1093/hmg/ddl183
https://doi.org/10.3390/cells8091040
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Li et al. 10.3389/fcvm.2022.905737

63. Karthiya R, Khandelia P. m6A RNA methylation: ramifications for
gene expression and human health. Mol Biotechnol. (2020) 62:467–84.
doi: 10.1007/s12033-020-00269-5

64. Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, et al. Role of m6A RNA
methylation in cardiovascular disease (Review). Int J Mol Med. (2020) 46:1958–72.
doi: 10.3892/ijmm.2020.4746

65. Paramasivam A, Priyadharsini JV. m6A RNA methylation in heart
development, regeneration and disease. Hypertens Res. (2021) 44:1236–7.
doi: 10.1038/s41440-021-00696-0

66. Huang X, Lv D, Yang X, Li M, Zhang H. m6A RNA methylation regulators
could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell
Mol Med. (2020) 24:12706–15. doi: 10.1111/jcmm.15848

67. Han M, Liu Z, Xu Y, Liu X, Wang D, Li F, et al. Abnormality of m6A
mRNA methylation is involved in Alzheimer’s disease. Front Neurosci. (2020)
14:98. doi: 10.3389/fnins.2020.00098

68.Wang T, Kong S, TaoM, Ju S. The potential role of RNAN6-methyladenosine
in Cancer progression.Mol Cancer. (2020) 19:88. doi: 10.1186/s12943-020-01204-7

69. Zhang B, Jiang H, Dong Z, Sun A, Ge J. The critical roles of m6Amodification
in metabolic abnormality and cardiovascular diseases. Genes Dis. (2020) 8:746–58.
doi: 10.1016/j.gendis.2020.07.011

70. Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed
Pharmacother. (2019) 112:108613. doi: 10.1016/j.biopha.2019.108613

71. Lee JH, Wang R, Xiong F, Krakowiak J, Liao Z, Nguyen PT, et al. Enhancer
RNA m6A methylation facilitates transcriptional condensate formation and gene
activation.Mol Cell. (2021) 81:3368–85. doi: 10.1016/j.molcel.2021.07.024

72. Huang XT Li JH, Zhu XX, Huang CS, Gao ZX, Xu QC, et al.
HNRNPC impedes m6A-dependent anti-metastatic alternative splicing
events in pancreatic ductal adenocarcinoma. Cancer Lett. (2021) 518:196–206.
doi: 10.1016/j.canlet.2021.07.016

73. Franz IW, Tönnesmann U, Behr U, Ketelhut R. Regression of
left ventricular hypertrophy during combined atenolol and nifedipine
treatment. Drugs. (1988) 35 Suppl 4:39–43. doi: 10.2165/00003495-198800354-
00010

74. Xiong X, Hou L, Park YP, Molinie B, GTEx Consortium, Gregory
RI, et al. Genetic drivers of m6A methylation in human brain, lung,
heart and muscle. Nat Genet. (2021) 53:1156–65. doi: 10.1038/s41588-021-0
0890-3

75. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-
dependent regulation of messenger RNA stability. Nature. (2014) 505:117–20.
doi: 10.1038/nature12730

76. Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H, Konno J, et al.
RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the
efficiency by which HIF-1α mRNA is translated. Cancer Lett. (2016) 376:34–42.
doi: 10.1016/j.canlet.2016.02.022

77. Chen SM Li YG, Zhang HX, Zhang GH, Long JR, Tan CJ, et al. Hypoxia-
inducible factor-1alpha induces the coronary collaterals for coronary artery disease.
Coron Artery Dis. (2008) 19:173–9. doi: 10.1097/MCA.0b013e3282fa4b2c

78. Seo MY, Lee SH, Hong SD, Chung SK, KimHY. Hypoxemia during sleep and
the progression of coronary artery calcium. Cardiovasc Toxicol. (2021) 21:42–8.
doi: 10.1007/s12012-020-09593-3

79. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates
translation and decay of N6-methyladenosine-modified RNA. Cell Res. (2017)
27:315–28. doi: 10.1038/cr.2017.15

80. Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, et al. Cytoplasmic
m6A reader YTHDF3 promotes mRNA translation. Cell Res. (2017) 27:444–7.
doi: 10.1038/cr.2017.10

81. Wen J, Lv R, Ma H, Shen H, He C, Wang J, et al. Zc3h13 regulates nuclear
RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell.
(2018) 69:1028–38. doi: 10.1016/j.molcel.2018.02.015

82. Marzano AV, Raimondo MG, Berti E, Meroni PL, Ingegnoli F.
Cutaneous manifestations of ANCA-associated small vessels vasculitis.
Clin Rev Allergy Immunol. (2017) 53:428–38. doi: 10.1007/s12016-017-
8616-5

83. Garshick MS, Ward NL, Krueger JG, Berger JS. Cardiovascular risk in
patients with psoriasis: JACC review topic of the week. J Am Coll Cardiol. (2021)
77:1670–80. doi: 10.1016/j.jacc.2021.02.009

84. Jackson B, Tilli CM, Hardman MJ, Avilion AA, MacLeod MC, Ashcroft
GS, et al. Late cornified envelope family in differentiating epithelia–response
to calcium and ultraviolet irradiation. J Invest Dermatol. (2005) 124:1062–70.
doi: 10.1111/j.0022-202X.2005.23699.x

85. Yi D, Wang R, Shi X, Xu L, Yilihamu Y, Sang J. METTL14 promotes
the migration and invasion of breast cancer cells by modulating N6-
methyladenosine and hsa-miR-146a-5p expression. Oncol Rep. (2020) 43:1375–86.
doi: 10.3892/or.2020.7515

86. Mo L, Zeng Z, Deng R, Li Z, Sun J, Hu N, et al. Hepatitis A virus-induced
hsa-miR-146a-5p attenuates IFN-β signaling by targeting adaptor protein TRAF6.
Arch Virol. (2021) 166:789–99. doi: 10.1007/s00705-021-04952-z

87. Agiannitopoulos K, Samara P, Papadopoulou M, Efthymiadou A,
Papadopoulou E, Tsaousis GN, et al. miRNA polymorphisms and risk of
premature coronary artery disease. Hellenic J Cardiol. (2021) 62:278–84.
doi: 10.1016/j.hjc.2020.01.005

88. Ali SheikhMS, Alduraywish A, Almaeen A, Alruwali M, Alruwaili R, Alomair
BM, et al. Therapeutic value of miRNAs in coronary artery disease. Oxid Med Cell
Longev. (2021) 2021:8853748. doi: 10.1155/2021/8853748

89. Zhang H, Ji N, Gong X, Ni S, Wang Y. NEAT1/miR-140-3p/MAPK1
mediates the viability and survival of coronary endothelial cells and affects
coronary atherosclerotic heart disease.Acta Biochim Biophys Sin. (2020) 52:967–74.
doi: 10.1093/abbs/gmaa087

90. Karakas M, Schulte C, Appelbaum S, Ojeda F, Lackner KJ, Münzel T, et al.
Circulating microRNAs strongly predict cardiovascular death in patients with
coronary artery disease-results from the large AtheroGene study. Eur Heart J.
(2017) 38:516–23. doi: 10.1093/eurheartj/ehw250

91. Jiang X, Yuan Y, Tang L, Wang J, Liu Q, Zou X, et al. Comprehensive
pan-cancer analysis of the prognostic and immunological roles of the
METTL3/lncRNA-SNHG1/miRNA-140-3p/UBE2C Axis. Front Cell Dev Biol.
(2021) 9:765772. doi: 10.3389/fcell.2021.765772

92. Kobayashi M, Yamamoto M. Regulation of GATA1 gene expression. J
Biochem. (2007) 142:1–10. doi: 10.1093/jb/mvm122

93. Panferova A, Gaskova M, Nikitin E, Baryshev P, Timofeeva N, Kazakova A,
et al. GATA1 mutation analysis and molecular landscape characterization in acute
myeloid leukemia with trisomy 21 in pediatric patients. Int J Lab Hematol. (2021)
43:713–23. doi: 10.1111/ijlh.13451

94. Fioranelli M, Bottaccioli AG, Bottaccioli F, Bianchi M, Rovesti M,
Roccia MG. Stress and inflammation in coronary artery disease: a review
psychoneuroendocrineimmunology-based. Front Immunol. (2018) 9:2031.
doi: 10.3389/fimmu.2018.02031

95. McComb S, Thiriot A, Akache B, Krishnan L, Stark F.
Introduction to the immune system. Methods Mol Biol. (2019) 2024:1–24.
doi: 10.1007/978-1-4939-9597-4_1

96. Liu C, Yang Z, Li R, Wu Y, Chi M, Gao S, et al. Potential roles of
N6-methyladenosine (m6A) in immune cells. J Transl Med. (2021) 19:251.
doi: 10.1186/s12967-021-02918-y

97. Zhao H, Xu Y, Xie Y, Zhang L, GaoM, Li S, et al. m6A regulators is differently
expressed and correlated with immune response of esophageal cancer. Front Cell
Dev Biol. (2021) 9:650023. doi: 10.3389/fcell.2021.650023

98. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al.
CD8+ effector T cells contribute to macrophage recruitment and adipose tissue
inflammation in obesity. Nat Med. (2009) 15:914–20. doi: 10.1038/nm.1964

99. Kiran S, Kumar V, Murphy EA, Enos RT, Singh UP. High fat diet-induced
CD8+ T cells in adipose tissue mediate macrophages to sustain low-grade chronic
inflammation. Front Immunol. (2021) 12:680944. doi: 10.3389/fimmu.2021.680944

100. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T
helper cells plasticity in inflammation. Cytometry A. (2014) 85:36–42.
doi: 10.1002/cyto.a.22348

101. Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM.
Macrophages and the recovery from acute and chronic inflammation. Annu Rev
Physiol. (2017) 79:567–92. doi: 10.1146/annurev-physiol-022516-034348

Frontiers inCardiovascularMedicine 21 frontiersin.org

https://doi.org/10.3389/fcvm.2022.905737
https://doi.org/10.1007/s12033-020-00269-5
https://doi.org/10.3892/ijmm.2020.4746
https://doi.org/10.1038/s41440-021-00696-0
https://doi.org/10.1111/jcmm.15848
https://doi.org/10.3389/fnins.2020.00098
https://doi.org/10.1186/s12943-020-01204-7
https://doi.org/10.1016/j.gendis.2020.07.011
https://doi.org/10.1016/j.biopha.2019.108613
https://doi.org/10.1016/j.molcel.2021.07.024
https://doi.org/10.1016/j.canlet.2021.07.016
https://doi.org/10.2165/00003495-198800354-00010
https://doi.org/10.1038/s41588-021-00890-3
https://doi.org/10.1038/nature12730
https://doi.org/10.1016/j.canlet.2016.02.022
https://doi.org/10.1097/MCA.0b013e3282fa4b2c
https://doi.org/10.1007/s12012-020-09593-3
https://doi.org/10.1038/cr.2017.15
https://doi.org/10.1038/cr.2017.10
https://doi.org/10.1016/j.molcel.2018.02.015
https://doi.org/10.1007/s12016-017-8616-5
https://doi.org/10.1016/j.jacc.2021.02.009
https://doi.org/10.1111/j.0022-202X.2005.23699.x
https://doi.org/10.3892/or.2020.7515
https://doi.org/10.1007/s00705-021-04952-z
https://doi.org/10.1016/j.hjc.2020.01.005
https://doi.org/10.1155/2021/8853748
https://doi.org/10.1093/abbs/gmaa087
https://doi.org/10.1093/eurheartj/ehw250
https://doi.org/10.3389/fcell.2021.765772
https://doi.org/10.1093/jb/mvm122
https://doi.org/10.1111/ijlh.13451
https://doi.org/10.3389/fimmu.2018.02031
https://doi.org/10.1007/978-1-4939-9597-4_1
https://doi.org/10.1186/s12967-021-02918-y
https://doi.org/10.3389/fcell.2021.650023
https://doi.org/10.1038/nm.1964
https://doi.org/10.3389/fimmu.2021.680944
https://doi.org/10.1002/cyto.a.22348
https://doi.org/10.1146/annurev-physiol-022516-034348
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org

	m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment regulation of coronary heart disease
	Introduction
	Materials and methods
	Data acquisition and preprocess
	Construction of forest model and nomogram model
	Identification of m6A modification pattern
	Identification of DEGs between the two m6A modification patterns
	Biological characteristics assessment between the two m6A modification patterns
	Protein-protein interaction network construction
	Functional similarity analysis
	Immune cell infiltration analysis
	The peripheral blood collection and the whole blood cells isolation
	Total RNA extraction, CDNA synthesis and quantitative real-time PCR
	Statistical analysis

	Results
	Landscape of m6A RNA methylation regulators in CHD
	m6A RNA methylation regulators are involved in CHD progression
	m6A RNA modification clusters in CHD
	Biological enrichment analysis of distinct m6A RNA modification clusters
	Hub gene identification and MiRNA–MRNA and MRNAs–transcription factor network construction
	Immune microenvironment characteristics in the two m6A RNA modification clusters
	The related hub genes were differentially expressed in CHD

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


