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Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a new type of oral

hypoglycaemic agent with good cardiovascular protective e�ects. There are

several lines of clinical evidence suggest that SGLT2i can significantly reduce

the risks of heart failure, cardiovascular death, and delay the progression of

chronic kidney disease. In addition, recent basic and clinical studies have also

reported that SGLT2i also has good anti-arrhythmic e�ects. However, the exact

mechanism is poorly understood. The aim of this review is to summarize recent

clinical findings, studies of laboratory animals, and related study about this

aspect of the antiarrhythmic e�ects of SGLT2i, to further explore its underlying

mechanisms, safety, and prospects for clinical applications of it.
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Introduction

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) (including dapagliflozin,

empagliflozin, sotagliflozin, and canagliflozin, among others) are novel oral

hypoglycaemic agents with both cardiovascular and renal benefits that can significantly

reduce hospitalization due to heart failure, decrease cardiovascular death, protect renal

function and improve insulin resistance (1, 2). Recent clinical studies have shown

that SGLT2i have anti-arrhythmic effects also (3, 4), and experimental studies have

shown that SGLT2i may indirectly or directly affect on the onset of arrhythmias via

alleviation of myocardium oxidative stress and inflammatory response, improvement

of cardio fibrosis and endothelial dysfunction, promotion of cardiomyocyte energy

and lipid metabolism, maintaining of cellular ion homeostasis, amelioration of

electrophysiological remodeling, also improvement of heart failure, inhibition of cardiac

sympathetic hyperinnervation and autonomic imbalance, reduction of body weight,

through the above combined mechanisms to suppress arrhythmias (5, 6). This review

we summarize the recent clinical evidence, studies of laboratory animals, and related

studies about this aspect on the antiarrhythmic effects of SGLT2i, to further explore its

underlying mechanisms, safety, and prospects for clinical applications of it (Figure 1).
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FIGURE 1

A schematic illustrating the relationship between the SGLT2i with antiarrhythmic e�ects and Mechanism. SGLT2i, Sodium-glucose cotransporter

2 inhibitors; AF, atrial fibrillation/atrial flutter; VA, ventricular arrhythmias; SCD, sudden cardiac death; HIF-1, hypoxia-inducible factor-1; EPO,

erythropoietin; NHE-1, Na+-H+ exchanger 1; INaL, late Na+ current; APD, action potential duration.

Clinical evidence of the
antiarrhythmic e�ects of SGLT2i

SGLT2i and atrial arrhuthmias

The DECLARE-TIMI 58 trial subgroup analysis in type 2

diabetes mellitus (T2DM) patients suggested that dapagliflozin

reduced the risk of atrial fibrillation/atrial flutter (AF) events

by 19% (HR: 0.81, 95% CI: 0.68–0.95, p = 0.009) (3).

A meta-analysis showed that SGLT2i significantly reduced

AF-related adverse events by 19.33% (RR: 0.83, 95% CI:

0.71–0.96, p= 0.01) (7). Another systematic review and

meta-analysis indicated that SGLT2i was associated with a

reduced risk of developing AF (RR: 0.82, 95% CI 0.70–0.96),

however, there was no significant difference in reductions in

the incidence of atrial flutter (RR: 0.83, 95% CI 0.58–1.17), and

the occurrence of cardiac arrest (RR: 0.83, 95% CI 0.61–1.14)

was not significantly different (8). More recently, an analysis

of the large FDA adverse event reporting system reported that

the diabetic patients treated with SGLT2i had a lower incidence

of AF, which was highly indicated by its antiarrhythmic effect

(9). However, although these were real-world data, the selected

study patients were diagnosed with T2DM or cardiovascular

diseases, which would expect a higher prevalence of AF (10),

and it remains poorly understood if a potential beneficial SGLT2i

effect on AF might be due to improving the heart failure, or

whether it was the result from direct effect in the myocardium

(11). Thus, further research on these issues is needed.

SGLT2i and ventricular arrhythmias

The results of the DAPA-HF study indicated that

dapagliflozin reduced the risk of ventricular arrhythmias

(VA), cardiac arrest, or sudden death in patients with reduced

ejection fraction heart failure (HR: 0.79, 95% CI 0.63–0.99, p

= 0.037) (12). A meta-analysis showed that SGLT2i treatment

also significantly reduced the risk of arrhythmias (OR: 0.81,
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95% CI: 0.69–0.95, p = 0.008) and sudden cardiac death (SCD)

outcomes (OR: 0.72, 95% CI: 0.54–0.97, p = 0.03) in patients

with T2DM or heart failure (4). Another trial indicated that

dapagliflozin reduced ventricular ectopic burden, and suggested

it had an antiarrhythmic effect (13), however, there was also

direct evidence decoding the effects of SGLT2i on VA in HF

(14, 15). Meanwhile, there were no larger clinical research study

results that explored the antiarrhythmic properties of SGLT2i

in patients. Expectantly, several prospective studies had been

performed, such as the empagliflozin -ICD trial will investigate

the impact of empagliflozin on the burden of VA in patients with

diabetes and an implanted implantable cardioverter-defibrillator

(ICD) or cardiac resynchronization therapy (CRT) device (16).

Thus, the mechanism of SGLT2i anti- VA is not entirely clear

and needs further study.

Direct mechanisms by which SGLT2i
mediates anti-arrhythmic e�ects

Trigger and re-entrant were the two main and direct

mechanisms of arrhythmogenesis, furthermore, the arrhythmias

are more likely to be triggered when cells, hearts, or the

whole-body system were subjected to pathological conditions,

such as aggravated oxidative stress, activation the inflammation,

acidosis, hypoxia, myocardial energy metabolism disturbance,

microcirculation disorder, heart failure, sympathetic

stimulation, etc. In brief, those were directly related to the

occurrence of arrhythmias and can be considered as a direct

role in the development of arrhythmias. The SGLT2i may act as

an antiarrhythmic effect by inhibiting those conditions.

The e�ect of SGLT2i on the myocardium
oxidative stress and inflammatory
response

Chronic systemic inflammation, oxidative stress, and

fibrosis were closely linked, and those played a key role in the

pathogenesis of arrhythmia occurrence (17). Treatment with

antioxidants was shown to reduce cardiac pro-inflammatory and

fibrotic markers (18, 19). A study reported that empagliflozin

significantly reduced cardiomyocyte hypertrophy, and

interstitial fibrosis, which indicated that empagliflozin reduction

of cardiovascular oxidative stress and inflammation (20). In

addition, it was reported that dapagliflozin administration led

to a significant decrease in reactive oxygen and nitrogen species,

as well as a significantly reduced myofibroblast infiltration and

cardiac fibrosis in the myocardial infarction rat model (21), and

dapagliflozin treatment significantly reduced cardiac NLRP-3

inflammasome activation, as well as inflammatory biomarkers

along with antifibrotic effects in T2DM mice and mice (22–24).

It was also shown that dapagliflozin decreased inflammatory

cytokines in pigs with ejection fraction preserves heart failure,

thereby improving cardiac function (25). It was also believed

that canagliflozin had anti-inflammatory and antifibrotic

properties, resulting in reduced levels of interleukin-6 (IL-6),

tumor necrosis factor receptor-1 (TNF-1) in the serum (26).

Beyond that, the high sensitivity of C-reactive protein was

reported to be reduced by 54% after treated with empagliflozin

in diabetes patients (27). Clinical studies have also shown that

dapagliflozin significantly reduced the inflammatory response

in vivo and decreased the incidence of adverse cardiovascular

outcomes in patients after coronary interventional therapy

(28). Thus, the evidence suggested that SGLT2i may act as

an antiarrhythmic agent through anti-oxidative stress and

anti-inflammatory responses.

The e�ect of SGLT2i on the cardio
fibroblasts and myocardial remodeling

Myocardial fibrosis was an integral part of cardiac

remodeling, which led to a decline in cardiac function, even

heart failure. Myocardium with abnormally activated fibroblasts

secretes extracellular matrix proteins, resulting in impaired

ventricular function and contractile dysfunction, promoting

cardiac fibrosis, and causing arrhythmias eventually (29). Lee

et al. (21) showed that dapagliflozin significantly inhibited

cardiac fibrosis in post-myocardial infarction rat models. In

addition, Kang et al. (30) provided that empagliflozin suppressed

pro-fibrotic markers such as type I collagen, a-smooth

muscle actin, connective tissue growth factor, and matrix

metalloproteinase 2, and reduced TFG-β1 induced fibroblasts

activation. In addition, SGLT2i significantly attenuated TGF-β-

induced fibroblast activation, reduced myocardial fibrosis and

myocardial remodeling, and further improved cardiac function

(31). Therefore, this would be a potential anti-arrhythmic effects

mechanism of SGLT2i.

The e�ect of SGLT2i on the myocardium
endothelial cells and endothelial
dysfunction

A dysfunctional endothelium was defined as an imbalance

between its integrity and function, which associated with

a diminished vasodilatory capacity, inflammation, and

prothrombosis, additionally, SGLT2i had a positive effect on the

suppression of arrhythmia occurrence by improving endothelial

dysfunction. Recently study demonstrated that in both human

arterial coronary endothelial cells and human umbilical vein

endothelial cells, empagliflozin inhibited the activity of the

Na+-H+ exchanger 1 (NHE-1) activity (32), dapagliflozin

decreased the LPS-induced increase in NHE-1 mRNA in cardio
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fibroblasts (33). It also reported that dapagliflozin significantly

ameliorated peripheral microvascular endothelial dysfunction

(34). Furthermore, empagliflozin has also been shown to

reduce carotid radial pulse wave velocity and augment radial,

carotid, and aortic arterial stiffness (35). Another study recently

confirmed the positive effects of empagliflozin on endothelial

function in patients with T2DM (36).Meanwhile, the underlying

causes for endothelial dysfunction were varied, the process may

involve oxidative stress and chronic inflammation (37, 38). This

suggested that SGLT2i may act as an antiarrhythmic agent by

protecting the endothelium’s normal function.

The e�ect of SGLT2i on the myocardium
metabolic alteration

Under physiologic conditions, myocardial energy was

mainly supplied by mitochondrial oxidative metabolism and

glucose metabolism when myocardial energy metabolism

changed and also promoted arrhythmogenesis (39–41). A

study revealed that empagliflozin treatment by reducing

triglyceride accumulation, significantly reduced myocardial and

liver steatosis, it was not clear, however, whether the observed

empagliflozin effect on cardiac triglyceride accumulation

was tissue-specific (42, 43). A possible explanation for

SGLT2i inhibition-mediated cardioprotection was ketone body

formation (44), through stabilization of membrane potential,

ketones increased mitochondrial biogenesis and exerted anti-

arrhythmic effects (45). There was evidence that SGLT2i had

a direct impact on the reduction of plasma glucose levels

and shifting myocardial metabolism to fatty acid (46). In

addition, A study suggested that dapagliflozin reduces hypoxia-

inducible factor-1 (HIF-1) production, enhancing erythropoiesis

by increasing erythropoietin (EPO) secretion and increasing

myocardial oxygen supply and metabolic capacity (47). Based

on the above research, According to current thinking, cardiac

cell metabolism improvements are primarily responsible for

SGLT2i’s ability to inhibit arrhythmias, as well as reduction of

cardiac cell necrosis and cardiac fibrosis (48, 49). Although the

results described above were tempting, Further investigation

is needed to elucidate SGLT2i’s beneficial effects on cardiac

metabolism and bioenergetics, as well as how to further exert the

antiarrhythmic effect.

The e�ect of SGLT2i on ion homeostasis
in cardiomyocytes

Myocardial Ca2+ and Na+ homeostasis were essential

for cardiac signal transduction, heart rhythm regulation, and

cardiac myocyte energy production (50, 51), therefore, it is

critical to study the molecular mechanisms involving Ca2+

and Na+ homeostasis to better understand the Mechanism of

arrhythmia occurrence.

The e�ect of SGLT2i on Ca2+ handling in
cardonmyocytes

Abnormal cardiomyocyte Ca2+([Ca2+]c) was one of the

biological markers for the development of heart failure and

death due to cardiovascular causes and was also responsible

for arrhythmogenesis (52). Mustroph et al. (6) showed that

empagliflozin reduced calcium/calmodulin-dependent protein

kinase II (CaMK II) activity and CaMK II-dependent ryanodine

receptor phosphorylation in the cardiomyocytes of mice

with heart failure model; empagliflozin also reduced the

human cardiomyocyte Ca2+ spark (CaS) frequency but

increased the sarcoplasmic reticulum Ca2+ ([Ca2+]SR) levels

and Ca2+ transient (CaT) amplitude, whereas CaMK II

overexpression and Ca2+-dependent activation were the main

causes of arrhythmogenesis. David et al. (53) showed that

sotagliflozin improved left atrial structural remodeling and

atrial cardiomyopathy-associated arrhythmias in rats with heart

failure and that the main mechanism involved improving

[Ca2+]c handling in atrial cardiomyocytes. Lee et al. (54)

showed that empagliflozin could block S2808 phosphorylation

of ryanodine receptor (RyR) and increase sarco/endoplasmic

reticulum Ca2+-ATPase 2a (SERCA2a) expression, which in

turn improved Ca2+ homeostatic imbalances in ventricular

myocytes, reduced the CaS frequency, increased the CaT

amplitude, and increased [Ca2+]SR. It has been suggested

that CaMK II can also stimulate the activity of NHE-1,

and the downregulation of CaMK II activity after SGLT2i

intervention may also inhibit NHE-1 activity (55). Hamouda

et al. (56) showed that dapagliflozin could reduce the

amplitude of CaT and L-type Ca2+ ([Ca2+]L) currents

in diabetic rat cardiomyocytes, and [Ca2+]L currents were

the main trigger for [Ca2+]SR release (57), Other studies

also suggested that dapagliflozin inhibited arrhythmias by

partially inhibiting [Ca2+]L currents, which in turn inhibits

[Ca2+]SR release (58). In short, it was currently believed that

SGLT2i can reduce myocardial cardiomyocyte Na+([Na+]c)

and [Ca2+]c concentrations, increase mitochondrial Ca2+

([Ca2+]m) concentrations through NHE-1, and improve the

expression of Ca2+ handling-related proteins or regulate

myocardial [Ca2+]c homeostasis to protect cardiac function and

reduce arrhythmia occurrences, but the exact mechanisms need

to be further explored.

The e�ect of SGLT2i on Na± homeostasis in
cardonmyocytes

The CAST study (Cardiac Arrhythmia Suppressing

Trial) showed that common Na+ channel blockers had

arrhythmogenic effects mainly by blocking the fast Na+ current
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(INa) (59); however, inhibiting the endogenous late Na+ current

(INaL) elicited antiarrhythmic effects on hearts (60). SGLT2i

rapidly reduced [Na+]c overload in cardiomyocytes without

blocking INa and thus may have antiarrhythmic effects (61).

Studies had shown that SGLT2i affected myocardial [Na+]c

load by inhibiting the upregulation of NHE-1 during heart

failure, which in turn reduced myocardial [Ca2+]c load and

decreased secondary myocardial membrane and mitochondrial

Na+-Ca2+ exchangers, decreasing [Ca2+]c concentrations

and improving myocardial excitation-contraction coupling,

including inhibiting arrhythmias (62). Uthman et al. (63)

observed that empagliflozin inhibited NHE-1 and rapidly

reduced myocardial [Na+]c concentrations within the

therapeutic range. It was also reported that empagliflozin

had SGLT2i-independent activity and directly inhibited

cardiac NHE-1, reducing myocardial [Na+]c and [Ca2+]c

and increasing cardiomyocyte [Ca2+]m (58). A study in

mice with heart failure demonstrated that empagliflozin

significantly reduced INaL but had no effect on INa, suggesting

that empagliflozin had an antiarrhythmic effect (64). Some

studies have suggested that SGLT2i had off-target effects;

empagliflozin had no inhibition effects on NHX1 but reduced

myocardial [Na+]c and was independent of the range of

intervention concentrations (65). It had been suggested

that sodium-myoinositol cotransporter 1 (SMIT1), an SGLT

isomeric structure expressed in the myocardium, which was

overexpressed will further activate NADPH oxidase 2 (NOX2),

and trigger myocardial [Na+]c overload by increasing glucose

uptake while enhancing the oxidative stress response, suggesting

that SGLT2i may act in the same way to ultimately reduce

[Na+]c overload (66). It has also been suggested that high

[Na+]c in heart failure can interfere with mitochondrial energy

metabolism and decrease mitochondrial Ca2+ ([Ca2+]m)

levels, further affecting the myocardial electrical activity and

mechanical contraction (67). Thus, the effect of SGLT2i on

myocardial [Na+]c and the associated antiarrhythmic effects

were not fully understood, and reports of NHE-1 activity

and Na+ homeostasis were inconsistent and needed to be

further explored.

The e�ect of SGLT2i on related ion channel
proteins/receptors

Research had implied that diminished SERCA2a activity

and leaky RyR increased diastolic [Ca2+]c in the failing heart,

and the aberrant expression of ion channel proteins, which

was the major trigger of the occurrence of arrhythmia. Of

note, SGLT2i may affect Ca2+ handling, Na+ balance and

mitochondrial ROS released through to affect the ion channel

proteins, which may have an antiarrhythmic effect. In a

rodent study, dapagliflozin induced SERCA2a activity increase

(68). Empagliflozin induced an increase in phosphorylated

phospholamban and an improvement in SERCA2a function

in a similar manner (46). Additionally, it was reported that

empagliflozin was responsible for hyperphosphorylated RyR,

which led to a gradual SR leak through the reduction of CaMK II

activity (6, 69). It was notable that CaMK II upregulation plays

a pivotal role in the pathogenesis of cardiovascular diseases (70),

it was observed that long-term administration of canagliflozin

significantly reduced ischemia/reperfusion injury onmyocardial

tissue in diabetic and non-diabetic rats, which was probably

caused by a decline in CaMK II (71). Additionally, in failure

hearts, NHE-1 was overexpressed, causing an accumulation of

[Na+]c and subsequent [Ca2+]c overload, SGLT2i counteract

those pathological processes by inhibition of NHE-1 (72).

The e�ect of SGLT2i on cardiac
electrophysiology

Electrical remodeling of the cardio can cause shortening and

prolongation of the effective refractory period or uncoordinated

conduction, simultaneously, structural remodeling causes

electrical conduction delay or disorder (73). SGLT2i has a

regulating and stabilizing effect on cardiac electrophysiological

changes, which may be a potential mechanism by which

SGLT2i exerts its antiarrhythmic effect. Research has shown

that empagliflozin reduced late sodium channel current

(late-INa) in cardiomyocytes in mice with heart failure or a

sodium channel mutation, but not in healthy murine cardiac

myocytes (74). A reduction in late-INa contributes to less

prolongation of the cardiac action potential duration (APD)

and may protect against arrhythmias associated with prolonged

action potentials (64). Empagliflozin treatment significantly

ameliorates sotalol-induced QTc prolongation in rats (75),

empagliflozin also significantly reduced vulnerability to VA in

rabbit hearts following ischemia-reperfusion (76). Dapagliflozin

also improved mitochondrial function in rats with metabolic

syndrome by enhancing insulin resistance, which inhibited

ventricular repolarization (77). Thus, SGLT2i may inhibit

arrhythmias by directly altering the electrophysiological

characteristics of the diseased heart.

Indirect mechanisms by which
SGLT2i exerts anti-arrhythmic e�ects

To further explore the antiarrhythmic effect of SGLT2i,

it is necessary to study its related indirect mechanisms of it,

which mainly include reductions in cardiac load, improvement

in heart failure, inhibition in sympathetic nerve activity, and

reduction in body weight by SGLT2i, which can be considered

indirect mechanisms.
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SGLT2i reduces the ventricular pressure
load and volume load

Increasing blood pressure or myocardial oxygen

consumption by any means may induce atrial or ventricular

arrhythmias both experimentally and in patients, conversely,

a decreasing in blood pressure or cardiac load (i.e., preload,

afterload) may eliminate arrhythmias due to its causes. SGLT2i

mainly acted on SGLT2 receptors in renal proximal tubular

epithelial cells, inhibiting Na+ and glucose reabsorption,

significantly increasing urine output, reducing cardiac preload

and myocardial oxygen consumption, and lowering blood

pressure (78). It had also been reported that SGLT2i improved

the function of vascular endothelial cells and smooth muscle

cells, and reduced vascular stiffness and vascular resistance (79).

In addition, a reduction in total body Na+ had been reported

to alleviate arterial stiffness, activating voltage-gated potassium

channels and protein kinase G, causing vasodilation and further

reducing the cardiac load (80). Reduced sympathetic activity

and body weight loss were linked to reduced blood pressure

(81). Even though all SGLT2i reduced blood pressure, based on

an indirect meta-analysis, canagliflozin was found to cause a

greater reduction of systolic blood pressure compared to other

SGLT2i (82). Thus, SGLT2i may act as an antiarrhythmic effect

through this indirect mechanism of lowering blood pressure or

cardiac oxygen consumption.

SGLT2i improve heart failure

Multiple trials had demonstrated the effect of SGLT2i to

reduce overall mortality, particularly, patients with heart failure

(2, 83, 84). As mentioned above, SGLT2i might reduce volume

overload and improve cardiac function in heart failure patients

(85). Researchers have reported that empagliflozin reduces blood

pressure, arterial stiffness, and vascular resistance, improve the

cardiac output of heart failure patients (86). Thus, the initial

finding and the largest mechanism for the cardiac benefit of

SGLT2i was its ameliorative effect on heart failure, which may

also be its indirect anti-arrhythmic mechanism.

SGLT2i inhibits sympathetic nerve activity

Cardiac sympathetic hyperinnervation and autonomic

imbalance promote cardiac arrhythmias. Studies have shown

that SGLT2i can inhibit sympathetic tone, reduce the secretion

of sympathetically active substances in plasma and direct

toxic effects on cardiomyocytes, and reduce myocardial oxygen

consumption to protect and maintain normal cardiac function

(87). SGLT2i can also reduce the expression of tyrosine

hydroxylase in sympathetic nerves and decrease the secretion

of norepinephrine, reducing the effect of sympathetic nerves

on effector organs (25). In addition, SGLT2i can also regulate

sympathetic activity through certain indirect mechanisms; for

example, SGLT2i can inhibit sympathetic activity by reducing

plasma leptin levels (88). In addition, SGLT2i can reduce

sympathetic tension by decreasing neural activity in the vascular

zone of the hypothalamic endplate through a natriuretic effect,

which reduces the concentration of Na+ in the blood (89). Thus,

this may also be another indirect mechanism by which SGLT2i

exerts an antiarrhythmic effect.

SGLT2i reduces body weight

Weight gain and obesity are closely related to

arrhythmogenesis, and weight reduction is an essential

component of arrhythmia intervention. SGLT2i achieve

negative energy balance through diuresis, Na+ excretion,

and glucose excretion, leading to weight loss. In obese rats,

empagliflozin not only reduces body weight but also improves

endothelial function and cardiac remodeling (90). Clinical

studies had shown that SGLT2i significantly reduced body

weight and suppressed obesity compared to placebo, which can

result in a 2–3 kg weight loss, mainly by promoting osmotic

diuresis leading to volume loss (91). Although SGLT2i-mediated

weight loss was modest, its combination with a modest drop

in preload and afterload could synergistically improve cardiac

workload and contractility (92). Thus, this may also be a possible

mechanism by which SGLT2i exerts an antiarrhythmic effect.

Possible risks associated with the
use of SGLT2i

Although SGLT2i reduced hospitalizations and adverse

cardiovascular events among patients with heart failure, and

were widely used clinically, possible complications associated

with urinary excretion and hypoglycemia, such as urinary tract

infections or ketoacidosis, and the associated off-target effects

(drug side effects due to the action of the drug on additional

targets) should not be overlooked. One study noted that some

patients discontinued SGLT2i use after developing chronic

or recurrent genital infections, and the remaining adverse

events included polyuria, nausea, hypotension, dizziness, acute

coronary events, deteriorations in glycaemic control status,

and rapid deteriorations in renal function (93). It was also

reported that the incidence of genital tract infections following

SGLT2i treatment was 4.8%, however, women’s rates were higher

than men’s; these were generally mild-to-moderate infections,

and some patients were at risk of coinfection with fungal

infections, but the benefits of SGLT2i application outweigh

the disadvantages (94). In addition, there have been reports of

increased risks of fracture and amputation with canagliflozin,

the cause of which is thought to be related to reduced blood
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circulation (95), increased serum phosphate levels, and reduced

vitamin D levels, and weight loss (96). It had also been

reported that SGLT2i application increases the risk of diabetic

ketoacidosis and ketonemia (97). This finding suggested that

patients who were administered SGLT2i should be closely

monitored for side effects. It is important, however, to consider

the risks and benefits of SGLT2i before prescribing it. An in-

depth study of the mechanisms of SGLT2i’s beneficial effects as

well as side effects or adverse effects was necessary.

Conclusion and prospects

This review focuse on the antiarrhythmic effects of SGLT2i

and the potential mechanisms. Due to the diversity of targets

of SGLT2i-mediated cardioprotective effects, these agents can

act directly or indirectly through cellular molecular mechanisms

such as the downregulation of CaMK II activity, inhibition

of NHE-1, repair of Ca2+ handling, stabilization of Na+

imbalances, and reduction in oxidative stress and indirectly

by reducing cardiac load, improving myocardial energy

metabolism, inhibiting inflammation, improving myocardial

remodeling, inhibiting sympathetic nerve activity, reducing

body weight and other organ function modifications to exert

antiarrhythmic effects; however, the exact mechanism remains

unclear, and there is no direct evidence of the antiarrhythmic

effects of SGLT2i. Nevertheless, it is universally acknowledged

that SGLT2i direct effects on the myocardium and systemic

effects contribute to the cardioprotective effects of SGLT2i.

Under the concept of “CARE ME” (cardio+renal+metabolic)

comorbidity management for T2DM (98), SGLT2i are well-

established in clinical practice, and relevant clinical studies

and basic experiments have reported that SGLT2i have good

antiarrhythmic effects, however, the exact mechanisms of still

need to be further investigated.
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