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Background: Using human humoral metabolomic profiling, we can discover

the diagnostic biomarkers and pathogenesis of disease. The specific

characterization of atrial fibrillation (AF) subtypes with metabolomics may

facilitate e�ective and targeted treatment, especially in early stages.

Objectives: By investigating disturbed metabolic pathways, we could evaluate

the diagnostic value of biomarkers based on metabolomics for di�erent types

of AF.

Methods: A cohort of 363 patients was enrolled and divided into a

discovery and validation set. Patients underwent an electrocardiogram (ECG)

for suspected AF. Groups were divided as follows: healthy individuals (Control),

suspected AF (Sus-AF), first diagnosed AF (Fir-AF), paroxysmal AF (Par-AF),

persistent AF (Per-AF), and AF causing a cardiogenic ischemic stroke (Car-AF).

Serum metabolomic profiles were determined by gas chromatography–mass

spectrometry (GC-MS) and liquid chromatography–quadrupole time-of-flight

mass spectrometry (LC-QTOF-MS). Metabolomic variables were analyzed with

clinical information to identify relevant diagnostic biomarkers.

Results: The metabolic disorders were characterized by 16

cross-comparisons. We focused on comparing all of the types of AF

(All-AFs) plus Car-AF vs. Control, All-AFs vs. Car-AF, Par-AF vs. Control, and

Par-AF vs. Per-AF. Then, 117 and 94 metabolites were identified by GC/MS

and LC-QTOF-MS, respectively. The essential altered metabolic pathways

during AF progression included D-glutamine and D-glutamate metabolism,

glycerophospholipid metabolism, etc. For di�erential diagnosis, the area under

the curve (AUC) of specific metabolomic biomarkers ranged from 0.8237 to

0.9890 during the discovery phase, and the predictive values in the validation

cohort were 78.8–90.2%.

Conclusions: Serum metabolomics is a powerful way to identify metabolic

disturbances. Di�erences in small–molecule metabolites may serve as

biomarkers for AF onset, progression, and di�erential diagnosis.
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Introduction

In clinical practice globally, atrial fibrillation (AF) is the

most common cardiac arrhythmia, with substantial morbidity

and mortality (1). The prevalence of AF in adults is currently

estimated at 2–4% (2). As a result of extended longevity in the

general population and the intensified search for undiagnosed

AF, the incidence of AF is expected to increase 2.3-fold (3, 4).

Among the elderly (aged >85 years), the prevalence is expected

to rise to 17.8% (5). AF not only causes clinical symptoms (6),

but it also raises the risk of stroke, heart failure, hospitalization,

and cardiac death (7), thus severely burdening patients, society,

and the economy (8).

It is well-known that AF is one of the most critical risk

factors for ischemic stroke (9). When AF causes a cardioembolic

stroke, it is usually severe, highly recurrent, and often fatal

(10–12). By deciphering the metabolic mechanisms of AF, the

incidence and mortality could be reduced. In addition, the

embolus formed in the left atrial appendage, a common reason

for cardiogenic ischemic stroke caused by AF, is a slow and

complex process (13). However, the exact causes of AF, how it

develops over time, and how a blood clot enters the cerebral

vessels are unknown.

By screening and diagnosing AF early, optimal treatments

can be initiated for patients. Current screening tools for AF

are largely based on patient symptoms (14), electrophysiological

examination (15), electrocardiogram (ECG), and some mobile

health technologies (16). Among these methods, the 12-lead

ECG has been the “gold standard” for arrhythmia diagnosis

for over a century (17). However, a baseline resting ECG may

be insufficient for diagnosing AF, as it can be paroxysmal and

asymptomatic (18, 19). In addition, the sensitivity, specificity,

and technology of other screening tools are not yet sufficient

or mature.

The metabolome of biofluids changes because of metabolic

changes in the heart (20). Metabolites of multiple small

molecules may provide excellent diagnostic information (21).

The field of metabolomics is rapidly growing in systems biology

and includes the study of metabolic alterations caused by

disease (22). As an essential source for metabolic profiling, the

serum is not interfered with by anticoagulants (23). A single

analytical platform cannot detect all of the metabolites in a

biological sample because of the complexity of mammalian

metabolomes (24). The application of metabolomics in clinical

epidemiology needs to adjust for clinical confounding factors

Abbreviations: AF, atrial fibrillation; ECG, electrocardiogram; Fir-AF, first

diagnosed AF; Par-AF, paroxysmal AF; Per-AF, persistent AF; AUC, areas

under the curve; OR, odd ratio; QC, quality control; CV, correlation

of variation; LysoPC, lysophosphatidylcholine; MG, monoglyceride; PC,

phosphatidylcholine; SM, sphingomyelin; PE, phosphatidylethanolamine;

CE, cholesteryl esters; PI, phosphatidylinositol.

(25).Without the validation set, the discovery set can also lead to

an unstable prediction model (26). Therefore, we used the dual

platforms of gas chromatography–mass spectrometry (GC-MS)

and liquid chromatography–quadrupole time-of-flight mass

spectrometry (LC-QTOF-MS) to discover and validate the

diagnostic model of AF, combining individual differences. We

also performed a comprehensive metabolomic evaluation to

identify the difference among AF subtypes.

Materials and methods

Participants from the center (Nanjing Drum Tower

Hospital, The Affiliated Hospital of Nanjing University

Medical School, Nanjing, Jiangsu, China) formed the discovery

and validation cohorts between February 2020 and June

2021. The ethics committee approved this study, which was

completed under the guidance of the Helsinki Declaration (Lot

number: 2020346).

Inclusion criteria

Inclusion criteria were symptoms of palpitations, fatigue,

dizziness, dyspnea, chest pain, anxiety, cardiovascular risk

factors, or abnormal changes in cardiac biomarkers, such

as cardiac troponin (cTn), B-type natriuretic peptide (BNP),

and myocardial enzymes. The diagnosis could be confirmed

with an ECG. Exclusion criteria were: severe heart valve

diseases, heart failure with left ventricular ejection fraction

<20%, and acute coronary syndrome (ACS). Patients with

acute myocarditis, pericarditis, Takotsubo cardiomyopathy,

aortic dissection, pulmonary embolism, malignant tumor,

autoimmune disorders, trauma, or a recent surgical procedure

were excluded. In addition, we excluded patients with

liver dysfunction (alanine aminotransferase level >135 U/l),

severe renal dysfunction (creatinine >3.0 mg/dl), or blood-

borne infectious diseases, including human immunodeficiency

virus/acquired immunodeficiency syndrome, hepatitis B, and

hepatitis C.

Definition of di�erent groups

As a supraventricular tachyarrhythmia, AF is marked by

uncoordinated atrial electrical activity and inefficient atrial

contraction. AF’s ECG characteristics include irregular R-

R intervals, the absence of distinct repeating P waves, and

irregular atrial activations (27). The minimum duration of

an ECG tracing of AF required to establish the diagnosis

of clinical AF is at least 30 s (28). First diagnosed AF

(Fir-AF) refers to AF that has not been diagnosed before,

irrespective of its duration or the presence/severity of AF-related
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symptoms. Paroxysmal AF (Par-AF) refers to AF that terminates

spontaneously or with intervention within 7 days of onset.

Persistent AF (Per-AF) is defined as AF that is continuously

sustained beyond 7 days, including episodes terminated by

cardioversion after ≥7 days (27). Long-term persistence and

Permanent AF aremore representatives of the treatment attitude

of patients and physicians. Suspected AF (Sus-AF) is some

cardiovascular disease with similar symptoms but different ECG

manifestations, such as premature beats, ventricular tachycardia,

etc. Cardiogenic ischemic stroke caused by AF is called Car-

AF. The ECG data were confirmed independently by two senior

physicians in each study.

Sample collection

For all of the enrolled participants, serum samples were

collected on the next day of hospitalization in the Cardiovascular

Inpatient Ward and on the day of the medical examination in

the Health Management Center. In the morning, procoagulant

tubes were used to collect venous blood samples from fasting

individuals. After 2 h, we transferred each supernatant serum to

another tube and froze it at−80◦C in a refrigerator. We thawed

the samples at room temperature for 20min and vortexed and

centrifuged them at 650 g for 3min before use. Pooled quality

control samples were prepared by mixing equal amounts of

serum from every enrolled individual to ensure data quality (24).

Chemicals

L-2-chlorophenyl alanine (L-Cl-Phe) was purchased from

PepTech Corporation (Burlington, Massachusetts, USA). We

obtained pyridine (≥99.8% GC), methoxamine hydrochloride

(purity 98%), methyl myristate, and (13C2)-myristic acid

From Sigma-Aldrich (St. Louis, MO, USA). The reagents

were provided by Pierce Chemical (Rockford, IL, USA)

as N-methyl-trimethylsilyl-trifluoroacetamide (MSTFA) and

1% v/v trimethylchlorosilane (TMCS). The HPLC grades of

acetonitrile, methanol, and n-heptane were purchased from

Merck (Darmstadt, Germany). The Milli-Q (Millipore, Bedford,

MA, USA) system produced purified water. Aladdin (Shanghai,

China) supplied the formic acid.

Sample preparation

The samples were prepared according to a previously

reported method (29). First, we added 50 µl of serum to 200 µl

of methanol [containing internal standard (IS), 5µg/ml (13C2)-

myristic acid] and then vortexed vigorously for 5min. After

that, we extracted the samples at 1,800 rpm for 10min in the

SORVALL Biofuge Stratos centrifuge (Sollentum, Germany).

After transferring 180 µl of supernatant into another tube, we

centrifuged again for 10min, transferred 100 µl of supernatant

into a GC vial, and evaporated it to dryness in a SpeedVac

concentrator (Thermo Fisher Scientific, SavantTM SC250EXP,

Holbrook, USA). Next, we added 30 µl of methoxyamine

pyridine solution (10 mg/ml) to the residue and incubated it

for 16 h at room temperature. We trimethylsilylated the analytes

by adding 30 µl of MSTFA and TMCS as a catalyst. After

1 h, we used an external standard (ES), 30 µl of n-heptane

containing methyl myristate (15µg/ml), to monitor the stability

of the instruments. The final 90–µl mixture was vortexed for

1min and then ready for GC/MS analysis. For LC-QTOF-MS

analysis, we slightly modified the pretreating method. Unlike

the method mentioned above, we used L-Cl-Phe dissolved in

methanol (15µg/ml) as IS. After evaporation, we redissolved the

residue with 100 µl of purified water. Finally, we centrifuged the

dissolved solution at 18,000 rpm for 5min and transferred 80 µl

of supernatant to an LC vial.

Metabolomics study

Dual metabolomics platforms were used in the discovery

set following previously developed methods (30). The LC-

QTOF-MS analysis was carried out in the validation set as

previously reported (31). Random numbers were generated in

Excel (Microsoft, Redmond, Washington) to assign samples.

Then, 10 blank samples were injected first during analyses of

the sample sequence to ensure a stable baseline. One quality

control sample was run after every 15 injections of the prepared

sera. One blank sample sequence was run after dozens of

random injections during analyses of the sample sequence in

LC-QTOF-MS. After the complete run, we performed tasks

including chromatogram acquisition, retention time alignment,

peak deconvolution, metabolite identification, integration of

chromatograms, etc., to pre-process the data. The “80% rule”

(32) and “20% RSD rule” (33) were used to clean data for each

sample group. The specific parameters are shown in Table 1.

Statistical analysis

Continuous variables with normal distribution are presented

as mean ± standard deviation, and those with skewed

distribution are presented as median (lower quartile, upper

quartile). Differences between two groups and among three or

more groups were compared using the Student’s t-test and one-

way ANOVA, respectively, for normally-distributed continuous

variables, or the Mann–Whitney U-test and Kruskal Wallis H-

test for skewed variables. Categorical variables are described

as numbers and percentages, and the differences across groups

were measured by the chi-square test or Fisher’s exact test where

appropriate. The Benjamini–Hochberg false discovery rate
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TABLE 1 Specific parameters for metabolomic studies.

GC/MS LC-QTOF-MS 1 LC-QTOF-MS 2

Instruments Shimadzu GCMS-QP2010 (Ultra,

Kyoto, Japan)

ACQUITY UPLC H-Class System,

Xevo G2-XS-Quadrupole-Time of

Flight system (Waters Corporation,

USA)

Exion LC AD System,

TripleTOF
R©
5,600-

Quadrupole/Time-of-Flight system

(AB SCIEX LLC., Redwood City,

CA, USA).

Columns Rtx-5MS capillary column

(0.25µm, 0.25mm× 30m; Restek,

PA, USA)

Amide XBridge UPLC column

(3.5µm, 4.6mm× 100mm;

Waters Corporation, USA)

Kinetex C18 column (2.6µm,

100mm× 2.1mm; Phenomenex,

Torrance, CA, USA)

Injection volume 0.5 µl 10 µl 10 µl

Chromatographic conditions Split mode (split ratio 8:1); injector

temperature 250◦C; septum purge

flow rate 6 ml/min; carrier gas flow

rate 1.5 ml/min. Column

temperature gradient: 0–5min,

80◦C; 5–16min, 80◦C−300◦C;

16–21min, 300◦C

Flow rate 0.4 ml/min; column

temperature 40◦C; autosampler

temperature 4◦C. Mobile phase:

0.1% formic acid (solvent A),

acetonitrile (solvent B). Solvent

gradient: 0–3min, 85% B; 3–6min,

85–30% B; 6–15min, 30–2% B;

15–18min, 2% B; 18–19min,

2–85% B; and 19–26min, 85% B

Flow rate 0.4 ml/min; column

temperature 40◦C; autosampler

temperature 4◦V. Mobile phase:

0.1% formic acid (solvent A),

acetonitrile (solvent B). Solvent

gradient: 0–1min, 10–30% B;

1–19min, 30–95% B; 19–20min,

95% B

Mass spectrometry conditions Electron impact (EI) ion source;

ion source temperature 220◦C;

ionization electron beam 70 eV;

full scan mode, m/z 50–700; run

time 19min, solvent cutting

acquisition time 4.5min

Electrospray ionization (ESI) ion

source; positive ion mode, gas 1

pressure 50 psi, gas 2 pressure 30

psi, curtain gas 30 psi; ion spray

voltage 4,500V; turbo spray

temperature 500◦C; full scan m/z

50–1,000, product ions m/z

50–900; declustering potential

(DP) 100V, collision energy (CE)

35 eV

Electrospray ionization (ESI) ion

source; positive and negative ion

modes; information-dependent

acquisition (IDA) criteria; ion

spray voltage+5,500/−4,500V;

turbo spray temperature 550◦C;

nebulizer gas pressure 55 psi;

heater gas pressure 55 psi; curtain

gas pressure 35 psi; DP±80V; CE

35 eV; mass range m/z 60–1,000

Data pre-processing software Shimadzu GC Postrun Analysis Progenesis QI (Waters

Corporation, USA)

Analysis Base File Converter,

MSDIAL ver.4.70

Metabolite identification National Institute of Standards and

Technology (NIST) library 2.0

(2008); Wiley 9 (Wiley-VCH

Verlag GmbH & Co. S5 KGaA,

Weinheim, Germany); Standard

compound self-built library (CPU

library, China Pharmaceutical

University, China)

Human Metabolome Database

(HMDB), METLIN, Chemspider,

CPU library

MSMS-Public-Pos-VS15,

MSMS-Public-Neg-VS15

(matching MSDIAL), CPU library

Normalization method IS normalization IS normalization LOWESS regression

(FDR) correction adjusted all of the P-values, and an adjusted

P-value of < 0.05 was considered to be statistically significant.

The GC/MS and LC/MS semiquantitative data were

logarized and distributed normally. The differential metabolites

that satisfied the criterion variable importance in the projection

(VIP) of >1.0 and P (independent sample t-test) of <0.05 were

considered to be biomarker candidates. We used normalized

data to calculate fold-change (FC) values. We also built and

plotted the clustering or separation of samples from different

groups by principal component analysis (PCA), partial least

square to latent structure discriminant analysis (PLS-DA), and

orthogonal partial least squares discriminant analysis (OPLS-

DA) models. We selected the appropriate metabolites as

variables for binary logistic regression analysis and then chose

the markers with the best diagnostic efficacy to establish a

prediction model. The diagnostic performance of the selected
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FIGURE 1

Study design.

model was evaluated using the value of areas under the

curve (AUC) by receiver operating characteristic (ROC) curve

analysis (34). According to the Youden Index, the appropriate

sensitivity and specificity were chosen (35). SIMCA-P 14.1

(Umetrics, Umeå, Sweden) and SPSS (version 26.0, SPSS

Inc., Chicago, IL, USA) were used to screen and choose the

discriminant metabolites between different groups. Metabolic

pathway analysis and heatmaps cluster analysis were performed

using online MetaboAnalyst 5.0 (https://www.metaboanalyst.

ca/). We also used SPSS to obtain logistic regression analysis

and ROC analysis. Other column and scatter plots were made

by GraphPad Prism 8.0.

Results

Clinical descriptions

A total of 363 participants were enrolled (Figure 1). The

discovery phase enrolled 229 volunteers, namely, 86 Control,

30 Sus-AF, 32 Car-AF, and 81 All-AFs (22 Fir-AF, 33 Par-AF,

and 26 Per-AF) cases. We present baseline characteristics and

laboratory data in Table 2 and Supplementary Tables 1, 2. The

validation phase included 134 participants, namely, 30 Control,

17 Fir-AF, 36 Par-AF, 29 Per-AF, and 22 Car-AF cases. Their

baseline characteristics are shown in Supplementary Tables 3, 4.

Compared to the Control, we found that Age, Weight,

Height, BMI, BSA, SBP, HbA1c, AKP, UREA, CREA,

URIC, LDLC, WBC, NEUTP, LYMPHP, MONOP, NEUT#,

LYMPH#, MONO#, MCH, PLT, and MPV were significantly

changed in the All-AFs plus Car-AF, not in Sus-AF (Table 2).

Moreover, All-AFs plus Car-AF had an increased history of

thromboembolism, the use of anticoagulants, and postoperative

gastric care drugs considerably compared to Sus-AF. In

addition, AF patients tend to have lower EF values and

greater LAD values, closely related to the decline of cardiac

function (Supplementary Table 1). The development of AF is

accompanied by abnormally elevated concentrations of several

cardiac markers, such as D2, BNP, TNT, CK-MB, and CRP.

Besides, the development of AF is also associated with the

presence of other structural heart diseases, such as CAD and

cardiac insufficiency. In addition, the existence of factors such

as hyperglycemia or bleeding history should not be ignored,

which also results in the increase in CHA2DS2-VASc and

HAS-BLED scores. Notably, patients with more severe AF had

higher DBIL and lower ALB. Finally, treatment strategies in the

late stages of AF focus more on anticoagulation, resulting in

fewer antiarrhythmic drugs (Supplementary Table 2).

Relying on the difference analysis, medical routine, and

collinear diagnosis (variance inflation factor <10), multivariate

logistic regression was performed on the healthy and AF groups.

The risk factor information was obtained by the two-way

stepwise method. The results are shown in Table 3. Except for

albumin, other disease-related factors found in the discovery set

were challenging to reproduce in the validation set. As one of the

evaluation indicators of liver function, albumin is not specific

and sensitive enough for the diagnosis of AF. Abnormally low

albumin levels were also found in the Sus-AF vs. Control cases,

and they were not statistically different between the All-AFs plus

Car-AF and Sus-AF (Table 2, Supplementary Table 1). Other

multivariate logistic regression results between different groups

are shown in Supplementary Table 5.
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TABLE 2 Baseline characteristics of discovery phase participants.

Variable Controls

(n= 86)

Sus-AF

(n= 30)

All-AFs plus Car-AF

(n= 113)

P

Demographics Male 38 (43.7) 14 (46.7) 73 (64.6) –

Age 57.47± 6.58 54.83± 9.57 65.59± 11.66 *

Weight 61.66± 8.62 65.68± 9.13 69.99± 11.91 *

Height 1.65± 0.08 1.67± 0.08 1.68± 0.08 *

BMI 22.62± 1.77 23.62± 2.36 24.70± 3.31 *

BSA 1.76± 0.15 1.82± 0.15 1.88± 0.18 *

SBP 121.01± 10.79 128.6± 16.36 136.91± 20.33 *

DBP 74.15± 7.92 81.73± 11.74 82.59± 12.49 #*

Crcl 91.92± 15.33 106.74± 31.19 86.96± 36.92 –

HbAlc 5.6 (5.3, 5.9) 5.6 (5.4, 5.8) 5.9 (5.5, 6.3) *

Liver function ALT 14.8 (11.5, 19.4) 19.9 (14.0, 26.0) 16 (13, 22.6) #

AST 17.8 (15.9, 20.7) 21.35 (17.7, 23.3) 19.1 (15.1, 22.3) #

ALP 57.1 (48.2, 70.9) 67.45 (56.3, 78.8) 68.9 (58.0, 83.4) *

γ-GT 18.0 (14.9, 25.8) 25.5 (18.7, 55.3) 25.0 (18.1, 46.8) #*

LDH 180 (162, 201) 182 (155, 216) 188 (166, 224) –

TBiL 11.50± 4.73 11.93± 3.68 13.29± 6.91 –

TP 70.42± 3.71 65.52± 4.78 65.33± 5.07 #*

Alb 43.74± 1.45 40.65± 2.10 39.84± 2.93 #*

Glo 26.68± 3.27 24.87± 3.89 25.49± 3.86 –

AG-ratio 1.66± 0.21 1.67± 0.26 1.60± 0.25 –

Kidney function GLU 5.18 (4.81, 5.46) 4.75 (4.51, 5.06) 4.96 (4.56, 5.66) #

BUN 5.17± 1.05 4.97± 1.46 5.84± 1.75 *

CREA 62.75± 11.08 61.70± 12.65 68.63± 18.67 *

URIC 319.53± 59.61 344.10± 87.23 359.31± 101.75 *

T-CO2 25.60± 1.53 24.89± 1.25 25.26± 2.22 –

eGFR 105.67± 16.55 111.97± 23.83 102.95± 24.17 –

Blood lipids TG 0.94 (0.74, 1.33) 1.29 (1.05, 1.61) 1.14 (0.87, 1.63) #*

CHOL 4.89± 0.75 4.32± 0.91 4.31± 0.84 #*

HDL 1.57± 0.39 1.22± 0.44 1.21± 0.36 #*

LDL 2.76± 0.61 2.45± 0.71 2.47± 0.73 *

White blood WBC 5.59± 1.27 5.65± 1.66 6.60± 2.43 *

cells items NEUT% 57.84± 8.10 60.24± 9.36 62.97± 12.40 *

LYMPH% 33.71± 7.41 30.76± 8.68 27.54± 10.78 *

MONO% 5.71± 1.36 6.34± 1.48 6.90± 2.17 *

EOS% 2.24± 1.36 2.24± 1.50 2.13± 2.00 –

BASO% 0.50± 0.26 0.42± 0.19 0.45± 0.30 –

NEUT# 3.26± 0.98 3.45± 1.30 4.36± 2.39 *

LYMPH# 1.87± 0.52 1.67± 0.54 1.65± 0.66 *

MONO# 0.32± 0.12 0.36± 0.15 0.45± 0.20 *

EOS# 0.11 (0.06, 0.16) 0.11 (0.05, 0.20) 0.10 (0.05, 0.16) –

BASO# 0.03± 0.01 0.02± 0.01 0.03± 0.02 –

Red blood RBC 4.62± 0.38 4.35± 0.40 4.49± 0.57 #

cells items HGB 142.15± 11.94 134.43± 14.65 141.73± 17.25 –

HCT 42.54± 3.29 39.11± 3.48 41.34± 4.82 –

MCV 92.26± 4.88 90.08± 4.31 92.24± 4.95 –

(Continued)
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TABLE 2 Continued

Variable Controls

(n= 86)

Sus-AF

(n= 30)

All-AFs plus Car-AF

(n= 113)

P

MCH 30.83± 1.82 30.92± 1.94 31.63± 1.92 *

MCHC 334.07± 6.35 343.23± 10.62 342.84± 10.96 #*

RDW 12.8 (12.5, 13.2) 12.8 (12.3, 13.2) 12.6 (12.2, 13.1) –

Platelets PLT 203.40± 46.01 208.47± 69.77 180.82± 59.02 *

items PCT 0.21± 0.04 0.21± 0.06 0.20± 0.05 –

PDW 16.3 (16.0, 16.4) 16.2 (15.7, 16.6) 16.2 (16.0, 16.4) –

MPV 10.20± 1.25 10.75± 1.83 10.96± 1.40 *

# and * indicate significant differences in groups Sus-AF and All-AFs plus Car-AF compared with the Control, respectively. BMI, body mass index; BSA, body surface area; SBP, systolic

blood pressure; DBP, diastolic blood pressure; Crcl, creatinine clearance; HbAlc, glycated hemoglobin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline

phosphatase; γ-GT, γ-glutamyltransferase; LDH, lactate dehydrogenase; TBiL, total bilirubin; TP, total protein; Alb, albumin; Glo, globulin; AG-ratio, the ratio of albumin to globulin;

GLU, glucose; BUN, blood urea nitrogen; CREA, Creatinine; UA, uric acid; T-CO2, total carbon dioxide; eGFR, endogenous glomerular filtration rate; TG, triglyceride; CHOL, total

cholesterol; HDL, high density lipoprotein; LDL, low density lipoprotein; WBC, number of white blood cells; NEUT%, percentage of neutrophils; LYMPH%, percentage of lymphocytes;

MONO%, percentage of monocytes; EOS%, percentage of eosinophils; BASO%, percentage of basophils; NEUT#, number of neutrophils; LYMPH#, number of lymphocytes; MONO#,

number of monocytes; EOS#, number of eosinophils; BASO#, number of basophils; RBC, number of red blood cells; HGB, hemoglobin content; HCT, hematocrit; MCV, mean red blood

cell volume; MCH, mean red blood cell hemoglobin content; MCHC, mean red blood cell hemoglobin concentration; RDW, red blood cell distribution width; PLT, number of platelet;

PCT, platelet hematocrit; PDW, platelet distribution width; MPV, mean platelet cell volume.

Based on clinical parameters, including “demographics,”

“comorbidity and medication,” “biochemical items,” “blood

items,” “cardiac risk factors,” and other laboratory data, we

created an unsupervised PCA score plot. When we divided

the samples into three or six groups, the model showed some

outliers, and each group usually overlapped with the others

(Figures 2A1,A2). However, when we split the samples into

three groups and ran a supervised PLS-DA model, a visible

separation could be seen, with a slight overlap between the

groups. When the samples were divided into six groups, the

Control and Car-AF were well-separated, but the other groups

showed overlap (Figures 2A3,A4). In short, the models were not

powerful enough to distinguish AF from Control and Sus-AF

cases based on clinical data.

Metabolomics data quality assessment

A PCA model was established for the QC samples

and the serum samples to be tested simultaneously in

the platforms of GC-MS and positive and negative ion

modes in LC-MS. In the discovery and validation phase,

the aggregation of the QC samples in this study was

good (Supplementary Figures 2A1–A4). When the QC

samples were subjected to PCA alone, those samples were

within the 95% confidence interval, revealing that the

systematic error in sample processing and detection was

small (Supplementary Figures 2B1–B4). The various ES and

IS fluctuations for GC-MS and IS fluctuation for LC-MS were

5.46, 6.14, and 9.03%, respectively. The serum samples’ GC/MS

and LC/MS analyses aligned the metabolites with typical

chromatograms (Supplementary Figure 1). After deconvolution

of the GC/MS chromatograms, 175 independent peaks

were identified from the serum samples, 117 of which were

authenticated as metabolites; LC/MS identified 94 compounds

from 303 produced peaks (Supplementary Tables 6, 7).

Serum metabolomic description by PCA
and PLS-DA plots

Metabolomics analysis revealed a few outliers in the PCA

score plot when the samples were divided into three or

six groups. When six groups were defined, the separation

trend was still not significant, which may be attributed to

specific individual differences in each group (Figures 2B1,B2).

However, the PCA model showed that most All-AFs plus Car-

AF deviated from the Control and Sus-AF when the three

groups were defined, suggesting that the identified serum

metabolites can naturally detect the difference among the

three groups. When the samples were divided into three

groups, the PLS-DA model revealed that samples were clustered

closely and kept apart from the others (Figure 2B3). When

we divided the samples into six groups, Control and Sus-AF

clustered separately, while Fir-AF, Par-AF, and Per-AF primarily

overlapped with one another, with a minority overlapping

with the Control (Figure 2B4). As the disease progressed, the

metabolic trajectories of AF patients increasingly deviated from

the Control. The distant separation of Car-AF from the other

groups revealed significant differences in metabolic patterns.

At the same time, the overlapping of varying AF subgroups

suggested similar serum metabolic ways among the Fir-AF,

Par-AF, and Per-AF groups. In general, metabolomic results

were better at differentiating the diagnosis of the Control,

Sus-AF, and AFs (including Car-AF cases) than clinical data

(Figure 2).
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TABLE 3 Risk factor analysis of AF and Control in the discovery and validation cohort.

Independent variables OR 95% CI P

Discovery cohort SBP 1.104 1.043 1.168 0.0006

ALB 0.187 0.094 0.370 <0.0001

HDLC 0.173 0.022 1.326 0.0913

LDLC 3.890 1.076 14.07 0.0383

MCHC 1.295 1.121 1.497 0.0004

MPV 2.337 1.232 4.432 0.0093

GGT 1.070 1.025 1.118 0.0020

Validation cohort DBP 1.205 1.084 1.339 0.0010

ALB 0.290 0.166 0.507 <0.0001

Pathway analysis of di�erential
metabolites

First, OPLS-DA analysis revealed that Sus-AF, All-AFs

plus Car-AF, and Control had different metabolic patterns

(Figures 3A1–A3, S-plot: Figures 3B1–B3). According to the

statistical analysis, 52, 52, and 49 differential metabolites were

identified from the All-AFs plus Car-AF vs. Sus-AF, Control

vs. All-AFs plus Car-AF, and Control vs. Sus-AF participants,

respectively (Supplementary Table 8). We then created a Venn

diagram to show the discriminant metabolites among the three

groups compared with each other (Figure 4A). As shown, 15

metabolites in the region (b) exist independently of the different

substances obtained by comparing other groups, suggesting

that they are the most likely risk markers for the onset and

development of AF. Notably, the overlapping region (g) lists

that four metabolites, i.e., taurine, L-carnitine, betaine, and

cystine, were simultaneously significant in different comparisons

(Figure 4B). Figures 4C–E shows the pathway analysis of the

differential metabolites. Compared with Control, All-AFs plus

Car-AF and Sus-AF had similar pathways, such as alanine,

aspartate, and glutamate metabolism, D-glutamine, and D-

glutamate metabolism, etc. (Figures 4C,D). Enrichment and

pathway analysis of the All-AFs plus Car-AF vs. Sus-AF

showed that cysteine and methionine metabolism, and taurine

and hypotaurine metabolism were the most altered metabolic

pathways (Figure 4E). The pathway of phenylalanine, tyrosine,

and tryptophan biosynthesis was deranged in the All-AFs plus

Car-AF cases (Figure 4F), as shown by abnormal changes in

AF-specific metabolites.

Cross comparisons to and within
subgroups

We first focused on All-AFs vs. Car-AF for cardiac stroke

and Control vs. All-AFs for the development of AF. The OPLS-

DAmodel revealed 61 differential metabolites between Controls

and All-AFs (Figure 5A) (Supplementary Table 8). Similarly,

Car-AF cases primarily showed different metabolomic patterns

from All-AFs (Figure 5B), and 38 discriminant metabolites were

identified (Supplementary Table 8). We also created a Venn

diagram to show the discriminant metabolites between the

two comparisons (Figure 5C). The SUS-plot also delineates the

potential markers among the Control, Car-AF, and All-AFs

cases (Figure 5D). Of the metabolites differentiating All-AFs

from the Control, the levels of 2-ketoglutaric acid, lactose,

and 2-hydroxybutyric acid were higher in All-AFs, glycerol-2-

phosphate, O-phosphorylethanolamine, and LysoPC (20:0/0:0)

were lower. All of the above metabolites deviated further in

Car-AF (Figures 5E,F). These findings indicate that the above

metabolites are involved in the development of AF. Moreover,

different levels of compounds, including 3-hydroxybutyric

acid, homocysteine, aminomalonic acid, and uridine, were

only observed in Car-AF (vs. All-AFs), which indicated their

association with the development of cardiogenic cerebral

embolism caused by AF (Figure 5G). Figures 5H,I illustrate the

pathway analysis of the metabolites in Control vs. All-AFs and

All-AFs vs. Car-AF. Generally, aminoacyl-tRNA biosynthesis,

arginine biosynthesis, and arginine and prolinemetabolismwere

the most significantly altered metabolic pathways in All-AFs

compared with the Control (Figure 5H). The enrichment and

pathway analysis for the metabolites of the Venn b and c area

showed that glycerophospholipid metabolism and citrate cycle

were the most altered metabolic pathway (Figure 5I). Cysteine

and methionine metabolism and linoleic acid metabolism also

deserve attention in Car-AF (Figure 5J).

Next, we separately analyzed the differences between

Control and the three AF subtypes (Figures 6A–C).

The metabolites for each comparison appear in

Supplementary Table 8. Figure 6E is a Venn diagram showing

the discriminant metabolites between different kinds of AF

and Control. We also made a heat map to show the average

normalized quantities of the 25 differential metabolites (Venn

g region) in the above groups (Figure 6D). Among them, 12

metabolites were elevated, and 13metabolites decreased in order
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FIGURE 2

Multivariate statistical analysis di�erentiates the groups of Control and Experimental groups based on clinical information (A) and metabolomic

data (B), respectively. (1) PCA modeling displays the original similarity of the three groups. (2) PCA modeling displays the original similarity of the

six groups. (A1,A2) R2X (cum) = 0.499, Q2 (cum) = 0.204; R2X (cum) = 0.499, Q2 (cum) = 0.204. (B1,B2) R2X (cum) = 0.504, Q2X (cum) = 0.324;

R2X (cum) = 0.508, Q2X (cum) = 0.369. (3) PLS-DA modeling with the three groups. (A3) R2X (cum) = 0.364, R2Y (cum) = 0.463, Q2X (cum) =

0.288. Permutation tests with the intercepts of R2 < 0.125, Q2 < −0.338. (B3) R2X (cum) = 0.337, R2Y (cum) = 0.687, Q2X (cum) = 0.59.

Permutation tests with the intercepts of R2 < 0.252, Q2 < −0.312. (4) PLS-DA modeling with the six groups. (A4) R2X (cum) = 0.326, R2Y (cum)

= 0.342, Q2X (cum) = 0.26. Permutation tests with the intercepts of R2 < 0.079, Q2 < −0.134. (B4) R2X (cum) = 0.383, R2Y (cum) = 0.43, Q2X

(cum) = 0.329. Permutation tests with the intercepts of R2 < 0.125, Q2 < −0.178.

according to the following groups: Control, Par-AF, and Per-AF.

A correlation analysis between clinical characteristics and

25 potential biomarkers is shown in Figure 6I. Figures 6F–H

represent the perturbed pathways. For Fir-AF and Per-

AF vs. Control, metabolism changed for aminoacyl-tRNA

biosynthesis, arginine biosynthesis, phenylalanine, tyrosine,

and tryptophan biosynthesis; for Par-AF vs. Control, alanine,

aspartate, and glutamate metabolism, D-glutamine and

D-glutamate metabolism, as well as arginine and proline

metabolism, also changed significantly. We also found that

the metabolomics profiles and metabolic pathways could

distinguish cardiovascular patients (CP, including Sus-AF,
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FIGURE 3

OPLS-DA modeling (A) and S-plots (B) delineate di�erent metabolic phenotypes and potential markers of Control, Sus-AF, and All-AFs plus

Car-AF cardiac cases. (A1) OPLS-DA model di�erentiating All-AFs plus Car-AF cases from the Sus-AF cases. R2X (cum) = 0.336, R2Y (cum) =

0.863, Q2X (cum) = 0.68. Permutation tests with the intercepts of R2 < 0.468, Q2 < −0.563. (B1) S-plot highlights the potential markers of the

All-AFs plus Car-AF versus Sus-AF cases. (A2) OPLS-DA model di�erentiating All-AFs plus Car-AF cardiac cases from the Control. R2X (cum) =

0.339, R2Y (cum) = 0.848, Q2X (cum) = 0.736. Permutation tests with the intercepts of R2 < 0.368, Q2 < −0.454. (B2) S-plot highlights the

potential markers of the All-AFs plus Car-AF versus Control cases. (A3) OPLS-DA model di�erentiating Sus-AF cases from Control. R2X (cum) =

0.301, R2Y (cum) = 0.842, Q2X (cum) = 0.704. Permutation tests with the intercepts of R2 < 0.452, Q2 < −0.475. (B3) S-plot highlights the

potential markers of the Sus-AF versus Control cases.

all kinds of AF, and Car-AF) from Control and different

subtypes of AFs from each other (Supplementary Table 8;

Supplementary Figures 3, 4).

Di�erential diagnosis of metabolic
biomarkers

Early recognition and accurate diagnosis of different

subtypes are fundamental for personalized treatment of

AF. We summarized six specific metabolic biomarkers

for distinguishing All-AFs add Car-AF vs. Control, five

for All-AFs versus Car-AF, seven for Par-AF vs. Control,

and six for Par-AF vs. Per-AF (Table 4). Odds ratios for

the biomarker panels were obtained after adjustment for

possible confounders in all cross-comparisons. Additional

metabolomics-based biomarker comparisons are provided in

Supplementary Table 9.

Based on the logistic regression for each biomarker panel, we

created the ROC presentations in the discovery phase (Figure 7).

The AUC, sensitivity, and specificity were 0.954, 86.7, and 91.8%

for All-AFs plus Car-AF vs. Control (n = 200) (Figure 7A);

0.974, 97.5, and 87.5% for All-AFs vs. Car-AF (n = 113)

(Figure 7B); 0.989, 100, and 90.7% for Par-AF vs. Control (n

= 120) (Figure 7C); and 0.935, 88.5, and 87.9% for Par-AF vs.

Per-AF (n = 59) (Figure 7D), respectively. For additional cross-

comparisons, AUCs ranged from 0.8237 to 0.9844, sensitivities

ranged from 87.88 to 100%, and specificities ranged from 63.64

to 100% (Supplementary Figure 5). ROC curves with AUC,
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FIGURE 4

Di�erential metabolites and pathways involved in the experimental groups. (A) Venn diagram shows discriminant metabolites can be classified

into regions a, b, c, d, e, f, and g. (B) Serum taurine, L-carnitine, betaine, and cystine levels change in the three comparisons. (C) Pathway analysis

of di�erential metabolites in Venn a+d+e+g region. (D) Pathway analysis of di�erential metabolites in Venn b+d+f+g region. (E) Pathway

analysis of di�erential metabolites in Venn c+e+f+g region. (F) Pathway analysis of di�erential metabolites in Venn b+g. ***p < 0.01.

sensitivity, and specificity values for the four cross-comparisons

in the validation phases are shown in Supplementary Figure 6.

According to the highest prediction sensitivity and

specificity of the ROC in the discovery phase, the optimal

cut-off values were 0.640 for All-AFs plus Car-AF vs. Control,

0.601 for All-AFs vs. Car-AF, 0.129 for Par-AF vs. Control,

and 0.358 for Par-AF vs. Per-AF. We then used the cut-off

values to predict the different groups of AFs in the validation

phase. Predictive values were 90.2% for All-AFs plus Car-AF vs.

Control (Figure 7E); 90.1% for All-AFs vs. Car-AF (Figure 7F);

78.8% for Par-AF vs. Control (Figure 7G); and 86.2% for Par-AF

vs. Per-AF (Figure 7H).

Discussion

This work described a comprehensive clinical metabolomic

evaluation for 363 participants who underwent ECG in the

discovery and validation phases. First, we collected a large

amount of clinical data and analyzed the risk factors. Known

risk factors contributing to the onset and progression of

AF include obesity, obstructive sleep apnea, hyperlipidemia,

smoking, alcohol, physical inactivity, genetics, aortic stiffness,

and some traditional factors, such as age, hypertension, heart

failure, diabetes, and valvular heart disease (36). There are

still some potential removable causes of AF, such as: early

onset of unknown AF in channelopathies like Brugada (37)

and long QT syndrome (38), hyperthyroidism (39), and also

lifestyle factors such a regular practice of endurance sports

(40). In addition, some biomarkers have also been identified as

potential AF risk factors, such as myocardial injury (troponin),

cardiovascular stress and dysfunction (natriuretic peptides,

growth differentiation factor 15), myocardial fibrosis (galectin-

3), renal dysfunction (creatinine, cystatin C), inflammation

(C-reactive protein, cytokines), and coagulation activity (D-

dimer). However, none of those are used in clinical practice

(41). Regrettably, the results we obtained also have poor

reproducibility, sensitivity, and specificity. Usually, prediction

models based solely on clinical factors require a large sample size

per group, which was limited in our study by the complexity,

integrity, and high costs of patient data collection (42, 43).

Metabolic phenotypes revealed significant pattern differences

between patients with AF, no AF, and within AF subtypes.

We found a set of diagnostic markers unique to patients with

AF compared to healthy individuals who are not affected by

suspected AF. Then, we found somemetabolic features that were

unique to AF-induced stroke. Lastly, 25 common significantly

regulated metabolites in serum from different subtypes of AF

patients, suggesting that AF may involve a universal metabolic

disturbance. Combinations of metabolic biomarkers offered
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FIGURE 5

Di�erential metabolites and pathways involved in di�erent groups. (A) OPLS-DA modeling delineates di�erent metabolic phenotypes of Control

and All-AFs cardiac cases. R2X(cum) = 0.343, R2Y(cum) = 0.861, Q2X(cum) = 0.712. Permutation tests with the intercepts of R2 < 0.454, Q2

< −0.542. (B) OPLS-DA model di�erentiating Car-AF patients from the All-AFs cases. R2X(cum) = 0.302, R2Y(cum) = 0.851, Q2X(cum) = 0.74.

Permutation tests with the intercepts of R2 < 0.445, Q2 < −0.515. (C) Venn diagram shows discriminant metabolites can be classified into

regions a, b, and c. (D–G) SUS-plots and violin diagram delineate potential markers of Control, Car-AF, and All-AFs cardiac cases. SUS-plot

highlights the potential markers of the All-AFs, Car-AF, and Control cases. "* * *" means p?0.01. (H) Pathway analysis of di�erential metabolites in

Venn a and b regions. (I) Pathway analysis of di�erential metabolites in Venn b and c. (J) Pathway analysis of di�erential metabolites in Venn c.

***p < 0.01.

excellent predictive values for AF onset, progression, and

differential diagnosis.

AF has traditionally been considered a cardiac arrhythmia

caused by disorganized electrical impulses, usually originating

at the root of the pulmonary veins (44). However, accumulating

evidence suggests a correlation between metabolism disorders

and the occurrence of AF (45). Compared with healthy

participants, patients with AF had down-regulated oleic acid

and upregulated D-glutamic acid and uric acid. In a long-

term cohort study, oleic acid intake significantly decreased

the risk of cardiovascular disease (46). Oleic acid prevents

coronary heart disease by suppressing oxidative stress and

mitigating myocardial cell damage (47). Serum uric acid is also

a surrogate indicator of oxidative stress (48). D-glutamic acid
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FIGURE 6

Di�erential metabolites and pathways involved in the AF groups. (A–C) OPLS-DA modeling delineates di�erent metabolic phenotypes of Fir-AF,

Par-AF, and Per-AF cardiac cases from Control. R2X (cum) = 0.272, R2Y (cum) = 0.679, Q2X (cum) = 0.536; Permutation tests with the intercepts

of R2 < 0.325, Q2 <-0.34. R2X (cum) = 0.315, R2Y (cum) = 0.812, Q2X (cum) = 0.633; Permutation tests with the intercepts of R2 < 0.458, Q2

<-0.473. R2X (cum) = 0.351, R2Y (cum) = 0.893, Q2X (cum) = 0.706; Permutation tests with the intercepts of R2 < 0.323, Q2 <-0.312. (D)

Heatmap of the 25 di�erential metabolites in Control and all kinds of AFs. The colors changing from blue to red indicate high metabolites. (E)

Venn diagram shows discriminant metabolites can be classified into 7 regions. (F) Pathway analysis of di�erential metabolites in Venn a, d, e, and

g regions. (G) Pathway analysis of di�erential metabolites in Venn b, d, f and g. (H) Pathway analysis of di�erential metabolites in Venn c, e, f, and

g regions. (I) The correlation coe�cients between 25 potential biomarker contents and clinical characteristics. Blue represents negative

correlation, and red represents positive correlation. Circle size represents the r-value of the metabolites and clinical characteristics. The symbol

from * to ** and *** indicate the P-values between metabolites and clinical characteristics. *p < 0.05, **p < 0.01, and ***p < 0.001.
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TABLE 4 Statistical analysis of diagnostic biomarkers: Discovery phase.

Differential metabolites AUROC 95% CI Sensitivity

(%)

Specificity

(%)

LogOR 95%CI

Lower Upper Lower Upper

Comparison I: all-AFs plus car-AF (n = 113) vs. control (n = 87)

Lactate 0.8684 0.8176 0.9191 82.30% 80.23% 6.41 4.60 8.22

D-glutamic acid 0.8241 0.7660 0.8822 86.73% 67.44% 4.62 3.22 6.03

Decanoylcarnitine 0.8725 0.8207 0.9243 86.05% 80.53% 2.37 1.71 3.03

SM (d18:1/14:0) 0.7985 0.7346 0.8625 86.05% 64.60% −2.85 −3.76 −1.93

LysoPC (P-18:0) 0.7883 0.7236 0.8530 73.26% 72.57% −3.39 −4.60 −2.18

2-pyrrolidone 0.8209 0.7596 0.8823 86.73% 72.94% 2.50 1.78 3.23

Lactate, decanoylcarnitine, lysoPC(P-18:0), and 2-Pyrrolidone 0.9426 0.9111 0.9741 94.69% 80.00% 2.64 2.03 3.26

Adjust panel 0.9535 0.9248 0.9822 86.67% 91.76% 2.72 2.09 3.36

Comparison II: all-AFs (n = 81) vs. car-AF (n = 32)

3-hydroxybutyric acid 0.8642 0.7918 0.9366 78.13% 82.72% −1.34 −1.86 −0.82

Homocysteine 0.8473 0.7551 0.9395 65.63% 97.47% −1.49 −2.09 −0.90

Ribitol 0.8777 0.8026 0.9528 87.50% 82.72% −3.53 −4.96 −2.10

Methyl galactoside 0.8106 0.7231 0.8980 71.88% 81.48% −2.99 −4.45 −1.54

Citrate 0.7986 0.7078 0.8894 75.00% 76.54% −3.23 −4.73 −1.74

Citrate, ribitol, and homocysteine 0.9351 0.8896 0.9807 97.47% 71.88% −2.70 −3.66 −1.74

Adjust panel 0.9739 0.9395 1.0000 97.47% 87.50% −3.61 −5.30 −1.91

Comparison III: par-AF (n = 33) vs. control (n = 87)

D-glutamic acid 0.7572 0.6585 0.8559 81.82% 67.44% 3.35 1.66 5.05

Lyxose 0.8161 0.7396 0.8925 60.47% 90.91% −2.21 −3.25 −1.17

Lactose 0.7703 0.6778 0.8627 87.88% 62.79% 2.04 0.98 3.10

CE [20:3(8Z,11Z,14Z)] 0.8055 0.7157 0.8953 74.42% 81.82% −2.00 −2.93 −1.06

Decanoylcarnitine 0.9070 0.8493 0.9647 89.53% 84.85% 2.49 1.58 3.41

SM (d18:1/14:0) 0.7907 0.6970 0.8844 86.05% 66.67% −2.61 −3.83 −1.39

2-pyrrolidone 0.8000 0.7162 0.8838 87.88% 67.06% 2.34 1.31 3.36

Lyxose, lactose, and decanoylcarnitine 0.9648 0.9342 0.9954 93.94% 88.37% 2.88 1.98 3.78

Adjust panel 0.9891 0.9765 1.0000 100.00% 90.70% 3.38 2.22 4.54

Comparison IV: par-AF (n = 33) vs. per-AF (n = 26)

Glycolic acid 0.7541 0.6281 0.8801 88.46% 60.61% 3.67 1.28 6.05

Alanine 0.7832 0.6618 0.9046 76.92% 78.79% 3.42 1.13 5.71

D-malic acid 0.8275 0.7232 0.9318 92.31% 66.67% 4.24 2.00 6.47

Citrate 0.7634 0.6349 0.8919 76.92% 69.70% 3.39 1.28 5.51

Tyrosine 0.7914 0.6703 0.9124 76.92% 78.79% 5.30 1.99 8.62

2-hydroxy-3-methylbutyric acid 0.7517 0.6262 0.8773 61.54% 81.82% 2.34 0.86 3.82

D-malic acid, tyrosine, and 2-hydroxy-3-methylbutyric acid 0.9114 0.8404 0.9824 80.77% 90.91% 2.47 1.36 3.58

Adjust panel 0.9347 0.8720 0.9975 88.46% 87.88% 2.50 1.45 3.55

might activate transporter-related Cl–conductance and regulate

neuronal transmission (49), affecting the autonomic nervous

system and involving AF’s pathogenesis (50). In addition, we

identified a panel of discriminant metabolites also considered

as potential markers of AF in previous reports, such as L-

lysine (51), valine (52), creatinine (53), tyrosine (54), stearic

acid (55), methionine (56), and alanine (57). Moreover, the

changes in L-acetylcarnitine and decanoylcarnitine suggest

that carnitine metabolism dysfunction also contributes to

the occurrence of AF (58, 59). Stressed myocardial cells

can transform from fatty acid oxidation to glycolysis in

the mitochondria (60). The long-chain acylcarnitine then

accumulates in the cytoplasm, contributing to membrane

instability by inhibiting the exchange of sodium and calcium

ions in the sarcolemma, ultimately leading to arrhythmias (61).

Decenoylcarnitine is an oxidative metabolite that is derived

from a fatty acid belonging to the acylcarnitines (ACs) family

(62). Carnitine molecules shuttle across the membrane, while
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FIGURE 7

Diagnostic Outcomes and Prediction Accuracies. The diagnostic outcomes in the discovery phase are shown via the ROC curves for

comparison between (A) All-AFs plus Car-AF versus Control, (B) All-AFs versus Car-AF, (C) Par-AF versus Control, and (D) Par-AF versus Per-AF.

The prediction accuracies by the biomarkers in the validation set were compared between (E) All-AFs plus Car-AF versus Control, (F) All-AFs

versus Car-AF, (G) Par-AF versus Control, and (H) Par-AF versus Per-AF. AUC, area under the curve; CI, confidence interval.

acyl-CoA participates in the production of ATP through the

β-oxidation pathway. ACs play an essential role in the daily

energy production of the heart. It is of particular interest

that decanoylcarnitine may be associated with AF-induced

cardioembolic stroke (63).

Notably, several lines of evidence suggest that rhythm

alteration alone may not fully account for the risk of stroke

attributed to AF (64). The causal relationship between AF

and stroke may be more complex than anticipated initially.

Compared with the All-AFs, the Car-AF had upregulation

of lactose and homocysteine. Usually, energy metabolism

dysfunction is closely related to cerebral ischemia-reperfusion

injury (65). Lactate may arise from the transition of potentially

viable cells to anaerobic glycolysis, which continues to

metabolize glucose under localized hypoxia (66). As one of

the proposed risk factors for stroke, total serum homocysteine

is an intermediate product of one-carbon-cycle metabolites.

The increased level responds to the acute phase of cerebral

ischemia (67). In addition, Nelson et al. (68) used LC/MS

to determine 144 metabolites from 367 acute stroke patients,

compared cardiac and non-cardiogenic samples, and they

found that the tricarboxylic acid metabolite α-ketoglutarate

and malate were associated with cardiogenic stroke, which is

encouragingly consistent with our findings. Meanwhile, other

metabolites we found have also been widely reported by

researchers, for example, the changing content of uridine (69),

3-hydroxybutyric acid (70), L-cysteine (71), and asymmetric

dimethylarginine (72).

Early detection of paroxysmal AF allows one to take

precautions against or reduce undesirable disease outcomes
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through appropriate treatment strategies (73). In recent years,

it has been widely theorized that released cytokines may lead

to inflammation, which alters the function and expression of

cardiac ion channels, ultimately affecting the atrial structure

and electrophysiological remodeling (74). In this study, we

found four low levels of LysoPCs in AF patients. Accumulated

evidence indicates that LysoPCs species are protective in anti-

inflammatory responses and metabolic disease progression

(75, 76). Sphingolipids and glycerophospholipids, which are

major cellular membrane components, have been reported

to influence cell membranes’ physical properties and protein

function (77). According to previous studies, low levels of SMs

are associated with the insufficient capacity of the organism to

cope with oxidative stress, showing high levels of peroxidation

and proinflammatory precursors (78). In addition, we also found

higher levels of three SMs in the Control compared to AF

patients. However, the molecular mechanism of lipid alterations

associated with AF requires further study in more detailed

experiments. Interestingly, Alvaro Alonso et al. performed

a metabolomic analysis in the combined sample of 3,922

participants from the Atherosclerosis Risk in Communities

Study. The author replicated a prospective association among a

previously identified secondary bile acid, glycocholenate sulfate,

and AF incidence and identified new metabolites involved

in nucleoside and polyamine metabolism as markers of AF

risk (79). Unfortunately, our study did not replicate Alvaro

Alonso’s results well-due to differences in ethnicity and lifestyle

or insufficient types of metabolite detection that warrant

further exploration.

Accurate diagnosis of different subtypes of AF facilitates

precise treatment by physicians. We conducted extensive

comparisons of different subtypes of AFwith each other, Control

and Car-AF. First, we found that the metabolic trajectory of

Fir-AF was challenging to separate from paroxysmal and

persistent AF (Figure 2B4, Supplementary Figures 3B,C),

as many people might be diagnosed with one of the two

types for the first time. Second, the metabolic differences

between the three types of AF and Car-AF were huge

(Figure 2B4, Supplementary Figures 3F–3H), which may

support that anticoagulation in AF patients depends only

on the CHA2DS2-VASc score, not different subtypes

(80). Interestingly, some potential metabolic markers and

altered metabolic pathways were found to exist between

Par-AF and Per-AF (Supplementary Figures 3D, 4D;

Supplementary Table 8). With the aggravation of the

disease, the content of the common differential metabolites

between the two groups also further deviated from the

Control (Figure 6D), which may provide suggestions for

different ablation surgical strategies or individualized use of

antiarrhythmic drugs. Finally, we found that potential metabolic

markers associated with AF were highly correlated with

clinically recognized risk factors (Figure 6I), further supporting

our conclusion.

Conclusions

We reported a comprehensive metabolomic evaluation

for identifying clinically relevant perturbations in circulating

metabolites in AF. This evaluation improves the understanding

of AF pathogenesis and facilitates target screening for

therapeutic intervention. Novel biomarkers predict and

differentiate between AF types. The metabolic biomarkers’

sensitivity, specificity, and predictive value align with

expectations and can complement existing diagnostic

methods. The potential applications in clinical diagnosis

include: (1) differential diagnosis of AF vs. Sus-AF; (2)

if AF is not significant, a differential diagnosis of Par-AF

vs. Control is required; and (3) a differential diagnosis of

Per-AF vs. Par-AF is also vital for individualized treatment.

These biomarkers separate individuals who may benefit

from additional testing with ECG from individuals who

will not.

Study limitations

First, the inclusion criteria for asymptomatic AF

paroxysmal patients might be potentially biased since the

ECG Holter monitor could not determine an AF diagnosis.

Second, the sample size was small, lack of participation

in multiple clinical centers, and no other types of samples

were collected, limiting the results’ reliability. Third, we

did not use other metabolomics platforms to detect more

metabolites, and we did not use LC/MS-MS methods for

the absolute quantification of potential markers, which was

not conducive to clinical application. Fourth, our study

population consisted of middle-aged to elderly Chinese patients.

Future studies could broaden the scope to include other

ethnicities within Asia and other races such as Caucasians

and Africans. Lastly, the metabolic mechanisms that lead to

disease occurrence and progression remain unclear owing

to the lack of in-depth exploration in our study through

technical means such as molecular biology, cell biology,

and pharmacology.
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