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Background: The presence of left ventricular (LV) wall motion abnormalities

(WMA) is an independent indicator of adverse cardiovascular events in patients

with cardiovascular diseases. We develop and evaluate the ability to detect

cardiac wall motion abnormalities (WMA) from dynamic volume renderings

(VR) of clinical 4D computed tomography (CT) angiograms using a deep

learning (DL) framework.

Methods: Three hundred forty-three ECG-gated cardiac 4DCT studies (age:

61± 15, 60.1%male) were retrospectively evaluated. Volume-rendering videos

of the LV blood pool were generated from 6 di�erent perspectives (i.e., six

views corresponding to every 60-degree rotation around the LV long axis);

resulting in 2058 unique videos. Ground-truth WMA classification for each

video was performed by evaluating the extent of impaired regional shortening

visible (measured in the original 4DCT data). DL classification of each video

for the presence of WMA was performed by first extracting image features

frame-by-frame using a pre-trained Inception network and then evaluating

the set of features using a long short-term memory network. Data were split

into 60% for 5-fold cross-validation and 40% for testing.

Results: Volume rendering videos represent ∼800-fold data compression

of the 4DCT volumes. Per-video DL classification performance was high

for both cross-validation (accuracy = 93.1%, sensitivity = 90.0% and

specificity = 95.1%, κ: 0.86) and testing (90.9, 90.2, and 91.4% respectively,

κ: 0.81). Per-study performance was also high (cross-validation: 93.7,

93.5, 93.8%, κ: 0.87; testing: 93.5, 91.9, 94.7%, κ: 0.87). By re-binning

per-video results into the 6 regional views of the LV we showed DL

was accurate (mean accuracy = 93.1 and 90.9% for cross-validation and

testing cohort, respectively) for every region. DL classification strongly

agreed (accuracy = 91.0%, κ: 0.81) with expert visual assessment.
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Conclusions: Dynamic volume rendering of the LV blood pool combined with

DL classification can accurately detect regional WMA from cardiac CT.

KEYWORDS

computed tomography, left ventricle (LV), wall motion abnormality detection, volume

rendering (VR), deep learning

Introduction

Left Ventricular (LV) wall motion abnormalities (WMA) are

an independent indicator of adverse cardiovascular events and

death in patients with cardiovascular diseases such asmyocardial

infarction (MI), dyssynchrony and congenital heart disease (1,

2). Further, regional WMA have greater prognostic values after

acute MI than LV ejection fraction (EF) (3, 4). Multidetector

computed tomography (CT) is routinely used to evaluate

coronary arteries (5, 6). Recently, ECG-gated acquisition of

cardiac 4DCT enables the combined assessment of coronary

anatomy and LV function (7, 8). Recent publications show that

regional WMA detection with CT agrees with echocardiography

(9, 10) as well as with cardiac magnetic resonance (11, 12).

Dynamic information of the 3D cardiac motion and regional

WMA is encoded in 4DCT data. Visualization of regional

WMA with CT usually requires reformatting the acquired 3D

data along standard 2D short- and long-axis imaging planes.

However, it requires experience in practice to resolve the

precise region of 3D wall motion abnormalities from these 2D

planes. Further, these 2D plane views may be confounded by

through-plane motion and foreshortening artifacts (13). We

propose to directly view 3D regions of wall motion abnormalities

through the use of volumetric visualization techniques such

as volume rendering (VR) (14), which can preserve high

resolution anatomical information and visualize 3D (15, 16) and

4D (17) data simultaneously over large regions of the LV in

cardiovascular CT. In VR, the 3D CT volume is projected onto a

2D viewing plane and different colors and opacities are assigned

to each voxel based on intensity. It has been shown that VR

provides a highly representative and memory efficient way to

depict 3D tissue structures and anatomic abnormalities (18, 19).

In this paper, we perform dynamic 4D volume rendering by

sequentially combining the VR of each CT time frame into a

video of LV function (we call this video a “Volume Rendering

video”). We propose to use volume rendering videos of 4DCT

data to depict 3D motion dynamics and visualize highly local

wall motion dynamics to detect regional WMA.

Analytical approaches to quantify 3D motion from 4DCT

using image registration and deformable LV models have

been developed (9, 20, 21). However, these approaches usually

require complex and time-consuming steps such as user-

guided image segmentation and point-to-point registration or

feature tracking. Further, analysis of multiple frames at the

native image resolution/size of 4DCT can lead to significant

memory limitations (22), especially when running deep learning

experiments using current graphical processing units (GPU).

Volume rendering (VR) videos provide a high-resolution

representation of 4DCT data which clearly depicts cardiac

motion at a significantly reduced memory footprint (∼1

Gigabyte when using original 4DCT for motion analysis and

only 100 kilobytes when using volume rendering video). Given

the lack of methods currently available to analyze motion

observed in VR videos, we sought to create an objective

observer that could automate VR video interpretation. Doing

so would facilitate clinical adoption as it would avoid the need

for training individuals on VR video interpretation and the

approach could be readily shared. Deep learning approaches

have been successfully used to perform classification of patients

using medical images (23, 24). Further, DL methods, once

trained, are very inexpensive and can be easily deployed.

Therefore, in this paper, we propose a novel framework

which combines volume rendering videos of clinical cardiac

CT cases with a DL classification to detect WMA. We outline

a straightforward process to generate VR videos from 4DCT

data and then utilize a combination of a convolutional neural

network (CNN) and recurrent neural network (RNN) to assess

regional WMA observable in the videos.

Methods and materials

CT data collection

Under institutional review board approval, 343 ECG-gated

contrast enhanced cardiac CT patient studies between Jan 2018

and Dec 2020 were retrospectively collected with waiver of

informed consent. Inclusion criteria were: each study (a) had

images reconstructed across the entire cardiac cycle, (b) had

a field-of-view which captured the entire LV, (c) was free

from significant pacing lead artifact in the LV and (d) had

a radiology report including assessment of cardiac function.

Images were collected by a single, wide detector CT scanner with

256 detector rows (Revolution scanner, GE Healthcare, Chicago

IL) allowing for a single heartbeat axial 16cm acquisition across

the cardiac cycle. The CT studies were performed for range

of clinical cardiac indications including suspected coronary
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artery disease (CAD, n = 153), pre-procedure assessment

of pulmonary vein isolation (PVI, n = 126), preoperative

assessment of transcatheter aortic valve replacement (TAVR,

n = 42), preoperative assessment of left ventricular assist device

placement (LVAD, n= 22).

Production of volume rendering video of
LV blood-pool

Figure 1 step 1-4 shows the pipeline of VR video production.

The CT images were first rotated using visual landmarks such

as the RV insertion and LV apex, so that every study had the

same orientation (with the LV long axis along the z-axis of

the images and the LV anterior wall at 12 o’clock in cross-

sectional planes). Structures other than LV blood-pool (such as

LV myocardium, ribs, the right ventricle, and great vessels) were

automatically removed by a pre-trained DL segmentation U-

Net (25) which has previously shown high accuracy in localizing

the LV in CT images (25, 26). If present, pacing leads were

removed manually.

The resultant grayscale images of the LV blood-pool (as

shown in Fig. 1 step 2) were then used to produce Volume

renderings (VR) via MATLAB (version: 2019b, MathWorks,

Natick MA). Note the rendering was performed using the native

CT scan resolution. The LV endocardial surface shown in VR

was defined by automatically setting the intensity window level

(WL) equal to the mean voxel intensity in a small ROI placed

at the centroid of the LV blood pool and setting the window

width (WW) equal to 150 HU (thus WL is study-specific,

and WW is uniform for every study). Additional rendering

parameters are listed in Supplementary Materials 1A. VR of all

frames spanning one cardiac cycle was then saved as a video

(“VR video,” Figure 1).

Each VR video projects the 3D LV volume from one specific

projection view angle θ , thus it shows only part of the LV blood-

pool and misses parts that are on the backside. Therefore, to see

and evaluate all AHA segments, 6 VR videos were generated per

study, with six different projection views θ60×n, n∈[0,1,2,3,4,5]

corresponding to 60-degree rotations around the LV long axis

(Supplementary Materials 1B for details). With our design, each

projection view had a particular mid-cavity AHA segment

shown on the foreground (meaning this segment was the nearest

to and in front of the ray source-point of rendering) as well

as its corresponding basal and apical segments. Two adjacent

mid-cavity AHA segments and their corresponding basal and

apical segments were shown on the left and right boundary of

the rendering in that view. In standard regional terminology, the

six projection views (n = 0, 1, 2, 3, 4, 5 in θ60×n) looked at the

LV from the view with mid-cavity Anterolateral, Inferolateral,

Inferior, Inferoseptal, Anteroseptal and Anterior segments on

the foreground, respectively. In this paper, to simplify the text we

call them six “regional LV views” from anterolateral to anterior.

In total, a large dataset of 2058 VR videos (343 patients × 6

views) with unique projections were generated.

Classification of wall motion

Figure 1 steps a-d shows how the ground truth presence

or absence of WMA at each location on the endocardium was

determined. It is worth clarifying first that the ground truth

is made on the original CT data not the volume rendered

data. First, voxel-wise LV segmentations obtained using the

U-Net were manually refined in ITK-SNAP (Philadelphia,

PA, USA) (27). Then, regional shortening (RSCT) (8, 28,

29) of the endocardium was measured using a previously-

validated surface feature tracking (21) technique. The accuracy

of RSCT in detecting WMA has been validated previously with

strain measured by tagged MRI (12) [a validated non-invasive

approach for detecting wall motion abnormalities in myocardial

ischemia (30, 31)]. Regional shortening was calculated at each

face on the endocardial mesh as:

RSCT =

√

AreaES

AreaED
− 1

where AreaES is the area of a local surface mesh at end-

systole (ES) and AreaED is the area of the same mesh at end-

diastole (ED). ED and ES were determined based on the largest

and smallest segmented LV blood-pool volumes, respectively.

RSCT for an endocardial surface voxel was calculated as the

average RSCT value of a patch of mesh faces directly connected

with this voxel. RSCT values were projected onto pixels in

each VR video view (see Supplementary Material 2 for details

about projection) to generate a ground truth map of endocardial

function for each region from the perspective of each VR

video. Then, each angular position was classified as abnormal

(WMA present) if >35% of the endocardial surface in that view

had impaired RSCT (RSCT ≥-0.20). Supplementary Material 2A

explains how these thresholds were selected.

To do per-study classification in this project, we defined that

a CT study is abnormal if it has more than one VR videos labeled

as abnormal (Nab_videos ≥ 2). Other thresholds (e.g., Nab_videos

≥ 1 or 3) were also chosen and the corresponding results were

shown in the Supplementary Material 3.

DL framework design

The DL framework (see Figure 2) consists of three

components, (a) a pre-trained 2D convolutional neural network

(CNN) used to extract spatial features from each input frame

of a VR video, (b) a recurrent neural network (RNN) designed
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FIGURE 1

Automatic generation and quantitative labeling of volume rendering video. This figure contains two parts: Rendering Generation: automatic

generation of VR video (left column, white background, step 1-4 in red) and Data Labeling: quantitative labeling of the video (right column,

light gray background, step a-d in blue). RenderingGeneration: Step 1 and 2: Prepare the greyscale image of LV blood-pool with all other structures

(Continued)
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FIGURE 1

removed. Step 3: For each study, 6 volume renderings with 6 view angles rotated every 60 degrees around the long axis were generated. The

mid-cavity AHA segment in the foreground was noted under each view. Step 4: For each view angle, a volume rendering video was created to

show the wall motion across one heartbeat. Five systolic frames in VR video were presented. ED, end-diastole; ES, end-systole. Data Labeling:

Step a: LV segmentation. LV, green. Step b: Quantitative RSCT was calculated for each voxel. Step c: The voxel-wise RSCT map was binarized and

projected onto the pixels in the VR video. See Supplementary Material 2 for more details. In rendered RSCT map, the pixels with RSCT ≥ −0.20

(abnormal wall motion) were labeled as red and those with RSCT < −0.20 (normal) were labeled as black. Step d: a video was labeled as

abnormal if >35% endocardial surface has RSCT ≥ −0.20 (red pixels).

FIGURE 2

Deep learning framework. Four frames were input into a pre-trained inception-v3 individually to obtain a 2048-length feature vector for each

frame. Four vectors were concatenated into a feature matrix which was then input to the next components in the framework. A Long

Short-term Memory followed by fully connected layers was trained to predict a binary classification of the presence of WMA in the video. CNN,

convolutional neural network; RNN, recurrent neural network.

to incorporate the temporal relationship between frames, and

(c) a fully connected neural network designed to output

the classification.

Given our focus on systolic function, four frames (ED, two

systolic frames, and ES) were input to the DL architecture. This

sampling was empirically found to maximize DL performance

(32). Given the CT gantry rotation time, this also minimizes

view sharing present in each image framewhile providing a fuller

picture of endocardial deformation. Each frame was resampled

to 299×299 pixels to accommodate the input size of the pre-

trained CNN.

Component (a) is a pre-trained CNN with the Inception

architecture (Inception-v3) (33) and the weights obtained after

training on the ImageNet (34) database. The reason to pick

Inception-v3 architecture can be found in this reference (32).

This component was used to extract features and create a 2048-

length feature vector for each input image. Feature vectors from

the four frames were then concatenated into a 2D feature matrix

with size= (4, 2048).

Component (b) is a long short-term memory (35) RNN

with 2048 nodes, tanh activation and sigmoid recurrent

activation. This RNN analyzed the (4, 2048) feature matrix

from component (a) to synthesize temporal information (RNN

does this by passing the knowledge learned from the previous

instance in a sequence to the learning process of the current

instance in that sequence then to the next instance). The final

component (c), the fully connected layer, logistically regressed

the binary prediction of the presence of WMA in the video.

Cross-validation and testing

In our DL framework, component (a) was pre-trained and

directly used for feature extraction whereas components (b)

and (c) were trained end-to-end as one network for WMA

classification. Parameters were initialized randomly. The loss

function was categorical cross-entropy.
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The dataset was split randomly into 60% and 40% subsets.

60% (205 studies, 1230 videos) were used for 5-fold cross-

validation, meaning in each fold of validation we had 164 studies

(984 videos) to train the model and the rest 41 studies (246

videos) to validate the model. We report model performance

across all folds. 40% (138 studies, 828 videos) were used only

for testing.

Experiment settings

We performed all DL experiments using TensorFlow on

an 8-core Ubuntu workstation with 32 GB RAM and with a

GeForce GTX 1080 Ti (NVIDIA Corporation, Santa Clara, CA,

USA). The file size of each 4DCT study and VR video were

recorded. Further, the time needed to run each step in the

entire framework (including the image processing, VR video

generation and DL prediction) on the new cases was recorded.

Model performance and LVEF

The impact of systolic function, measured via LVEF on

DL classification accuracy was evaluated in studies with LVEF

<40%, LVEF between 40-60%, LVEF >60%. We hypothesized

that the accuracy of the model would be different for different

LVEF intervals since because the “obviously abnormal” LV with

low EF, and the “obviously normal” LV with high EF would be

easier to classify. The consequence of a local WMA in hearts

with LVEF between 40-60% might be a more subtle pattern

and harder to detect. These subtle cases are also difficult for

human observers.

Comparison with expert visual
assessment

While not the primary goal of the study we investigated

the consistency of the DL classifications with the results

from two human observers using traditional views. 100 CT

studies were randomly selected from the testing cohort for

independent analysis of WMA by two cardiovascular imaging

experts with different levels of experiences: expert 1 with

>20 years of experience (author A.K.) and expert 2 with >5

years of experience (author H.K.N.) The experts classified the

wall motion in each AHA segment into 4 classes (normal,

hypokinetic, akinetic and dyskinetic) by visualizing wall motion

from standard 2D short- and long-axis imaging planes, in

a blinded fashion. Because of the high variability in the

inter-observer classifications of abnormal categories we: (1)

combined the last three classes into a single “abnormal”

class indicating WMA detection, and (2) we performed the

comparison on a per-study basis. A CT study was classified

as abnormal by the experts if it had more than one abnormal

segment. The interobserver variability is reported in the

result Section Model performance-comparison with expert

assessment. It should be noted that our model was only trained

on ground truth based on quantitative RSCT values; the expert

readings were performed as a measure of consistency with

clinical performance.

Statistical evaluation

Two-tailed categorical z-test was used to compare

data proportions (e.g., proportions of abnormal videos)

in two independent cohorts: a cross-validation cohort

and a testing cohort. Statistical significance was set

at P ≤ 0.05.

DL Model performance against the ground truth label

was reported via confusion matrix and Cohen’s kappa value.

Both regional (per-video) and per-study comparison were

performed. A CT study is defined as abnormal if it has more

than one VR videos labeled as abnormal (Nab_videos ≥ 2).

As stated in Section Production of volume rendering video

of LV blood-pool, every projection view of the VR video

corresponded to a specific regional LV view. Therefore, we

re-binned the per-video results into 6 LV views to test the

accuracy of the DL model when looking at each region of the

LV. We also calculated the DL per-study accuracy for patients

with each clinical cardiac indication in the testing cohort

and use pair-wise Chi-squared test to compare the accuracies

between indications.

Results

Of the 1230 views (from 205 CT studies) used for 5-fold

cross-validation, 732 (from 122 studies, 59.5%) were male (age:

63 ± 15) and 498 (from 83 studies, 40.5%) were female (age:

62 ± 15). The LV blood pool had a median intensity of 516

HU (IQR: 433 to 604). 40.0% (492/1230) of the videos were

labeled as abnormal based on RSCT analysis, and 45.4% (93/205)

of studies had WMA in ≥2 videos. 104 studies had LVEF >

60%, 54 studies had LVEF < 40% and the rest 47 (47/205 =

22.9%) studies had LVEF between 40-60%. For clinical cardiac

indications, 85 studies have suspect CAD, 77 studies have the

pre-PVI assessment, 31 studies have the pre-TAVR assessment,

and 12 studies have the pre-VAD assessment.

Of the 828 views (from 138 CT studies) used for testing, 504

(from 84 studies, 60.9%) were male (age: 57± 16) and 324 (from

54 studies, 39.1%) were female (age: 63 ± 13). The LV blood

pool had a median intensity of 520 HU (IQR: 442 to 629). 37.0%

(306/828) of the videos were labeled as abnormal, and 45.0%

(62/138) of studies hadWMA in≥2 videos. 72 studies had LVEF

> 60%, 25 studies had LVEF < 40% and the rest 41 (41/138 =
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TABLE 1 DL classification performance in cross-validation and testing.

Cross-validation Testing

Per-video Per-study (Nab_videos ≥ 2) Per-video Per-study (Nab_videos ≥ 2)

Ground truth Ground truth Ground truth Ground truth

Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal

DL Abnormal 443 36 87 7 276 45 57 4

Normal 49 702 6 105 30 477 5 72

Sens 0.900 Sens 0.935 Sens 0.902 Sens 0.919

Spec 0.951 Spec 0.938 Spec 0.914 Spec 0.947

Acc 0.931 Acc 0.937 Acc 0.909 Acc 0.935

κ 0.855 κ 0.872 κ 0.808 κ 0.868

Two hundred five CT studies and 1230 Volume Rendered (VR) videos were used for 5-fold cross-validation. One hundred thirty-eight CT studies and 828 VR videos were in the testing.

The four confusion matrices correspond to per-video classification (light gray) and per-study classification (dark gray) for cross-validation (left) and testing (right). Nab_videos ≥2 (number

of views classified as abnormal) was used to classify a study as abnormal. Sens, sensitivity; Spec, specificity; Acc, accuracy. Cohen’s kappa κ is also reported.

28.7%) studies had LVEF between 40-60%. For clinical cardiac

indications, 68 studies have suspect CAD, 49 studies have the

pre-PVI assessment, 11 studies have the pre-TAVR assessment,

and 10 studies have the pre-VAD assessment.

There were no significant differences (all P-values > 0.05)

in data proportions between the cross-validation and testing

cohorts in terms of the percentages of sex, abnormal videos,

abnormal CT studies.

Model performance—per-video and
per-study classification

Per-video and per-study DL classification performance for

WMA were excellent in both cross-fold validation and testing.

Table 1 shows that the per-video classification for the cross-

validation had high accuracy = 93.1%, sensitivity = 90.0%

and specificity = 95.1%, Cohen’s kappa κ = 0.86 with 95%

CI as [0.83, 0.89]. Per-study classification also had excellent

performance with accuracy = 93.7%, sensitivity = 93.5% and

specificity = 93.8%, κ = 0.87[0.81, 0.94]. Table 1 also shows

that the per-video classification for the testing cohort had high

accuracy= 90.9%, sensitivity= 90.2% and specificity= 91.4%, κ

= 0.81[0.77, 0.85].We obtained per-study classification accuracy

= 93.5%, sensitivity = 91.9% and specificity = 94.7%, κ =

0.87[0.78, 0.95] in the testing cohort.

Figure 3 shows the relationship between DL classification

accuracy and LVEF in the cross-validation. Table 2 shows that

CT studies with LVEF between 40 and 60% in the cross-

validation cohort were classified with per-video accuracy =

78.7%, sensitivity= 78.0% and specificity= 79.8%. In the testing

cohort, per-video classification accuracy = 80.1%, sensitivity =

82.9% and specificity = 75.5% accuracy for this LVEF group

remained relatively high but was lower (P < 0.05) than the

accuracy for patients with LVEF < 40% and LVEF > 60% due to

FIGURE 3

DL classification accuracy vs. LVEF. The per-video (black) and

per-study (gray) accuracy are shown in studies with (LVEF <

40%), (40 < LVEF < 60%) and (LVEF > 60%). *Indicates the
significant di�erence.

the more difficult nature of the classification task in this group

with more “subtle” wall motion abnormalities.

Model performance—regional LV views

Table 3 shows that our DL model was accurate for detection

of WMA in all 6 regional LV views both in cross-validation

cohort (mean accuracy = 93.1% ± 0.03) and testing cohort

(mean accuracy= 90.9%± 0.06).
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TABLE 2 DL classification performance in CT studies with 40 < LVEF < 60%.

Cross-validation Testing

Per-video Per-study (Nab_videos ≥ 2) Per-video Per-study (Nab_videos ≥ 2)

Ground truth Ground truth Ground truth Ground truth

Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal

DL Abnormal 131 23 33 5 126 23 32 3

Normal 37 91 4 5 26 71 1 5

Sens 0.780 Sens 0.892 Sens 0.829 Sens 0.970

Spec 0.798 Spec 0.500 Spec 0.755 Spec 0.625

Acc 0.787 Acc 0.809 Acc 0.801 Acc 0.902

κ 0.567 κ 0.407 κ 0.581 κ 0.657

Forty-seven CT studies with 40% < LVEF < 60% were in the cross-validation and 41 CT studies were in the testing. The light gray indicates per-video evaluation, dark gray indicates

per-study evaluation.

TABLE 3 Results re-binned into six regional LV views.

Per-video classification

Cross-validation Testing

Projection view LV wall on the foreground Sens Spec Acc κ Sens Spec Acc κ

0 Anterolateral 0.845 0.964 0.922 0.824 0.886 0.936 0.920 0.818

60 Inferolateral 0.938 0.952 0.946 0.888 0.909 0.915 0.913 0.805

120 Inferior 0.879 0.974 0.932 0.860 0.917 0.910 0.913 0.824

180 Inferoseptal 0.882 0.946 0.917 0.832 0.847 0.861 0.855 0.705

240 Anteroseptal 0.963 0.944 0.951 0.899 0.927 0.952 0.942 0.879

300 Anterior 0.893 0.931 0.917 0.822 0.932 0.904 0.913 0.807

This table shows the per-video classification of our DL model when detectingWMA from each regional view of LV. See the definition of regional LV views in Section Production of volume

rendering video of LV blood-pool. Sens, sensitivity; Spec, specificity; Acc, accuracy.

Model performance—di�erent clinical
cardiac indications

We calculated the DL per-study classification accuracy

equal to 91.2% for CT studies with suspect CAD (n = 68 in

the testing cohort), 93.9% for studies with pre-PVI assessment

(n = 49), 100% for patients with pre-TAVR assessment (n =

11), 100% for studies with pre-LVAD assessment (n = 10).

Using Chi-squared test pairwise, there was no significant

difference of DL performance between indications (all

P-values > 0.5).

Model performance—comparison with
expert assessment

First, we report the interobserver variability of two

experts. The Cohen’s kappa for the agreement between

observers on per-AHA-segment basis was 0.81[0.79, 0.83]

and on the per-CT-study basis was 0.88[0.83, 0.93]. For

TABLE 4 Comparison between DL and expert visual assessment.

Expert visual assessment

Expert 1 Expert 2

Abnormal Normal Abnormal Normal

DL Abnormal 37 5 33 9

Normal 4 54 4 54

κ 0.815 κ 0.729

Per-study comparison were run on 100 CT studies randomly selected from the

testing cohort. The light gray indicates per-video evaluation, dark gray indicates per-study

evaluation.

those segments labeled as abnormal by both experts, the

Kappa for the two experts to further classify an abnormal

segment into hypokinetic, akinetic and dyskinetic dramatically

dropped to 0.34.

Second, we show in the Table 4 that per-study comparison

between DL prediction and expert visual assessment on 100

CT studies in the testing cohort led to Cohen’s Kappa κ =

0.81[0.70,0.93] for expert 1 and κ = 0.73[0.59,0.87] for expert 2.

Frontiers inCardiovascularMedicine 08 frontiersin.org

https://doi.org/10.3389/fcvm.2022.919751
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Chen et al. 10.3389/fcvm.2022.919751

Data-size reduction

The average size of the CT study across one cardiac cycle was

1.52 ± 0.67 Gigabytes. One VR video was 341 ± 70 Kilobytes,

resulting in 2.00 ± 0.40 Megabytes for 6 videos per study. VR

videos led to a data size that is ∼800 times smaller than the

conventional 4DCT study.

Run time

Regarding image processing, the image rotation took 14.1

± 1.2 seconds to manually identify the landmarks and then

took 38.0 ± 16.2 seconds to automatically rotate the image

using the direction vectors derived from landmarks. The DL

automatic removal of unnecessary structures took 141.0 ± 20.3

seconds per 4DCT study. If needed, manual pacing lead artifacts

removal took around 5–10 mins per 4DCT study depending

on the severity of artifacts. Regarding automatic VR video

generation, it took 32.1 ± 7.0 seconds (to create 6 VR videos

from the processed CT images). Regarding DL prediction of

WMA presence in one CT study, it took 0.7 ± 0.1 seconds

to extract image features from frames of the video and took

∼0.1 seconds to predict binary classification for all 6 VR videos

in the study. To summarize, the entire framework requires

approximately 4 minutes to evaluate a new study if no manual

artifacts removal is needed.

Discussions

In this study, we developed and evaluated a DL framework

that detects the presence of WMA in dynamic 4D volume

rendering (VR videos) depicting the motion of the LV

endocardial boundary. VR videos enabled a highly compressed

(in terms of memory usage) representation of large regional

fields of view with preserved high spatial-resolution features

in clinical 4DCT data. Our framework analyzed four frames

spanning systole extracted from the VR video and achieved high

per-video (regional LV view) and per-study accuracy, sensitivity

and specificity (≥0.90) and concordance (κ ≥ 0.8) both in

cross-validation and testing.

Benefits of the volume visualization
approach

Assessment of regional WMA with CT is usually performed

on 2D imaging planes reformatted from the 3D volume.

However, 2D approaches often confuse the longitudinal bulk

displacement of tissue into and out of the short-axis plane with

true myocardial contraction. Various 3D analytical approaches

(9, 20, 28) to quantify 3D motion using image registration

and deformable LV models have been developed; our novel

use of regional VR videos as input to DL networks has several

benefits when compared to these traditional methods. First, VR

videos contain 3D endocardial surface motion features which

are visually apparent. This enables simultaneous observation

of the complex 3D motion of a large region of the LV in a

single VR video instead of requiring synthesis of multiple 2D

slices. Second, our framework is extremely memory efficient

with reduced data size while preserving key anatomical and

motion information; a set of 6 VR videos is ∼800 times smaller

in data size than the original 4DCT data. The use of VR

videos also allows our DL experiments to run on the current

graphic processing unit (GPU), whereas the original 4DCT

data is too large to be imported into the GPU. Third, our

framework is simple as it does not require complex and time-

consuming computations such as point registration or motion

field estimation included in analytical approaches. The efficiency

of our technique will enable retrospective analysis of large

numbers of functional cardiac CT studies; this cannot be said

for traditional 3D tracking methods which require significant

resources and time for segmentation and analysis.

Model performance for each LV view

We re-binned the per-video results into 6 projection views

corresponding to 6 regional LV views and showed that our

DL model is accurate to detect WMA from specific regions of

the LV. The results shown in Table 3 indicate that all results

for classification can be labeled with a particular LV region.

For example, to evaluate the wall motion on the inferior wall

of a CT study, the classification from the VR video with the

corresponding projection view θ (=120) would be used.

Comparison with experts and its
limitations

To evaluate the consistency of our model with standard

clinical evaluation, we compared DL results with two

cardiovascular imaging experts and showed high per-study

classification correspondence. This comparison study has its

limitations. First, we did not perform a per-AHA-segment

comparison. Expert visual assessment was subjective (by

definition) and had greater inter-observer variability on per-

AHA-segment basis than the per-study basis the variability

(Kappa increased from 0.81 for per-segment to 0.88 for per-

study). Second, the interobserver agreement for experts to

further classify an abnormal motion as hypokinetic, akinetic

or dyskinetic was also too poor (Kappa = 0.34) to use expert

visual labels for three severities as the ground truth; therefore,

we used one “abnormal” class instead of three levels of severity

of WMA. Third, experts could only visualize the wall motion
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from 2D imaging planes while our DL model evaluated the

3D wall motion from VR videos. A future study using a larger

number of observers, and a larger number of cases could be

performed in which trends could be observed; however, it is

clear that variability in subjective calls for degree of WMA will

likely persist in the expert readers.

Using RSCT for ground truth labeling

Direct visualization of wall motion abnormalities in volume

rendered movies from 4DCT is a truly original application;

hence, as can be expected there are no current clinical

standards/guidelines for visual detection of WMA from

volume rendered movies. In fact, we believe our paper is

the first to introduce this method of evaluating myocardial

function in a formal pipeline. In our recent experience, visual

detection of patches of endocardial “stasis” in these 3D movies

highly correlates with traditional markers of WMA such as

wall thickening, circumferential shortening and longitudinal

shortening. However, specific guidance on how to clinically

interpret VR movies is not yet available. We expect human

interpretation to depend on both experience and training.

Thus, we used quantitative regional myocardial shortening

(RSCT) derived from segmentation and 3D tracking to delineate

regions of endocardial WMA. RSCT has been previously

shown to be a robust method for quantifying regional LV

function (8, 12, 28, 29).

Limitations and future directions

First, our current DL pipeline has several manual image

processing such as manual rotation of the image and manual

removal of lead artifacts. These steps lengthen the time required

to run the entire pipeline (see Section Run time) and limit the

clinical utility. One important future direction of our technique

is to integrate the DL-driven automatic image processing to get

a fully automatic pipeline. Chen et al. (26) have proposed a DL

technique to define the short-axis planes from CT images so

that the LV axis can be subsequently derived for correct image

orientation. Zhang and Yu (36) and Ghani and Karl (37) have

proposed DL techniques to remove the lead artifacts.

Second, our work only focuses on the systolic function and

only takes 4 systolic frames from the VR video as the model

input. The future direction is to input diastolic frames into

the model to enable the evaluation of diastolic function and to

use a 4D spatial-temporal convolutional neural network (38) to

directly process the video without requiring explicit selection of

temporal frames.

Third, we currently perform binary classification of the

presence of WMA in the video. The DL model integrates all

information from all the AHA segments that can be seen in

the video and only evaluates the extent of pixels with WMA

(i.e., whether it’s larger than 35% of the total pixels). The DL

evaluation is independent of the position of WMA; thus, we

do not identify which of the AHA segments contribute to the

WMA just based on the DL binary classification. Future research

is needed to “focus” the DL model’s evaluation on specific AHA

segments using such as local attention (39) and evaluate whether

the approach can delineate the location and extent of WMA

in terms of AHA segments. Further, by using a larger dataset

with a balanced distribution of all four severities of WMA, we

aim to train the model to estimate the severity of the WMA in

the future.

Fourth, tuning the inceptionV3 (the CNN)weights to extract

features most relevant to detection of WMA is expected to

further increase performance as it would further optimize how

the images are analyzed. However, given our limited training

data, we chose not to train weights of the inception network

and the high performance we observed seems to have supported

this choice.

In conclusion, we developed a framework that combines

the video of the volume rendered LV endocardial blood

pool with deep learning classification to detect WMA

and observed high per-region (per-video) and per-study

accuracy. This approach has promising clinical utility to

screen for cases with WMA simply and accurately from highly

compressed data.
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