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Hydrogen sulfide (H2S), a gas transmitter found in eukaryotic organisms, plays

an essential role in several physiological processes. H2S is one of the three

primary biological gas transmission signaling mediators, along with nitric oxide

and carbon monoxide. Several animal and in vitro experiments have indicated

that H2S can prevent coronary endothelial mesenchymal transition, reduce the

expression of endothelial cell adhesion molecules, and stabilize intravascular

plaques, suggesting its potential role in the treatment of atherosclerosis (AS).

H2S donors are compounds that can release H2S under certain circumstances.

Development of highly targeted H2S donors is a key imperative as these can

allow for in-depth evaluation of the anti-atherosclerotic e�ects of exogenous

H2S. More importantly, identification of an optimal H2S donor is critical for the

creation of H2S anti-atherosclerotic prodrugs. In this review, we discuss a wide

range of H2S donorswith anti-AS potential alongwith their respective transport

pathways and design-related limitations. We also discuss the utilization of

nano-synthetic technologies to manufacture H2S donors. This innovative and

e�ective design example sheds new light on the production of highly targeted

H2S donors.

KEYWORDS

hydrogen sulfide, donor, atherosclerotic, nanotechnology, drug delivery and

targeting

Introduction

Hydrogen sulfide (H2S) is a colorless gas that smells like rotten eggs and has toxic

effects at concentrations approaching 20 ppm. Initial research on H2S was largely

conducted in the context of elimination of H2S waste gas in industrial operations

and protection from dangerous gases in wartime (1). H2S poisoning is caused by the
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reaction of H2S with trivalent iron in oxidized cytochrome

oxidase, which inhibits the function of cellular respiratory

enzymes, resulting in cellular hypoxia (2). H2S can also

inactivate glutathione by coupling with its sulfhydryl group,

inducing cell death (3). However, it was only in 1996 that Abe

and Kimura (4) published the findings of a seminal investigation

on endogenous H2S generation and signaling. Consequently,

over the next 20 years, the general perception of H2S shifted

from that of a poisonous gas to a gas transmitter with potential

for pharmacological therapy. Carbon monoxide and nitrogen

oxide (5) are all similar gas transmitters. All gas transmitters

have comparable qualities, such as solubility, free diffusion, and

the need for certain enzymes and substrates for production. The

characteristics of the three gas transmitters are summarized in

Table 1.

H2S has numerous key regulatory effects in AS, including

anti-oxidative stress, prevention of endothelial mesenchymal

transition, reduction of foam cell production, and modulation

of mitochondrial autophagy (6–8). Several studies have

demonstrated the cardiovascular benefits of H2S in clinical

settings. In a randomized controlled, double-blind trial

involving 120 hypertensive patients, taurine supplementation

significantly decreased the clinic and 24-h ambulatory blood

pressure (9). Furthermore, changes in blood pressure were

negatively correlated with both the plasma H2S and taurine

levels in taurine-treated prehypertensive individuals. The

potential underlying mechanism is that taurine up-regulates

the expression of H2S synthase by inhibiting calcium influx

in transient receptor potential channels, thereby reducing

vascular reactivity. In addition, H2S prodrug SG1002 is already

being investigated in Phase 1 clinical trials. David J. Polhemus’

team conducted a small-sample non-randomized controlled

clinical study to show that in vitro administration of the

H2S prodrug, SG1002, can alleviate heart failure. SG1002

reduced the level of brain natriuretic peptide (BNP), and

showed no apparent toxic side-effects (10). Thus, H2S is a

TABLE 1 Comparison of common characteristics of the three gas transmitters.

Hydrogen sulfide Nitric oxide Carbon monoxide

Molecular stereogram

Formula H2S NO CO

Solubility (q) 0.289 0.040 0.020

Diffusivity in water 8.6*10−4cm2/min 1.5*10−4cm2/min 1.18*10−4cm2/min

Resources L/D-cysteine L-arginine or nitrite Protohaem IX

Enzymes CBS, CSE, 3MST/AAT, and DAO eNOS, iNOS, and nNOS HO−1 , HO−2 , and HO−3

*provide significance times.

novel cardiovascular disease drug worthy of further research

and development.

H2S donors are compounds that can release H2S when

particular trigger conditions are met. Given the features of

the gas transmitter, developing an H2S donor with high

targeting ability and stability during transportation is critical

for studying the anti-AS properties of exogenous H2S.

Moreover, development of suitable H2S donor would provide

the foundation for future H2S anti-AS prodrug research and

clinical therapy. In this article, we review the various kinds

of donors with anti-AS potential and discuss the pros and

cons of each donor design. We also propose the idea of

preparing H2S donors using nanomolecule technology in

combination with chemical synthesis technology. We anticipate

that multidisciplinary collaboration will foster the translation

of H2S anti-AS from basic research to clinical treatment in

the future.

Physical and chemical properties of
H2S

H2S has a molecular weight of 34.08, which is slightly

greater than the molecular weight of water. It has a vapor

pressure of 2,026.5 kPa/25.5◦C, flash point of −50◦C, melting

point of −85.5◦C, boiling point of −60.4◦C, relative density

of 1.19 (air = 1), and tipping point of 292◦C. H2S is highly

soluble in water; it is also soluble in alcohol, petroleum solvents,

and crude oil. It may be hydrolyzed to hydrogen ions, sulfur-

hydrogen ions, and sulfur ions in water or plasma using

the reaction equations below. The first step: H2S+H2O=HS−

+H3O
+; the second step: HS− + H2O=S2−+H3O

+. H2S is

soluble up to 80 mmol/L at typical human body temperature

and can be oxidized to sulfides, sulfates, persulfides, and

sulfites (11).

Frontiers inCardiovascularMedicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2022.909178
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Yang et al. 10.3389/fcvm.2022.909178

TABLE 2 Anti-AS e�ect of H2S from di�erent mechanisms.

Hydrogen

sulfide donor

Targets Targeting outcome Biological effect Literature

sources

NaSH SIRT1 Increases SIRT1, activates eNOS

and PGC-1α

Anti-oxidant stress (14)

NaSH KATP Inhibits KATP/ERK1/2 pathway,

Down-regulates CD36, SR-A and

ACAT1 expressions

Inhibits foam cell formation (15)

NaSH NLRP3 Suppresses IL-1β and IL-18 release

in adipocytes

Inhibits the inflammatory

response of adipocytes

(16)

GYY4137 Hb Inhibits hemoglobin oxidation and

prevents lipid peroxidation.

Protects vascular endothelial

cells

(17)

GYY4137 Myocardial

fibroblasts

Inhibits TGF-β1/Smad2 signal

pathway and α-SMA expression

Suppresses EndMT (18)

S-diclofenac Smooth

muscle cell

Stabilizes p53, p21, p53AIP1 and

Bax

Inhibits smooth muscle cell

proliferation

(19)

NaSH HUVECs Suppresses IκB-α degradation and

NF-κB nuclear translocation

Decreases ICAM-1 expression (20)

ACS-14 Platelet Activates fibrinogen receptors and

increases intracellular cAMP levels

Attenuates arterial thrombus

formation

(21)

The “multi-dimensional”
anti-atherosclerotic e�ects of H2S

AS is the primary cause of atherosclerotic heart disease,

cerebral infarction, and peripheral vascular diseases. Persistent

inflammation plays a key role in the pathogenesis of AS

(12). The pathogenetic mechanism is complex and involves

endothelial dysfunction, leukocyte adhesion and aggregation,

lipid plaque deposition, smooth muscle cell proliferation, and

extracellular matrix remodeling, among other factors (13). Of

note, a large number of studies have demonstrated that H2S

can protect the cardiovascular system against several elements

involved in AS progression, such as by ameliorating myocardial

fibrosis; inhibiting IL-1 and IL-18 production; inhibiting ICAM-

1 expression in TNF-alpha-induced HUVECs via the NF-κB

pathway; preventing lipid peroxidation; inhibiting intravascular

thrombosis; protecting against apoptosis induced by oxidative

stress via the SIRT1 pathway; inhibiting smooth muscle cell

proliferation; and attenuating foam cell formation (Table 2 and

Figure 1). These findings demonstrate the anti-AS potential

of H2S.

H2S ameliorates myocardial fibrosis

Diffuse myocardial fibrosis is strongly related with prior

cardiovascular events and may result in serious complications.

Ambale-Venkatesh et al. (22) used contrast-enhanced cardiac

magnetic resonance (CMR) to assess differences in myocardial

fibrosis measured at the year-10 examination between

participants with and without cardiovascular (CV) events

accrued in a large population-based study over a 10-year

follow-up period. The findings implied that the prevalence

of CV events during the last decade was related with an

increased risk of ischemic myocardial scarring on advanced

gadolinium-enhanced imaging and greater diffuse interstitial

fibrosis as measured by T1 imaging in a multiethnic free-living

population.

The effect of H2S on fibrosis has previously been

examined. Sheng et al. (23) examined human atrial fibroblasts

using the BrdU test. The research demonstrated that NaHS

at concentrations of 100, 300, and 500µM inhibited the

proliferation of atrial fibroblasts by 33.1 ± 4.2, 43.7 ± 3.1,

and 58.4 ± 6.2% respectively. Additionally, they verified the

combined inhibitory effects of H2S on BKCa and Ito currents

in suppressing cellular growth using whole cell patch clamping.

Cx43 is intimately linked to myocardial fibrosis, and lower

Cx43 expression predisposes to collagen accumulation (24). By

partly ligating the rat abdominal aorta, Huang et al. generated

a rat hypertrophic cardiomyopathy model. They verified in

this experiment that sodium hydride-treated rats had smaller

LVMI, cardiomyocyte size and area, and CVF than control

rats (25). Additionally, H2S has been shown to greatly boost

CX43 expression in rat cardiomyocytes. These findings suggest

that H2S may act as an anti-fibrosis agent via increasing

CX43 expression.
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FIGURE 1

Mechanisms of H2S “multi-angle” inhibition of AS. H2S exerts numerous critical e�ects against the pathogenesis of atherogenesis. These include:

(A) improving myocardial fibrosis; (B) inhibiting the production of IL-1β and IL-18; (C) inhibiting ICAM-1 expression in TNF-alpha-induced

HUVECs via the NF-kappa B pathway; (D) preventing lipid peroxidation; (E) inhibiting intravascular thrombosis; (F) protecting against apoptosis

under oxidative stress through SIRT1 pathway; (G) inhibiting smooth muscle cell proliferation; (H) attenuating foam cell formation.

H2S inhibits the inflammatory response
of adipocytes

Adipose tissue is regarded as an important endocrine

organ and is known to be involved in regulating inflammation

(26). Numerous experimental and epidemiological studies

have implicated obesity-related adipose dysfunction as one of

the main causes of endothelial dysfunction (27). Adipocyte

dysfunction often leads to activation of NLRP3, and its

activation leads to caspase-1 activation and the release of the

inflammatory cytokines interleukin 1(IL-1) and interleukin

18 (IL-18) (28). These two inflammatory factors increase

monocyte chemo-attractant protein-1 (MCP-1) and vascular

cell adhesion molecule 1 (VCAM-1), thereby promoting

leukocyte-endothelial cell adhesion, causing endothelial

dysfunction. Endothelial cell dysfunction, as demonstrated by

increased production of endothelial cell adhesion molecules

and pro-inflammatory mediators, results in infiltration of

monocytes in the subendothelial layer (29). Under the influence

of macrophage colony-stimulating factor, these monocytes

transform into macrophages and engulf non-biodegradable

oxidized LDL cholesterol, ultimately transforming into

foam cells, leading to the development of atheromatous

plaques (30).

Exogenous H2S has been shown to inhibit high glucose-

induced activation of the NLRP3 inflammasome in adipocytes.

In the study by Hu et al., high glucose was found to induce

the up-regulation of NLRP3 in adipocytes, which promoted

the release of downstream molecules IL-1β and IL-18. The

above phenomenon was found to be inhibited by exogenous

sodium hydrosulfide (16). This suggests a potential anti-

atherosclerotic effect of exogenous H2S in obese patients,

especially those with adipose tissue dysfunction. However,

further studies are required for in-depth characterization of the

molecular mechanisms underlying the anti-inflammatory effect

of H2S.
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H2S inhibits ICAM-1 expression on
endothelial cells

ICAM-1 plays an important role in immune and

inflammatory responses, including atherosclerosis. These

proteins are ligands for the leukocyte adhesion protein LFA-1

(integrin alpha-L/beta-2). During leukocyte trans-endothelial

migration, ICAM1 engagement promotes the assembly of

endothelial apical cups through activation of ARHGEF26/SGEF

and RHOG, eventually leading to trans-endothelial migration of

leukocytes (31). ICAM-1 in the blood has been recognized as a

marker of vascular inflammation in atherosclerosis; it has been

shown to predict cardiovascular risk and future cardiovascular

disease (32).

The study of H2S and ICAM-1 was originally reported

in the context of non-steroidal drug therapy. H2S was found

to reduce the increase in ICAM-1 caused by non-steroidal

anti-inflammatory drugs (33). Subsequent studies found that

exogenous H2S can slow down the expression of ICAM-1 in the

blood of apoE knockout mice. In addition, under the influence

of exogenous sodium hydrosulfide, the size of arterial plaque

also decreased (20). This phenomenon was attributed to the

prevention of the activation of the nfkb signaling pathway

by H2S.

H2S inhibits hemoglobin oxidation and
prevents lipid peroxidation

In the atherosclerotic lesions, a pathological change called

“infiltration of red blood cells” is usually found (34). Some of

the damaged red blood cells are phagocytosed by macrophages

and degraded in lysosomes. As a product of lysosomal

digestion, iron ions are excreted by macrophages by exocytosis,

inducing the oxidation of LDL to OxLDL. Subsequently, the

macrophages phagocytose OxLDL (35). In addition, degraded

red blood cells release hemoglobin (Hb), which can react

with surrounding plaque lipids. This leads to the formation

of different oxidatively modified hemoglobin species, such as

metHb (Fe3+) and ferrylHb (Fe4+ =O2−) (36). Oxidized

Hb species sensitize vascular endothelial cells to oxidant-

mediated killing, suggesting that it is a potential causative factor

in atherosclerosis.

Potor et al. found that H2S significantly reduces oxidation

of Hb preventing the formation of ferrylHb derivatives. By

inhibiting Hb-lipid interactions, sulfide lowers oxidized Hb-

mediated induction of adhesion molecules in endothelium

and disruption of endothelial integrity (37). Chemically, H2S

is a reductant, and there is evidence that H2S can convert

oxidized low-density lipoproteins to lipoalcohols (38). This

heralds the potential of H2S in inhibiting hemoglobin oxidation

and preventing lipid peroxidation.

H2S inhibits intravascular thrombosis

Platelets play an important role in the pathogenesis of

coronary thrombosis and atherogenesis. Abnormal activation

of platelets contributes to atherothrombosis (39). Activation

of platelets induces the release of chemokines, leading to the

aggregation of leukocytes, followed by the progress of leukocyte

and platelet adhesion, which is mainly mediated by P-selectin

and ligand PSGL-1 (40). In addition, degranulation of platelets

leads to a release of inflammatory cells molecules, including

various chemokines, cytokines, lipids, and proteins (41–43).

The recruitment of leukocytes to the thrombus is a complex

process. Specifically, leukocytes act by binding to p-selectin

on the surface of platelets (44), rolling on the endothelium,

and finally adhering to activated platelets. As a next step,

leukocytes undergo integrin-mediated changes in shape and

cellular functions such as motility, migration, degranulation,

or phagocytosis. Almost at the same time, leukocytes promote

platelet aggregation and secretion (45), enhance the production

of thrombin and tissue factor (46, 47), and play an important

role in the stability of the thrombus.

Previous studies have confirmed that H2S could inhibit

platelet activation and aggregation (48–50). In the study by

Grambow et al., exogenous H2S treatment was found to reduce

platelet and leukocyte aggregation, and this inhibition showed a

significant correlation with the concentration of H2S. The team

then used scanning electron microscopy to directly analyze the

specific effects of H2S on platelet activity, and found that the

activated platelets in the control group exhibited changes in

shape with formation of pseudopodia, leading to the appearance

of a thorn apple-like shape under microscope. Cells treated with

GYY4137 did not exhibit the above morphological changes,

but instead were characterized by “round platelet morphology”

and “less pseudopodia formation” (51). This phenomenon may

be related to the inhibitory effect of H2S on the extracellular

action of platelet p-selectin. Currently, there is a lack of

direct evidence that H2S inhibits platelet activation, such as

the lack of necessary rescue experiments to demonstrate that

H2S has a direct effect on platelet p-selectin. However, the

available evidence suggests the antithrombotic potential of this

gas molecule, providing a new avenue of antagonism toward

atherosclerotic and thrombotic diseases.

H2S inhibits oxidative stress

Oxidative stress is recognized as a distinct factor in

the pathogenesis of cardiovascular diseases. It is manifested

specifically by an imbalance in the production and removal

of oxygen free radicals in cells, with the production of

some reactive oxygen species (ROS) such as O2−, OH−,

ONOO−, and H2O2 (44). ROS can induce upregulation of

endothelial cell adhesion molecules, proliferation and migration
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of vascular smooth muscle cells (VSMCs), platelet activation,

lipid oxidation, and activation of matrix metalloproteinase, all

of which can contribute to the advancement of atherosclerotic

disease (52). The following mechanisms of the protective effect

of H2S against oxidative stress have been identified: (1) it acts as

a reducing agent to directly induce ROS scavenging in vivo (53);

(2) protects proteins from oxygen radical attack by modulating

the expression and activity of classic antioxidants, such as

glutathione (GSH) and thioredoxin (Trx) (45); (3) regulates

mitochondrial metabolism to limit ROS formation (46); (4)

reduces ROS production by interacting with cytochrome c

and providing electrons to the mitochondrial ATP synthesis

mechanism, which can substitute oxygen in the ATP production

mechanism (47).

Warnholtz et al. (54) established a hypertension model

generated by AngII and found that AngII substantially enhanced

superoxide anion generation in the aorta, which was reduced

by NaHS therapy. Later, Hsin-Ying et al. discovered that

exogenous H2S may suppress the IL-6-induced oxidative stress

in rat vascular smooth muscle cells and decrease their ROS

content (55). Notably, iNOS can sustainably produce NO under

the continuous stimulation of ROS. Excessive NO release is

seen as a potential risk factor for cardiovascular disease. H2S

has been shown to reduce ROS release by IL-6 stimulation,

thereby inhibiting the sustained increase in NO release by iNOS

activation, ultimately delaying the phenotypic transformation of

endothelial smooth muscle cells (55). This suggests that the anti-

oxidative stress effect of H2S may be mediated via inhibition of

the ROS-iNOS-NO pathway.

H2S inhibits the proliferation of vascular
smooth muscle cells

VSMCs are located in the medial layer of arteries and

play an important role in the regulation of the vascular

system (56). Physiologically, VSMCs possesses both systolic

and diastolic phenotypes, regulating both vasoconstriction and

relaxation. Under the stimulation of pathological conditions

such as vascular injury, angiotensin II (Ang II), platelet-

derived growth factor, insulin-like growth factor 1, ROS, and

endothelin-1, the phenotype of cells undergoes a deconversion

from a contractile phenotype to a synthetic phenotype, which

ultimately leads to cell proliferation and migration (57–59).

Proliferation of VSMCs is associated with various vascular

diseases such as atherosclerosis, restenosis, and hypertension.

In particular, this phenotypic switch plays an important role in

atherosclerosis and plaque stability, and inhibition of vascular

smooth muscle phenotype switch may be beneficial in advanced

atherosclerosis (60). The myocardin serum response factor

regulatory module, for example, is a critical component of

phenotypic regulation because it permits the combinatorial

interactions of activating and repressing signals and cofactors

that operate on the majority of VSMC contractile genes.

Compared to myocardin+/+ littermates, myocardin+/− mice

on an ApoE−/− background showed increased atherosclerosis

with greater concentration of macrophage or macrophage-like

cells (61).

Earlier studies confirmed that the body transmitter H2S

plays a broad role in the cardiovascular system. For instance,

H2S was shown to induce a dose-dependent suppression of the

proliferation of VSMCs through the MAPK pathway (62). With

further advancement of research, H2S was found to inhibit the

proliferation of VSMCs by regulating chromatin remodeling and

target gene expression. Brg1 is the central catalytic subunit of the

SWI/SNF apparatus (an ATP-dependent chromatin remodeling

complex). Li et al. demonstrated that Brg1 plays an important

role in the inhibition of VSMC proliferation induced by H2S

by overexpressing and knocking out the Brg1 gene. The effect

of H2S on Brg1 was confirmed by luciferase reporter assay

and real-time quantitative PCR at the transcriptional level.

Finally, they used chromatin immunoprecipitation experiments

to confirm that H2S inhibited the recruitment of Brg1 to the

Pcna, Ntf3, and Pdgfα promoters, thereby acting as anti-VSMC

proliferation (63). The above studies suggest that H2S regulates

the proliferation of smooth muscle cells through epigenetic

modification. Because epigenetic changes may be temporary

or reversible, this provides a new idea for the development of

late-stage drug therapy.

H2S attenuates foam cell formation

Accumulation of foam cells is a hallmark pathological

change in the development of atherosclerosis. Macrophages are

an important source of membrane cell formation. Macrophages

phagocytose cholesterol or oxidized LDL, and then esterify

the above substances to extrude them from the cell. This is a

normal compensatory phenomenon; however, disruption of this

compensatory mechanism leads to excessive accumulation of

lipids in cells, eventually leading to the formation of foam cells

(64). Foam cell accumulation is involved in the development of

atherosclerosis, such as the release ofmatrix-degrading enzymes,

leading to plaque rupture or vascular occlusion (65).

Since macrophage phagocytosis of oxidized LDL is critical

for foam cell formation, H2S has been reported to inactivate

macrophage phagocytosis of LDL. This phenomenon can be

reflected in the uptake of lipids by macrophages. In a study,

the uptake rate of oxidized LDL was found to have significantly

decreased in cells pretreated with sodium hydrosulfide (15).

Further research found that the endogenous H2S inhibitor PPG

could reverse the passivation effect of H2S and restore the

efficiency of lipid uptake by macrophages. ACAT-1 is a kind of

mitochondrially localized enzyme that catalyzes the reversible
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formation of acetoacetyl-CoA from two molecules of acetyl-

CoA. Defects in this gene are associated with 3-ketothiolase

deficiency (66). Currently, ACAT-1 is believed to be a key

enzyme promoting the intracellular cholesterol accumulation

within macrophages. In a study, NaHS was shown to reduce

macrophage ACAT-1 expression and inhibit foam cell formation

(15). This demonstrated that ACAT-1 may be the target of H2S

to inhibit the transformation of macrophages into foam cells.

H2S regulates cellular functions by
S-sulfhydrating proteins

Although several studies have demonstrated the protective

effect of H2S against atherosclerosis, its precise molecular

mechanism is not clear. S-sulfhydration has recently been

recognized as a major mechanism of the physiological effects

of H2S, and several recent studies have explored H2S signaling

by S-sulfhydration. S-sulfhydration modifies the functions of a

specific protein by causing post-translational modifications. In

a study, H2S was shown to increase keap1 protein thiolation,

boost Nrf2 nuclear translocation, and limit O−
2 production in

endothelial cells, and this effect was abolished when Keapl was

mutated at Cys151, but not Cys273, in endothelial cells (67).

The enzymatic process involved in the synthesis of H2S in

mammalian tissues includes cystathionine γ-lyase (CSE) and

cystathionine β-synthase (CBS) (68). A study found that H2S

donor treatment can lead to thiolation of C252, C255, C307,

and C310 of CSE, promote its binding to L-hcy, and prevent

hyperhomocysteinemia-induced atherosclerosis in mice (69).

Protein sulfhydrylation triggered by H2S causes proteins to

have various effects. These findings shed light on the specific

molecular mechanism of the anti-antherosclerotic effect of

H2S. Thus, H2S- induced protein sulfhydrylation is a potential

promising topic for future research on this subject.

Advantages and limitations of
various anti-atherosclerotic H2S
donor designs

Hydrolysis-triggered, intestinal flora metabolism-triggered,

biothiol-triggered, esterase-triggered, pH-triggered, and other

mechanisms are used by the current H2S donors with anti-

AS properties. The pharmacokinetic features of the donors are

determined by the various triggering mechanisms, which are

critical for their continued development as prodrugs.

Inorganic sulfides

Many inorganic sulfide salts have been utilized to synthesize

H2S donors, including Na2S, NaHS, and CaS. Water usually

produces these inorganic salts, such as Na2S9H2O, which are

often used in laboratories. Dissolution of inorganic sulfate in

water gradually leads to a state of chemical equilibrium between

S2, HS, and H2S. The specific reaction formula is as follows:

NaHS + H2O NaOH + H2S↑ (70). The benefit is that H2S

is rapidly produced after hydrolysis and no by-products are

formed during the chemical reaction, essentially eliminating bias

in experimental findings caused by by-product activity. This

is why it holds tremendous promise for research on use of

exogenous H2S in the treatment of AS. Unfortunately, there

are several major obstacles to developing inorganic sulfide salts

as anti-AS prodrugs. First, it is difficult to determine the exact

concentration of inorganic sulfate salts in solution due to the

variety of purity levels used; secondly, inorganic sulfate salts are

extremely volatile in aqueous solution following H2S hydrolysis,

making it difficult to maintain the active ingredient during the

configuration of the drug in clinical practice when intravenous

drip treatment is used. Change of mode of administration to

intravenous injection to reduce the impact of volatility of H2S

may lead to an inordinately high concentration of H2S at the

injection site, which is liable to lead to adverse effects. Finally,

the produced H2S is rapidly diluted, making it difficult to sustain

a reasonably extended period of time at the lesion. Due to

the aforementioned deficiencies, the use of inorganic sulfide

salt donors has been largely confined to animal experiments or

cytohistological research.

Allicin

Allicin is a naturally occurring compound in common foods

such as onions and garlic. After digestion and absorption, allicin

in certain foods can slowly produce H2S (71). Although allicin is

a natural compound with a high safety profile and widespread

availability, its decomposition products (DADS, DAS, and

DATS) have low water solubility, slow rate of production of H2S,

and a low pharmacokinetic profile, which frequently results in

a lengthy test period. Second, interaction of allicin in the body

leads to production of several by-products, making it impossible

to identify the specific chemical responsible for anti-AS effects.

These issues restrict the research on allicin as an H2S donor.

GYY4137

Moore’s team at the National University of Singapore

published a report on Morpholinol thiosphosphonate, a water-

soluble, long-acting H2S donor chemical, in 2008 (72). H2S

produced by hydrolysis of this molecule is quite moderate when

compared to inorganic sulfides. GYY4137 hydrolysis produces

a peak H2S release of 10min, while sodium hydrosulfide

hydrolysis produces a peak H2S release of just 10 s. GYY4137 is

progressively gaining favor among researchers because it seems
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to compensate for the unstable H2S emission during hydrolysis

of inorganic sulfates. In a study by Qiu et al., diabetic model rats

who were administered GYY4137 before myocardial ischemia-

reperfusion injury showed smaller infarcts, reduced apoptosis,

and lower oxidative stress than the control group, implying that

the protective effect of GYY4137 against myocardial ischemia-

reperfusion injury is linked to p-Akt and nuclear Nrf2 protein

(73). In addition, Zheng et al. employed GYY4137 to show that

H2S molecules regulate the PI3K/Akt/TLR4 signaling pathway

to stabilize vascular plaques (74). As research continues, the

atherosclerotic potential of GYY4137 is increasingly being

unraveled, such as prevention of vascular inflammation and

oxidative stress (75), protection against myocardial fibrosis (18),

and attenuation of adverse remodeling (76).

Many researchers theorize GYY4137 as a beneficial research

tool; however it does have some disadvantages. First, the

end-product of GYY4137 is often sold as a dichloromethane

complex, and one of the metabolites of dichloromethane is

CO, another gaseous molecular signal with biological effects

comparable to H2S. As a result, determining whether CO is

involved in the biological effects of GYY3137 is challenging.

Second, since the rate of hydrolysis of GYY4137 is exceptionally

slow, greater dosages may be necessary to attain therapeutic H2S

concentrations. This would increase the risk of adverse effects

due to high doses of GYY4137. To the best of our knowledge,

no extensive pharmacokinetic studies of GYY4147 have been

conducted nor is there a reliable way to determine the quantity

of H2S generated by hydrolysis of this compound (77). Because

of the aforementioned flaws, GYY4137 has a limited role in the

development of H2S prodrugs.

NOSH-aspirin (NBS-1120)

NOSH-aspirin, is a synthetic derivative of 1,2-dithio-3-

thione and aspirin with a nitrate moiety. It was developed

as a potential substitute for the commonly used anti-platelet

medication aspirin (78). Currently, NOSH-aspirin research

is being largely conducted in the context of pancreatic

cancer, colon cancer, neurodegeneration, antiplatelet, and

anti-inflammatory, analgesic, and antipyretic (79). Despite

the paucity of research on the development of this molecule

as an anti-AS agent, its unique drug metabolism properties

appear to hold a lot of promise. NOSH-aspirin can be broken

down in the body into three different chemicals that have

different physiological effects: H2S, nitric oxide, and aspirin

(80). In clinical practice, aspirin is regarded the first-line

anti-atherosclerotic drug, while the cardiovascular protective

properties of nitric oxide (a gaseous molecular signal), have

already been well-established (81, 82). In addition to the

combination of H2S and nitric oxide, which functions as

a stomach mucosal prostaglandin mimic and effectively

suppresses the gastrointestinal adverse effects induced by

aspirin, H2S may further boost the anti-atherosclerotic activity

of aspirin (83). Although NOSH-aspirin is a promising

H2S donor, its anti-atherosclerotic capabilities have not

been well-investigated. Because all of the metabolites

have anti-atherosclerotic properties, suitable compounds

must be developed to assess the individual effects of

each of the products, and further research is expected in

the future.

Thiol-triggered hydrogen sulfide donors

Thiol-triggered H2S donors are non-hydrolyzation-

triggered H2S donors and were one of the first documented

synthetic H2S donors. N-(Benzoylthio)benzamides are

representative thiol-triggered H2S donors. The donor design is

based on the instability of the S-N bond, which when broken

releases H2S. The S-N bond is protected by an acyl group,

which acts as a switch by regulating the chemical reaction of

the acyl group, allowing the S-N bond to be exposed again and

thus indirectly controlling the release of H2S (84). In addition,

Acyl Perthiol Donors were also designed to be a mercaptan-

triggered H2S donor. Acyl perthiol donors (RC(O)-S-SR)

were first synthesized by Xian, where the R group is derived

from penicillamine (85). The donor was synthesized from

thiobenzoic acid derivatives and n-benzoyl cysteine methyl

ester. Briefly, C- and N-protected penicillamine was first treated

with 2,2 -dibenzothioazolyl disulfide to provide a penicillamine-

benzothioazolyl disulfide intermediate, and then treated with

corresponding thioacids to furnish the desired penicillamine-

based donors. Subsequent experiments demonstrated that

the donor could significantly reduce the area of myocardial

ischemia-reperfusion injury, and the cytotoxicity test showed

lower cytotoxicity of the donor compared to that of sodium

hydride. Dithioperoxyanhydrides is another thiol-triggered

donor of H2S. It is prepared in a single reaction step involving

thiobenzoic acid and methoxycarbonylsulfenyl chloride

(CH3OC(O)SCl) with fair overall yields. In vivo experiments

confirmed that Dithioperoxyanhydrides can also induce total

vasorelaxation of isolated rat aortic rings pre-contracted with

phenylephrine (86). Other types of thiol-triggered H2S donors

include Arylthioamides and S-aroylthiooximes. Studies have

also demonstrated the potential for clinical application of these

two kinds of donors. Arylthioamides were shown to strongly

abolish the noradrenaline-induced vasoconstriction in isolated

rat aortic rings and to hyperpolarize the membranes of human

vascular smooth muscle cells in a concentration-dependent

manner (87). In a study by Jeffrey et al., S-aroylthiooximes were

found to significantly reduce the survival of HCT116 colon

cancer cells relative to Na2S, GYY4137, and a small molecule

SATO (88), indicating that this donor may inhibit smooth

muscle proliferation and migration in atherosclerotic diseases.
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Enzyme-triggered H2S donors

The “trimethyl lock” lactonisation reaction, which entails

cleavage of a phenolic ester by esterase, followed by spatial

repulsion of the threemethyl groups triggering lactonisation and

the release of the drug from the adjacent carbonyl group, is the

basis for the enzyme-triggered H2S donor design (89).

Enzymes are tissue- and substrate-specific active proteins

that are found in all living organisms (90). Sofia-Iris Bibli

demonstrated greater CSE expression in endothelial cells

near carotid plaques than in endothelial cells in superior

mesenteric arteries (91). We hypothesize that by combining the

aforementioned qualities, enzyme-triggered H2S donors may

be created to allow for the optimal concentration of H2S in

the causative lesion, laying the groundwork for targeted drug

therapy. Despite the paucity of research on enzyme-triggered

H2S donors, enzyme-triggered design should be a trend in future

pro-sulfide donor design.

Specific PH-triggered H2S donors

Based on the poor targeting of many of the current

mainstream H2S donors, Xian’s team used intramolecular

cyclisation to activate phosphorothioates to design a new

pH-regulated release of H2S donor JK; JK series H2S donors

have great potential for development in cardiovascular

disease research, especially in the field of myocardial

ischemia reperfusion injury. Due to myocardial ischemia

or hypoperfusion, tissue hypoxia leads to accumulation of

lactic acid, reducing the pH level in the responsible lesion and

nearby tissues, which provides a basis for targeted therapy for

this type of donor to release H2S (92). In addition, due to the

donor’s special mechanism of triggering the release of H2S,

the protective effect of donors on organs in the context of

gastric diseases is also well-reflected. In the study by Yang et

al., JK donor significantly alleviated gastric mucosal damage, a

side-effect of NSAIDs (93). Intragastric pre-administration of

JK-1 was found to mitigate the side effects of NSAIDs, such

as inflammatory cell infiltration, increased IL-6 and TNF-α

release, and oxidative loss. Increase in CBS and CSE levels is a

well-known requirement for in vitro osteogenic differentiation.

JK has also been shown to promote osteogenic differentiation

in vitro (94). In conclusion, JK has shown potential therapeutic

value in other therapeutic fields besides cardiovascular diseases.

These findings indicate that this compound is a H2S donor that

is worthy of further research and development.

Other types of donors

In addition to the types of H2S donors described above,

there are other types of H2S donors, such as “UV-triggered

H2S donors” and “carbonyl H2S donors” (95, 96). However,

these donors have poor potential for the development of anti-

AS pre-drugs. For example, UV-triggered H2S donors have weak

penetration due to the short wavelength of UV light, making it

impossible to trigger the donor drug deep in the tissue. Carbonyl

H2S donors have poor water solubility and poor targeting. As a

result, these donors are mostly used in in vitro assays.

Summary and outlook

It has been more than 20 years since the H2S donor was

successfully developed (97). Despite considerable breakthroughs

in the research on H2S donors in the last two decades, targeting

of the donor is still a key issue to be addressed. Clinical use

of H2S as an anti-AS therapy depends on the design of a well-

targeted donor and its delivery and release in the vicinity of the

target lesion.

Nanomaterials were initially used to improve the targeting

of antitumor drugs. The targeting of nanomaterials is mainly

reflected in two aspects—active targeting and passive targeting.

First, the alteration of ligands on the surface of nanoshells

and the binding of ligands to receptors to provide precisely

focused treatment is referred to as active targeting. Second,

the diameter of the nanoparticles is more easily absorbed in

some lesions due to passive targeting because of inadequate

capillary endothelial connection in the microcirculation at

the lesion site (e.g., in tumor tissue or inflammatory tissue).

Due to the presence of inflammatory lesions near the arterial

plaque lesions, the capillary endothelial junctions in the

tissue are incomplete, and this forms the basis for passive

targeting of nanomaterials. This implies that in normal tissues,

drugs modified by nanomaterials are not easily absorbed but

accumulate adjacent to the inflamed tissues, thereby achieving

targeted therapy. Willem’s team created unique multimodality

HDL-mimicking nanoparticles by incorporating gold, iron

oxide, or quantum dot nanocrystals for computed tomography,

magnetic resonance, and fluorescence imaging, respectively

(98), It is generally known that macrophage infiltration around

arterial plaques is a specific pathophysiological change in AS.

The team cleverly used this principle to design a plaque-targeted

imaging drug. Moreover, a study by Wang et al. demonstrated

good biocompatibility of macrophage membrane functionalized

biomimetic nanoparticles: the biomimetic particles were

rapamycin-loaded poly(lactic-co-glycolic acid) copolymers

made from macrophage membrane coating. Such nanoparticles

can be efficiently targeted and accumulated in atherosclerotic

lesions in vivo. After a 4-week treatment plan, MM/RAPNPs

were found to have significantly delayed AS progression (99).

Similar principles can be used to design vascular-targeted

H2S donors based on the above research. Theoretically, this

design idea offers three advantages: First, because surface

proteins on the macrophage membrane provide good active
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targeting of H2S donors, especially α4β1, this receptor can

tightly bind to vascular cell adhesion molecule-1 (VCAM-1)

on the surface of endothelial cells, which is highly expressed

in the inflamed endothelium. Second, nanotechnology-modified

H2S donors are also passively targeted and can accumulate

around inflammatory tissues near vascular plaques to achieve

ideal therapeutic concentrations. The last point is also the

most critical; since nanomaterials are foreign bodies, they

often induce the activation of innate immunity. The above

situation can be significantly avoided by using macrophage

membranes as biomimetic coatings of nanomaterials (100,

101). This technology is poised to gradually mature in the

near future.

In addition to drug targeting, several other important

questions remain unanswered in the field of H2S donors, which

require multidisciplinary collaboration involving chemistry,

pharmacology, and biomaterials science. Firstly, there is

considerable variability in the therapeutic concentration window

for H2S molecules used to correct different pathophysiological

states and even different stages of the same pathophysiological

state. Therefore, clarifying the therapeutic window of H2S

for specific targets is a crucial imperative. Secondly, as H2S

is highly volatile and rapidly metabolized, the relationship

between the effective dose of the drug and the donor dose

is not necessarily a simple linear relationship. Therefore, it

is crucial to define the release rate of the H2S for the

development of H2S donors. In addition, whether the by-

products or the donor itself can produce biological effects after

the triggering of the H2S donor and bias the experimental

results is also an important issue to be addressed. As the field

of H2S research continues to evolve, these critical issues must

be addressed in order to progress toward clinical treatment.

Future multidisciplinary collaborations involving the disciplines

of nanotechnology, chemical synthesis, drug metabolism, and

biology may eventually make clinical pathways for H2S

treatment possible.
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