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Background: Microvascular obstruction (MVO) and Late Gadolinium

Enhancement (LGE) assessed in cardiac magnetic resonance (CMR) are

associated with adverse outcome in patients with ST-elevation myocardial

infarction (STEMI). Our aim was to analyze the diagnostic performance of

segmental strain for the detection of MVO and LGE.

Methods: Patients with anterior STEMI, who underwent additional CMR were

enrolled in this sub-study of the CARE-AMI trial. Using CMR feature tracking

(FT) segmental circumferential peak strain (SCS) was measured and the

diagnostic performance of SCS to discriminate MVO and LGE was assessed

in a derivation and validation cohort.

Results: Forty-eight STEMI patients (62 ± 12 years old), 39 (81%) males,

who underwent CMR (i.e., mean 3.0 ± 1.5 days) after primary percutaneous

coronary intervention (PCI) were included. All patients presented with LGE

and in 40 (83%) patients, MVO was additionally present. Segments in all

patients were visually classified and 146 (19%) segments showed MVO

(i.e., LGE+/MVO+), 308 (40%) segments showed LGE and no MVO (i.e.,

LGE+/MVO–), and 314 (41%) segments showed no LGE (i.e., LGE–). Diagnostic

performance of SCS for detecting MVO segments (i.e., LGE+/MVO+ vs.
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LGE+/MVO–, and LGE–) showed an AUC = 0.764 and SCS cut-off value was

–11.2%, resulting in a sensitivity of 78% and a specificity of 67% with a positive

predictive value (PPV) of 30% and a negative predictive value (NPV) of 94%

when tested in the validation group. For LGE segments (i.e., LGE+/MVO+ and

LGE+/MVO– vs. LGE–) AUC = 0.848 and SCS with a cut-off value of –13.8%

yielded to a sensitivity of 76%, specificity of 74%, PPV of 81%, and NPV of 70%.

Conclusion: Segmental strain in STEMI patients was associated with good

diagnostic performance for detection of MVO+ segments and very good

diagnostic performance of LGE+ segments. Segmental strain may be useful as

a potential contrast-free surrogate marker to improve early risk stratification

in patients after primary PCI.

KEYWORDS

STEMI, strain, feature tracking (CMR-FT), LGE CMR,microvascular obstruction (MVO),
late gadolinium enhancement, myocardial strain analysis

Introduction

The presence of microvascular obstruction (MVO) in
patients with ST-segment elevation myocardial infarction
(STEMI) is a predictor of poor functional recovery, congestive
heart failure and mortality (1, 2). Therefore, early detection
of MVO is clinically relevant and helpful to guide adjunctive
therapeutic decisions in patients with STEMI. MVO can
be assessed non-invasively using cardiac magnetic resonance
imaging (CMR) and is characterized by a no-flow phenomenon,
with a dark appearance in the late gadolinium enhancement
(LGE) images. However, in patients with poor renal function
or intolerance to gadolinium contrast agent, the evaluation
of MVO may potentially be limited. Furthermore, the impact
of MVO on left ventricular myocardial function is largely
unknown, and it remains to be determined, whether left
ventricular myocardial function may act as a potential contrast-
free surrogate marker for the presence of MVO. Myocardial
deformation expressed as myocardial strain is an accurate
parameter for the assessment of myocardial function and
can depict ventricular function in different orientations (i.e.,
circumferential and longitudinal shortening) on a global and
segmental level (3–6). In CMR, strain can be assessed with
dedicated sequences like tissue tagging or with novel emerging
post-processing software like CMR feature tracking (CMR-FT)

Abbreviations: AUC, Area under the curve; CMR, Cardiovascular
magnetic resonance imaging; FT, Feature Tracking; LAX, Long axis;
LGE, Late gadolinium enhancement; LVEF, Left ventricular ejection
fraction; MI, Myocardial infarction; MVO, Microvascular obstruction; NPV,
Negative predictive value; PPV, Positive predictive value; ROC, Receiver-
operator characteristic; SAX, Short axis; SCS, Segmental circumferential
peak strain; SLS, Segmental longitudinal peak strain; STE, Speckle
tracking echocardiography; STEMI, ST-elevation myocardial infarction;
TT, Tissue tagging.

(7). The aim of this study was to analyze segmental CMR-
FT strain from routinely acquired ciné images and to test the
diagnostic performance of segmental strain for the detection of
MVO and LGE in STEMI patients after primary percutaneous
coronary intervention.

Materials and methods

Participants

The participants of this study were enrolled in the CARE-
AMI trial (clinical trial unique identifier: NCT03274752)
(8). Detailed in- and exclusion criteria have been reported
previously. In brief, patients presenting with anterior STEMI
and reduced LVEF (i.e., ≤ 45%), who underwent primary
percutaneous coronary intervention (PCI) within 24 h were
eligible for inclusion and underwent baseline CMR after
PCI (8). Exclusion criteria consisted of previous myocardial
infarction (MI) or primary percutaneous intervention along
with contraindications to CMR (8) (see Figure 1).

Cardiac magnetic resonance protocol

Scans were performed on a 1.5 Tesla system (Magnetom
Aera, Siemens Healthineers, Erlangen, Germany). Standard
steady state-free precession 8 mm slice thickness ciné images
were acquired covering the left and right ventricle in a short-
axis (SAX) stack without gap and as well three long axis (LAX)
views were obtained to cover for the whole ventricle to assess
ventricular function and dimensions. For the LGE images,
patients received gadobutrol as a contrast agent (0.2 mmol/kg)
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FIGURE 1

Flowchart. The flowchart illustrates screening, withdrawals, and
performed CMR analysis.

and 10–15 min post injection of contrast agent LGE images were
acquired as described elsewhere (9).

Tissue characterization

All CMR data were read by readers blinded to patient
information and coronary angiography findings. Semi-
quantitative LGE images were analyzed by the five standard
deviation approach for %-of enhanced myocardial mass (10).
MVO was defined as an endocardially located no-reflow region
represented by a black area with surrounding LGE. Segments
were visually classified as segments with LGE and additional
MVO (LGE+/MVO+), segments with LGE and no MVO
(LGE+/MVO–) or segments with no enhancement (LGE–) (9).

Strain analysis

CMR-FT, a post-processing technique was applied to
standard steady state-free precession cinés in which with the
help of epi- and endocardial contours features within the
myocardium were tracked over the entire cardiac cycle to obtain
myocardial strain (7). CMR-FT analysis was performed using
Circle Cardiovascular Imaging (cvi42, Calgary, Canada, version
5.12) software. End diastolic, epi-, and endocardial contours
were placed using the automatic contouring tool on a SAX stack,
and three LAX (4-chamber, 3-chamber, and 2-chamber) ciné
images, and adjusted manually by the reader if necessary. Strain
was calculated for systolic deformation parameters represented
by peak strain (point of maximum deformation), time to peak
strain (within the cardiac cycle), along with systolic strain rate
(change of strain over time) in both the circumferential and
longitudinal orientations (i.e., segmental circumferential peak
strain, SCS; segmental longitudinal peak strain, SLS) (5, 7, 11).
Measurements were reported per American heart association
(AHA) segment (16 segment model). In our experience, the
average time for automated strain analysis with data reporting
takes about 5 min resulting in global and segmental strain
values simultaneously. However, due to inconsistencies in the

segmental strain analysis (i.e., highest peak at incorrect phase)
manual corrections can take up to 20 min per patient.

Statistical analysis

Continuous variables were expressed as mean ± standard
deviation unless defined otherwise or median and interquartile
range based on normality. Categorical variables were presented
as frequency and percent of the population. Statistical
significance was defined as a two-tailed p-value < 0.05.
Patient characteristics and global findings are reported for
the entire cohort, as well as grouped by the presence or
absence of MVO. These groups were compared by a Chi-square
test or an independent t-test, for categorical or continuous
variables, respectively.

First, to characterize segmental CMR-FT measurements
based on the presentation of co-localized MVO or LGE,
segmental strain values were categorized into the three groups
LGE+/MVO+, LGE+/MVO–, and LGE–. To compare these
three groups, a mixed linear model was fitted with the
lmer and emmeans (6, 12) functions accounting for multiple
measurements per patient by including subject identification as
a random intercept and reported as mean and standard error.

The diagnostic performance was initially tested using
logistic regression to investigate the association of sex,
laboratory markers, coronary angiography findings and all
regional CMR-FT measurements to the presence of MVO.
Specifically for peak circumferential and longitudinal strain
measures, further diagnostic analysis was conducted. Patients
were randomized into a derivation group of 30 patients (480
segments) and a validation group of 18 patients (288 segments).
In the derivation group, receiver-operator characteristic (ROC)
curves were created to test the ability of strain measures to first
discriminate between scar and no scar (LGE+ vs. LGE–), MVO
and no MVO (MVO+ vs. MVO–) and for MVO discrimination
within scar (LGE+/MVO+ vs. LGE+/MVO–). ROC curve
analysis for peak strain was performed in a derivation cohort
and then tested in a validation cohort. Optimal cut-off values for
the different ROC curves were calculated with the Youden Index
using the pROC function (13). These cut-offs were subsequently
tested for performance in the validation cohort, with the 95%
confidence intervals of sensitivity, specificity, negative predictive
value, and positive predictive value corrected for the multiple
measures per patient (14).

Images of 10 randomly selected participants were replicated
by a second independent reader and inter-observer reliability
of one segment was assessed using a two-way intraclass
correlation (ICC) test for absolute measures. Statistical
analyses were performed with R software (version 3.5.0,
R Foundation for Statistical Computing, Vienna, Austria),
GraphPad Prism version 9.0 (GraphPad Software, La Jolla
California United States) with SPSS version 24 (SPSS IBM,
New York, United States).
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Results

Patient demographics

Fifty patients with anterior STEMI undergoing primary PCI
were enrolled between 10/2017, and 09/2020. After withdrawal
of 2 patients, 48 patients (62 ± 12 years) remained for
the purpose of the present analysis (96%). Thirty-nine (81%)
patients were male. CMR exams were performed during the
hospital admission within a mean of 3.0 ± 1.5 days after
PCI. A total of 722 segments of 753 segments (96%) for
short axis slices could be analyzed and 653 of 768 segments
(89%) for longitudinal orientation. Detailed demographics
for patient’s characteristics are depicted in Table 1. On a
patient level, LGE was present in all patients and 40 (83%)
patients showed additionally presence of MVO. LVEF of all
patients was 40 ± 9%, while LVEF was significantly lower
in patients with MVO+ when compared to MVO– patients
(39 ± 9% vs. 48 ± 8%; p = 0.013) (Table 1).

Strain measurements

On a segmental level, 146 (19%) segments were categorized
as LGE+/MVO+, 308 segments (40%) as LGE+/MVO–, and
314 (41%) segments as LGE–. SCS significantly differed
between all categories, and was significantly impaired in
LGE+/MVO+ segments (–9.0 ± 0.6%) in comparison to
LGE+/MVO– (–10.4 ± 0.5%), and LGE– (–17.4 ± 0.5%)
(p ≤ 0.007, Table 2). Similar results were observed for
circumferential systolic strain rate and less prominent with
time to peak. SLS was also poorest in LGE+/MVO+ segments
(–6.6 ± 0.7%), followed by LGE+/MVO– (–8.3 ± 0.5%), while
LGE– segments yielded the best SLS (–16.0 ± 0.5%, p ≤ 0.020
for all comparisons). With segmental longitudinal time to peak
strain and systolic strain rate, only LGE– territories differed
from LGE+/MVO+ (Table 2). Logistic regression demonstrated
that in addition to segmental peak strain, time to peak strain,
and systolic strain rate in both orientations were associated with
the presence of MVO (Figure 2).

Diagnostic performance

For scar (LGE+/MVO+ and LGE+/MVO–) vs. no scar
(LGE–), ROC curve analysis of SCS showed an area under the
curve (AUC) of 0.848 with an optimal cut-off of –13.8%. For
SLS AUC was 0.806 and the cut-off was calculated at –13.5%
(comparison between AUC p = 0.017). Application of these
cut-offs in the validation group for SCS yielded a sensitivity of
76%, a specificity of 74%, a positive predictive value (PPV) of
81% and a negative predictive value (NPV) of 70%. SLS yielded
to a sensitivity of 88%, a specificity of 65%, a PPV of 73%,
and a NPV of 71%.

For MVO (LGE+/MVO+) vs. no MVO (LGE+/MVO– and
LGE–) ROC curve analysis of SCS showed an AUC of 0.764
with an optimal cut-off of –11.2%. SLS showed an AUC of 0.728
with an optimal cut-off of –11.5% (comparison between AUC
p = 0.020).

When applying these cut-offs to the validation cohort,
the cut-off of –11.2% for SCS yielded a sensitivity of 78%, a
specificity of 67%, a NPV of 94% and a PPV of 30%. For LGE+,
application of the SLS cut-off of –11.5%, yielded a sensitivity of
80%, a specificity of 51%, a NPV of 92% and a PPV of 24%.

For MVO discrimination within scar (LGE+/MVO+ vs.
LGE+/MVO–) the ROC curve analysis for SCS showed an AUC
of 0.606 with an optimal cut-off of –11.5%. For SLS AUC was
0.612 with an optimal cut-off of –11.4% (comparison between
AUC p = 0.323).

Application of these cut-offs in the validation cohort for SCS
yielded to a sensitivity of 80%, a specificity of 47%, a NPV of
84% and a PPV of 36%. For SLS the cut-off application in the
validation cohort yielded to a sensitivity of 80%, a specificity
of 31%, a NPV of 83%, and a PPV of 39% (Table 3). A patient
examle for the application of the cut-offs can be seen in Figure 3.

Reproducibility

The intraclass correlation coefficient for intrareader
variability was 0.869 (95% CI: 0.800–0.912, p < 0.001) for SCS
and 0.779 (95% CI: 0.697–0.839, p < 0.001) for SLS.

For interreader variability the values were 0.665 (95% CI:
0.514–0.768, p< 0.001) for SCS and 0.765 (95% CI: 0.685–0.827,
p < 0.001) for the SLS. With regard to the inter- and intrareader
variability for LGE mass (5SD method), we refer to a recent
publication by our group, where the technique has proven to be
a robust method (9).

Discussion

The current study demonstrates that segmental
strain in STEMI patients showed a good diagnostic
performance for detecting MVO+ segments and very
good diagnostic performance for LGE+ segments. However,
the accuracy for discriminating MVO+ segments within
LGE+ segments is limited.

In patients presenting after STEMI the use of CMR allows
not only the depiction of left ventricular dimensions and
ejection fraction, but also infarct size, MVO and myocardial
strain. As MVO can only be detected by using gadolinium
contrast, agent potentially limiting the performance in patients
with poor renal function, intolerance to contrast agent or
inability to undergo long scanning times, a non-contrast
method would be desirable for indirect MVO detection. In
line with previous studies, our study adds to the growing
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TABLE 1 Baseline characteristics.

Demographics Total population
(n = 48)

MVO+
(n = 40)

MVO–
(n = 8)

P-value

Age 61.8 ± 12.5 60.4 ± 12.8 66.9 ± 8.3 p = 0.090

Sex (male) 39 (81%) 34 (85%) 5 (63%) p = 0.137

BMI 27.2 ± 4.6 27.9 ± 4.7 25.2 ± 1.8 p = 0.010

Time to Balloon (min) 290 (149–638.5) 215 (133–833) 312 (150–633) p = 0.785

Killip I (no clinical signs or symptoms of heart failure) 33 (69%) 26 (65%) 7 (88%) p = 0.210

Killip II (3rd heart Sound, rales and radiographic evidence of heart failure) 7 (15%) 6 (15%) 1 (13%) p = 0.855

Killip III (pulmonary edema) 3 (6%) 3 (8%) 0 NA

Killip IV (cardiogenic shock) 5 (10%) 5 (13%) 0 NA

Laboratory values

CK-MB 325 (205–559) 370 (252–584) 150 (93–271) p = 0.098*

Troponin T 7,303 (4,533–13,192) 7,788 (6,128–13,922) 3,572 (2,402–4621) p = 0.584*

NT-proBNP 1,529 (320–3,222) 1,529 (320–3,222) 1,211 (330–3,159) p = 0.784*

Medication

ACE inhibitor/AT II antagonist 48 (100%) 40 (100%) 8 (100%) NA

Beta blocker 48 (100%) 40 (100%) 8 (100%) NA

Aldosterone antagonist 20 (42%) 19 (48%) 1 (13%) p = 0.067

SGLT-2 inhibitor 7 (15%) 6 (15%) 1 (13%) p = 0.855

Comorbidities

Family history 11 (23%) 11 (28%) 0 NA

Smoking current and former 19 (40%) 18 (45%) 1 (13%) p = 0.086

Hypertension 22 (46%) 18 (45%) 4 (50%) p = 0.796

Hypercholesterolemia 20 (42%) 17 (43) 3 (38%) p = 0.793

CMR measurements

LVEF 40.3 ± 9.1 38.8 ± 8.7 47.6 ± 7.5 p = 0.013

Total LGE extent (%) 37.1 ± 12.6 38.9 ± 11.7 27.9 ± 13.7 p = 0.064

Segments with LGE+/MVO– 308 (40%) 252 (39%) 56 (44%) p = 0.16

Segments with LGE+/MVO+ 146 (19%) 146 (23%) 0 NA

Segments with LGE– 314 (41%) 242 (38%) 72 (56%) p = 0.14

Coronary angiography measurements

Number of complete LAD occlusion 38 (79%) 33 (83%) 5 (63%) p = 0.204

1 vessel disease 23 (48%) 20 (50%) 3 (38%) p = 0.518

2 vessel disease 15 (31%) 11 (28%) 4 (50%) p = 0.210

3 vessel disease 10 (21%) 9 (23%) 1 (13%) p = 0.525

*Data was normalized using logarithmic scaling and compared using student’s t-test.
Baseline demographics between patients with MVO (MVO+) and patients without MVO (MVO–). Groups were compared by a Chi-square test or an independent t-test, for categorical
or continuous variables, respectively.

body of evidence that myocardial strain is correlated with
LGE and MVO. In fact, this is the first study to the best
of our knowledge, using CMR-FT from routinely acquired
ciné images to analyze segmental strain for MVO detection.
Previous studies have reported a correlation of strain with the
presence of LGE in STEMI patients (15, 16) and MVO in
addition to LGE seems to have a greater effect on strain (i.e.,
global) compared to LGE alone (17, 18). Furthermore, it has
been demonstrated that segmental strain bears the potential
to detect MVO with high accuracy, however, specific cut-off
values vary between groups due to different patient cohorts and

the use of different modalities (i.e., echocardiographic strain
or tagging sequences). In fact, Everaars et al. (18) analyzed
segmental circumferential peak strain with tissue tagging and
found that a cut-off value of –6.2% could detect MVO with
comparable sensitivity and specificity and high NPV and low
PPV. Furthermore, CMR-FT over CMR tissue tagging inherits
the advantage that it can be performed post-scanning with
no need for a dedicated sequence and no prolongation of
scan times, which decreases cost and increases efficiency and
patient comfort. Bergerot et al. (19) investigated segmental
longitudinal peak strain as assessed with a different modality
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TABLE 2 Comparison of segmental strain between LGE– segments vs. LGE+/MVO– segments, vs. LGE+/MVO+ segments.

LGE– (314
segments)

LGE+/MVO–
(308 segments)

LGE+/MVO+
(146 segments)

P-value (LGE–
vs.

LGE+/MVO–)

P-value (LGE–
vs.

LGE+/MVO+)

P-value
(LGE+/MVO–

vs.
LGE+/MVO+)

Segmental LV strain

Peak strain (%)

Circumferential –17.4 ± 0.5 –10.4 ± 0.5 –9.0 ± 0.6 <0.001 <0.001 0.007

Longitudinal –16.0 ± 0.5 –8.3 ± 0.5 –6.6 ± 0.7 <0.001 <0.001 0.020

Time to peak strain (ms)

Circumferential 295 ± 6.4 339 ± 6.4 359 ± 7.9 <0.001 <0.001 0.007

Longitudinal 315 ± 6.9 366 ± 6.9 373 ± 9.1 <0.001 <0.001 0.502

Systolic strain rate (/s)

Circumferential –1.09 ± 0.04 –0.51 ± 0.04 –0.38 ± 0.06 <0.001 <0.001 0.032

Longitudinal –1.09 ± 0.06 –0.55 ± 0.06 –0.40 ± 0.09 <0.001 <0.001 0.139

Comparison between groups with a mixed linear model accounting for multiple measurements per patient by including subject identification as a random intercept and reported as mean
and standard error.

FIGURE 2

Diagnostic performance of SCS and SLS for MVO and LGE. (A) Parameter estimates with 95% confidence intervals demonstrate association with
MVO presence. Blue for circumferential values and red for longitudinal values. (B) On top show ROC curves segmental circumferential and
longitudinal peak strain for the detection of MVO+ (LGE+/MVO+) against MVO– (LGE+/MVO– and LGE–) (SCS with AUC = 0.764, p < 0.001 and
a cut-off value of –11.2%, SLS with AUC = 0.728, p < 0.001 and a cut-off of –11.5%). On the bottom is segmental circumferential and
longitudinal peak strain for detection of LGE+ (LGE+/MVO+, and LGE+/MVO–) against LGE– (SCS with AUC = 0.848, p < 0.001 and cut-off of
–13.8%, SLS with AUC = 0.806, p < 0.001 and cut-off of –13.5%). (C) Diagnostic performance for MVO discrimination within scar
(LGE+/MVO+ vs. LGE+/MVO–) with ROC curves of SCS and SLS from a derivation group on top. On the bottom is the performance of the
cut-off from the ROC curve in a validation cohort with corresponding true positive (TP), false positive (FP), false negative (FN), true negative
(TN), sensitivity (Sn), specificity (Sp), PPV, and NPV.

(i.e., by speckle tracking echocardiography) and found that a SLS
of –12.5% predicted MVO with high sensitivity and specificity
(sensitivity of 85% specificity of 75%). However, speckle tracking
echocardiography might be challenged by possible poor acoustic

windows. The application of post-processing CMR-FT ciné
images is rapidly expanding and Polacin et al. (20) were the
first to evaluate a relevant cut-off for the detection of LGE
with an optimal cut-off of –7.2% (sensitivity 89% specificity
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TABLE 3 Diagnostic performance of segmental strain.

Parameter Cut-off value Sensitivity (%) Specificity (%) PPV (%) NPV (%) P-value

Scar vs. no scar
LGE+ vs. LGE–
(i.e., LGE+/MVO+ and LGE+/MVO– vs.
LGE–)

Peak strain (%)

Circumferential –13.8 76 (68–86) 74 (61–86) 81 (74–86) 70 (61–77) <0.001

Longitudinal –13.5 88 (66–95) 65 (56–87) 73 (63–83) 71 (62–80) <0.001

MVO vs. no MVO
(i.e., LGE+/MVO+ vs. LGE+/MVO–)

Peak strain (%)

Circumferential –11.2 78 (64–92) 67 (59–76) 30 (22–38) 94 (89–97) <0.001

Longitudinal –11.5 80 (67–94) 51 (45–56) 24 (17–31) 92 (86–96) <0.001

MVO within scar
(i.e., LGE+/MVO+ vs. LGE+/MVO–)

Peak strain (%)

Circumferential –11.5 80 (65–94) 47 (39–56) 36 (30–41) 84 (76–92) <0.001

Longitudinal –11.4 84 (76–92) 57 (47–66) 39 (36–41) 83 (77–90) <0.001

Optimal cut-off values for the different ROC curves were calculated with the Youden Index. These cut-offs were subsequently tested for performance in the validation cohort, with the
95% confidence intervals of sensitivity, specificity, negative predictive value, and positive predictive value corrected for the multiple measures per patient.

FIGURE 3

Patient example of LGE, MVO, and SCS values. On the left side, short axis basal, midventricular, and apical slices of circumferential strain images
are shown. On the middle row matching late gadolinium enhancement (LGE) images with scar tissue in white (orange region of interest) and
microvascular obstruction (MVO) (black arrow and red region of interest) are shown. On the right side, cut-off values for LGE+/MVO–, and
MVO+, respectively, are shown and exemplary peak strain values for AHA segments are shown, where predicted LGE segments are highlighted
in orange and predicted MVO segments in red.
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86%). Compared to our study, the authors analyzed a different
cohort. They included only patients with chronic infarctions,
while in our study patients with acute anterior STEMI were
analyzed. Consequently, in our analysis LGE might represent
not only scar, but also edema, as scans were obtained within
a short period of time after the event. Similarly, Yu et al.
(15) found in a patient cohort scanned within 1 month after
the infarction a SCS cut-off of –10.2%, assessed by CMR-
FT that yielded LGE detection with a sensitivity of 80% and
specificity of 85%. When comparing different techniques (i.e.,
CMR-FT and TT) in patients after STEMI, TT showed a
higher interobserver variability and correlated less strongly with
infarct and showed overall higher values for circumferential
strain (21, 22), a possible factor contributing to different cut-
off values and differences in the diagnostic performances. The
same holds true for the comparison between echocardiography
and CMR-FT with comparable results, however, not completely
interchangeable (23–25). Regarding the differences between SCS
and SLS, the literature is inconclusive, showing no superiority
of either one (26–28). We would explain the higher diagnostic
performance in our cohort mainly due to a higher robustness
to outliers/wrong values. SLS is assessed in 3 long axis slices,
every segment is depicted exactly once, while in a SAX stack
every segment is depicted at least twice and results are averaged
over the segment, as we also observed in our myocarditis cohort
(6). This could also be different in patients with smaller infarct
sizes, with only endocardial layer affected, where SLS could
be more important. As we included only patients with acute
anterior infarctions, infarct size may also have affected the strain
in remote territory—another factor for differences in cut-off
values. This is in line with the findings of a recent study by
Sjögren et al. were the comparison of strain in different culprit
lesions, infarctions in the territory of the LAD affected remote
strain (29). The most likely explanation for this phenomenon
is related to tethering of strain from remote segments next to
infarct, that are more affected compared to non-neighboring
segments (15, 30, 31). The same seems to hold true for LGE
segments adjacent to MVO segments as in our population,
where “borderline” zones might have altered the calculated cut-
off values. LGE extent results may differ depending on the
selected semi-quantitative post-processing LGE definition. The
5SD approach shows a low inter- and intrareader reliability
(10, 32) and seems to represent an accurate method to assess
scar in acute myocardial infarction (33). For segmental LGE
and MVO analysis we decided to stick to a visual assessment
for this analysis, but this would be a topic of interest in
the future.

Previous studies and ours support the findings that CMR-
FT shows the potential to accurately discriminate LGE segments
and presence of MVO segments and may therefore help to better
risk stratify patients with anterior STEMI after primary PCI.
Diagnostic performance testing in future studies with larger

cohorts could further help to establish cut-off values required
before implementation in routine clinical practice.

Study limitations

There are several limitations in this study. First, this
was a single center study with a rather small sample
size and no pre-specified power analysis for the diagnostic
performance of myocardial strain assessed by CMR. Second,
since segmental strain analysis is still a method in its
early stages, we considered the CARE-AMI dataset with a
homogenous cohort and only anterior infarction an ideal study
population for the proof of concept analysis of segmental
strain for detection of LGE and MVO in STEMI patients.
Future studies should aim at reproducing data in cohorts with
smaller infarctions and in other vessel territories. Currently,
there are also no established normal values for segmental
strain, however, there are some small cohort studies, where
segmental strain was evaluated in healthy volunteers or in
other cardiac pathologies (26, 27). Third, most patients were
MVO+ which resulted in an uneven distribution; however,
on a segmental level, the distribution between LGE+/MVO–
vs. LGE+/MVO+, and LGE– was more evenly distributed,
but may still represent a confounding factor. Definition
of segments with LGE should also be evaluated through
the use of different quantification techniques other than
5SD approach. Fourth, as there were no CMR sequences
performed for the evaluation of edema or hemorrhage, the
tissue damage is limited to the LGE+ segments, which may
lead to an overestimation of remote territory. Fifth, through
the tethering effect of segmental strain, adjacent segments
of remote myocardium may further influence cut-off values,
especially in cases with large infarcts. Finally, the CMR-FT
method might be limited by a high variability compared to
other techniques as observed by other groups (34, 35). Beside
tagging, regional (fast) strain-encoded magnetic resonance
(SENC) is a reliable method to image myocardial strain
and inherits the potential to predict ischemia, size and
transmurality of infarction (36–40). An important limitation of
the current study is the lack of follow-up data, including the
assessment of functional recovery and outcomes on a patient-
level (40).

Conclusion

Segmental strain analysis by CMR feature tracking is
able to discriminate segments with MVO and/or LGE in
patients with acute anterior STEMI undergoing primary
PCI with good diagnostic accuracy. However, the accuracy
for the discrimination of MVO presence within infarcted
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segments only, is limited. Segmental strain may
be useful as a potential contrast-free surrogate
marker to improve early risk stratification in patients
after primary PCI.
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SUPPLEMENTARY FIGURE 1

ICC Bland-Altman plots. Top row: Interreader variability of SLS on the
left and SCS on the right, respectively, with 95% confidence interval for
the levels of agreement. Bottom row: Intrareader reliability of SLS on the

left and SCS on the right with 95% confidence interval for the
levels of agreement.

SUPPLEMENTARY FIGURE 2

Confusion matrices for SCS and SLS for tissue discrimination. On the
left: Confusion matrix showing the discrimination between LGE+/MVO+
(2), LGE+/MVO– (1) and LGE– (0) in a validation cohort with the use of
cut-offs for SCS of –13.8 and –11.2%. Prediction results in a big FP rate
for LGE+/MVO+, as can be seen in comparison of the row sums against
column sums. On the right: The same can be seen for performance of
SLS in a validation cohort with the cut-offs of –13.5 and –11.5%, which
also result in a high amount of FP values for LGE+/MVO+. Of note: A
perfect confusion matrix only shows results for the diagonal.
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