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Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia
and engenders significant global health care burden. The underlying mechanisms of
AF is remained to be revealed and current treatment options for AF have limitations.
Besides, a detection system can help identify those at risk of developing AF and will
enable personalized management.

Materials and Methods: In this study, we utilized the robust rank aggregation
method to integrate six AF microarray datasets from the Gene Expression Omnibus
database, and identified a set of differentially expressed genes between patients with
AF and controls. Potential compounds were identified by mining the Connectivity Map
database. Functional modules and closely-interacted clusters were identified using
weighted gene co-expression network analysis and protein–protein interaction network,
respectively. The overlapped hub genes were further filtered. Subsequent analyses
were performed to analyze the function, biological features, and regulatory networks.
Moreover, a reliable Machine Learning-based diagnostic model was constructed and
visualized to clarify the diagnostic features of these genes.

Results: A total of 156 upregulated and 34 downregulated genes were identified, some
of which had not been previously investigated. We showed that mitogen-activated
protein kinase and epidermal growth factor receptor inhibitors were likely to mitigate AF
based on Connectivity Map analysis. Four genes, including CXCL12, LTBP1, LOXL1,
and IGFBP3, were identified as hub genes. CXCL12 was shown to play an important
role in regulation of local inflammatory response and immune cell infiltration. Regulation
of CXCL12 expression in AF was analyzed by constructing a transcription factor-miRNA-
mRNA network. The Machine Learning-based diagnostic model generated in this study
showed good efficacy and reliability.

Conclusion: Key genes involving in the pathogenesis of AF and potential therapeutic
compounds for AF were identified. The biological features of CXCL12 in AF were
investigated using integrative bioinformatics tools. The results suggested that CXCL12
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might be a biomarker that could be used for distinguishing subsets of AF, and
indicated that CXCL12 might be an important intermediate in the development of
AF. A reliable Machine Learning-based diagnostic model was constructed. Our work
improved understanding of the mechanisms of AF predisposition and progression, and
identified potential therapeutic avenues for treatment of AF.

Keywords: atrial fibrillation, Connectivity map, the eXtreme Gradient Boosting algorithm, the Sharpley Additive
exPlanations, rank robust aggregation, weighted gene coexpression network analysis

INTRODUCTION

Atrial fibrillation (AF) is the most common type of arrhythmia,
with major public health implications and increasing prevalence
(1). Currently, the treatments for AF mainly includes rhythm
control, rate control, and antithrombosis (2). Although progress
has been made in treatment of AF, current therapy strategies
have important limitations (3), including adverse effects risk,
incomplete efficacy, and a significant long-term recurrence rate
(4). Therefore, an improved understanding of the pathogenesis of
AF and atrial substrate remodeling is necessary for development
of novel therapeutic approaches and new management strategies.

Screening and detection of AF are complex due to its latent
and asymptomatic properties. A clinical decision support system
for diagnosis and prediction of prognosis is needed. Machine
learning has been widely used to assist decision making and
model construction. The eXtreme Gradient Boosting (XGBoost)
(5) strategy is a popular and effective approach for classification,
and its efficacy has been widely validated in lots of diseases. For
example, Ogunleye et al. designed an accurate diagnostic model
for chronic kidney disease (CKD) using the XGBoost method (6),
which showed satisfactory performance.

The purpose of this study was to identify key genes, pathways,
potential therapeutic drugs, and underlying regulatory networks
of hub genes related to AF. The hub genes would then be used
to construct a diagnostic model to provide tools for clinical
practice. Transcriptomic microarray datasets of AF patients were
extracted and bioinformatic methods were used to screen for
robust candidate genes. Potential therapeutic targets and small
molecule compounds were predicted. Using these approaches,
we developed a comprehensive understanding of the role of
microenvironmental immune regulation of CXCL12 in AF, and
suggested that CXCL12 might be a marker for distinguishing AF
subsets. This provided new insights into the mechanisms of AF
and identified potential therapeutic agents for management of
AF. Furthermore, a reliable diagnostic model was constructed for
AF using the XGBoost algorithm.

MATERIALS AND METHODS

Microarray Datasets
Gene Expression Omnibus (GEO)1 was used to search datasets
of patients with AF. To identify relevant GEO datasets relevant
to differences between patients with AF and sinus rhythm (SR),

1https://www.ncbi.nlm.nih.gov/geo/

we used the following keywords: atrial fibrillation OR atrial
flutter. In addition, the reference lists of relevant articles and
reviews were manually searched to ensure the completeness of
the literature search.

The inclusion criteria were as follows: (1) Gene expression
data from the atrium, the atrial appendage, or the sleeve of the
pulmonary vein tissue from individuals with AF and individuals
with SR; (2) Data that could be reanalyzed.

All relevant manuscripts were independently reviewed by two
investigators (LY and YC) to identify whether the studies met
the inclusion criteria. The workflow for bioinformatic analyses is
shown in Figure 1.

Robust Rank Aggregation Analysis and
Integration of Datasets
Gene expression profiling was annotated using the corresponding
annotation packages and R software. All Affymetrix data were
normalized using the justRMA function (7). We performed RRA
analysis to identify robust differentially expressed genes (DEGs)
using the R package “Robust Rank Aggregation” (8). In the final
list, genes with RRA scores less than 0.05 were selected as DEGs.

Functional Enrichment Analysis and
Protein–Protein Interaction Analysis
We performed GO2 and KEGG enrichment analyses3 using the
“clusterProfiler” package (9) in R software to match the biological
themes of the gene clusters (threshold of adjusted p < 0.05).
The STRING database4 was used to establish a PPI network. To
identify hub genes, the Molecular Complex Detection (MCODE)
plugin was used in Cytoscape software (version 3.9.0).

Weighted Gene Co-expression Network
Analysis
Genes with p values < 0.05 and logarithmic fold changes
(logFCs) > 0.25 were selected from RRA results to perform
WGCNA. To increase the number of samples and improve the
reliability of the results, we integrated and normalized the six
datasets by batch normalization using “sva” (10) and “limma”
package (11) in R software. Key modules were identified by
setting the soft-thresholding power to 8 (scale-free R2 = 0.83),
cut height to 0.25, and minimal module size to 30.

2http://geneontology.org/docs/go-citation-policy/
3https://www.genome.jp/kegg/kegg1.html
4https://string-db.org/cgi/input.pl
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FIGURE 1 | Flowchart of the bioinformatics analysis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; WGCNA, the weighted gene
coexpression network analysis; MCODE, Molecular Complex Detection; CMap, Connectivity Map. XGBoost, the eXtreme Gradient Boosting.

Connectivity Map Analysis
Connectivity map (CMap)5 analysis (12) was used to identify
potential compounds that perturbated AF expression signature.
Mechanisms of action (MoA) analysis of the top 50 compounds
was performed to identify the shared mechanisms of action of
these compounds.

Integrative Analyses of the Key Gene
CXCL12
We performed receiver operating characteristic curve (ROC)
analysis to investigate the classification capacity of identified
genes. We chose CXCL12 for further analysis because its area
under curve (AUC) was the highest among the hub genes
(Supplementary Figure 1). The expression of CXCL12 was
determined according to the quantile value for the AF patient
cohort. The “limma” package was used to obtain DEGs between
the high CXCL12 and low CXCL12 AF subgroups (threshold of
adjusted p < 0.05 and logFCs > 2).

5https://clue.io/

Gene Set Enrichment Analysis and
Single-Sample Gene Set Enrichment
Analysis
Gene set enrichment analysis (GSEA) is a widely used
computational method to determine whether an a priori defined
set of genes is significantly differentially expressed between two
biological states. We performed GSEA on gene sets with high
and low CXCL12 expression to explore the biological function of
CXCL12 in AF.

The single-sample GSEA (ssGSEA) method is an extension
of the GSEA method used to analyse a single sample. We used
ssGSEA to estimate the infiltration levels of 28 immune cell types
in the high CXCL12 and low CXCL12 groups.

Immune Cell Infiltration Analysis
A deconvolution algorithm developed by Newman et al. (13)
called “CIBERSORT” was used to estimate of the abundances
of different cell types in a mixed cell population. We scored
22 immune cell types based on their relative abundances in
AF samples. Differences in infiltration of immunocytes between
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the high CXCL12 and low CXCL12 groups were analyzed using
Spearman correlation and the Wilcoxon rank-sum test.

Construction of a TF-miRNA-mRNA
Network
We downloaded the microRNA expression dataset GSE28954
(14) and identified differentially expressed miRNAs (DE-
miRNAs) between individuals with AF and individuals with SR
using the “limma” package in R software with adjusted p< 0.05 as
the threshold. Then, miRNet 2.06 (15) was used for construction
of the possible transcription factor (TF)-miRNA-mRNA network.

Physicochemical Properties Analysis
Human Protein Atlas7 was used to explore the cellular location
of CXCL12, followed by ProtParam, ProtScale8, and TMHMM
2.09 to analyze the physicochemical properties of CXCL12 and
to predict transmembrane helices in CXCL12, respectively.

Diagnostic Model Construction Using a
Machine Learning Algorithm
This study used the XGBoost algorithm to develop diagnostic
model. XGBoost is an integrated learning algorithm based on
boosting algorithms. Integrated learning uses a selected method
to learn multiple weak classifiers with differences, followed by
combination of these classifiers. ROC analysis of the diagnostic
model was performed using the pROC package (16). The model
was subjected to internal validation using the bootstrap method
(17) with 1,000 iterations. The Brier score for the diagnostic
model was calculated.

Sharpley Additive exPlanations
Interpretation Method
To interpret and understand the features of genes from the
diagnostic model, we used the Sharpley Additive exPlanations
(SHAP) interpretation method to explain the XGBoost
classification result, which allowed for analysis of each feature.
Jupyter notebook was used to visualize these results.

Statistical Analysis
Statistical analyses and data visualization were performed
using R software and Jupyter notebook. Spearman’s correlation

6https://www.mirnet.ca/miRNet/home.xhtml
7https://www.proteinatlas.org/
8https://web.expasy.org
9http://www.cbs.dtu.dk/services/TMHMM

analysis was performed to estimate the correlation between
different immune cells and Wilcoxon rank-sum test was used to
estimate the differences between two groups. Associations
were considered as statistically significant at two-sided
p-values < 0.05.

RESULTS

Atrial Fibrillation Microarray Datasets
After filtering the GEO database, six AF microarray datasets
were selected. The basic information associated with these GEO
datasets is listed in Table 1. The number of patients with AF
in each study ranged from 4 to 32, and the number of controls
ranged from 2 to 31. A total of 93 patients with AF and 76
controls were included.

Identification of Robust Differentially
Expressed Genes
A total of 156 upregulated and 34 downregulated DEGs were
identified using the RRA method (Supplementary Table 1).
Using Phenolyzer,10 we confirmed identification of novel DEGs
that were not reported previously (Supplementary Table 2).
The top 20 upregulated and downregulated genes in AF
are shown in a heatmap (Figure 2). Among these genes,
caspase 3 (CASP3) (18), tumor necrosis factor (TNF) (19),
and potassium voltage-gated channel subfamily H member 2
(KCNH2) had been previously characterized in AF (20). In
contrast, TRDN antisense RNA 1 (TRDN-AS1) and ADAM
metallopeptidase domain 21 (ADAM21) had not been previously
associated with AF.

Functional and Pathway Enrichment
Analyses of Differentially Expressed
Genes
To better understand the biological functions and characteristics
of DEGs, we performed GO and KEGG analyses using
“clusterProfiler” package. GO enrichment analysis showed that
the DEGs were related to extracellular matrix formation, TGF-
β response, and collagen fibril organization. In addition, KEGG
pathway enrichment analysis indicated that pathways related
to P13K-Akt signaling, protein dynamics, and ECM-receptor
interaction were associated with AF (Figure 3). We then used

10https://phenolyzer.wglab.org/

TABLE 1 | Summary of the six expression datasets involved in this study.

GSE accession Platform Total number (SR:AF) Tissues

GSE2240 (74) GPL570 30 (20:10) Atrium

GSE14975 (75) GPL570 10 (5:5) Atrium

GSE41177 (76) GPL570 38 (6:32) Atrial appendage or sleeve of pulmonary vein tissue

GSE79768 (77) GPL570 26 (12:14) Atrium

GSE115574 (78) GPL570 59 (31:28) Atrium

GSE31821 GPL570 6 (2:4) Atrial appendage
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FIGURE 2 | Robust DEGs identified by RRA analysis. Heatmap of the six datasets showing the top 20 upregulated and 20 downregulated DEGs. The horizontal axis
indicates the gene name, and the vertical axis represents dataset name. Red indicates that the gene is upregulated in the AF patients compared with the SR
individuals, and the blue represents downregulation. The number in a cell indicates the logFC of each gene in a dataset. DEG, differentially expressed gene; RRA,
robust rank aggregation.
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FIGURE 3 | Gene Ontology and KEGG pathway enrichment of the robust DEGs in AF. (A) The enriched GO annotation terms. (B) The enriched KEGG pathway. GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene.

the STRING database to construct a PPI network of these
DEGs. The PPI network was visualized using Cytoscape 3.9.0
(Figure 4A). Then, the MCODE plugin was used to determine
the top hub genes (Figures 4B,C). The Top 2 closely connected
modules were identified. MCODE 1 included BGN, COL21A1,
SPP1, THY1, SERPINH1, COL15A1, TGFBI, COL5A1, TIMP1,
COL5A2, COL4A2, COL4A1, and THBS2. MCODE 2 included
COL3A1, SNAI2, CDH2, LTBP2, COL1A2, MXRA5, COL1A1,
LOXL1, COMP, LTBP1, NES, CXCL12, and IGFBP3.

Weighted Gene Co-expression Network
Analysis
We constructed a weighted gene co-expression network based
on genes with p value < 0.05 and logFCs > 0.25 from
the ranked gene list to further investigate the significance of
modules associated with AF. Thirteen modules were identified
as important in AF by setting the soft thresholding power to 8
(scale-free R2 = 0.83) and cut height to 0.25 (Figures 5A–D).
The correlations between module and clinical status are shown
in a heatmap, and the dark-green module was most strongly
associated with AF (Figures 5E,F). The dark-green module
contained 275 genes, as shown in Figure 5G (correlation
coefficient = 0.14, p = 0.017). A Venn diagram (Figure 5H)
showed the genes that overlapped between the WGCNA and
PPI analyses. The corresponding proteins in these hub genes
interacted with each other closely, as determined using the PPI
network constructed using the GeneMANIA (21) online tool11

(Supplementary Figure 2).

Connectivity Map Analysis
We utilized CMap, a data-driven, systematic approach for
investigating associations among genes, chemicals, and biological
conditions, to identify potential compounds that targeted
the AF gene signature (12). MoA analysis of the Top 50
compounds revealed 36 mechanisms of action shared by
these compounds (Figure 6). Seven compounds (PubChemID:
44187362, 54483521, 10206158, 6918454, 9956637, 10127622,
and 54539763) were mitogen-activated protein kinase (MEK)

11http://www.genemania.org

inhibitors. Four compounds (PubChemID: 10184653, 6918508,
156414, and 44607360) were epidermal growth factor receptor
(EGFR) inhibitors.

Integrative Analyses of CXCL12
We chose CXCL12 for further analysis because it had the
highest AUC. The expression level of CXCL12 was determined
using the quantile value for the AF cohort. DEGs between
high CXCL12 and low CXCL12 groups were determined using
the “limma” package in R software with the thresholds set
to adjusted p value < 0.05 and LogFCs > 2 (Figure 7A).
The results showed that 186 genes were up-regulated and 84
genes were down-regulated in the high CXCL12 group. GO
enrichment analysis was performed to further understand the
influence of these DEGs on the biological features of AF. The
top 10 enriched GO terms were mainly related to immune
response and immune cell activity regulation (Figure 7B). In
addition, KEGG pathway analysis suggested that the DEGs were
enriched in cytokine-cytokine interaction, chemokine signaling
pathway, toll-like receptor signaling pathway, and immune-
related diseases (Figure 7C).

Gene Set Enrichment Analysis,
Single-Sample Gene Set Enrichment
Analysis, and Immune Cell Infiltration
Analysis
To investigate the biological functions associated with CXCL12,
we performed GSEA analysis using the MSigDB hallmark gene
sets and KEGG pathway gene sets in the high CXCL12 and
low CXCL12 groups (Figures 7D,E). The results were consistent
with those obtained from GO and KEGG analyses. Moreover,
gene set variant analysis (GSVA) based on the ssGSEA algorithm
was performed to evaluate the degree of enrichment of 28
immune cell types within each sample (Figures 7F,G). Different
expression levels of CXCL12 were associated with different
immune cell infiltration profiles. We used the “CIBERSORT”
algorithm to estimate the relative infiltration proportions of
22 immune cell types from AF samples, which produced
similar results to those observed in the GSVA analysis. As
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FIGURE 4 | The PPI network of the robust DEGs. (A) PPI network of upregulated and downregulated significant genes. (B,C) The most significant two modules
identified through MCODE in Cytoscape software. PPI, protein–protein interaction; DEG, differentially expressed gene. Red indicates upregulation of genes, and blue
represents downregulation of genes in AF individuals.
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FIGURE 5 | Identification of hub modules associated with AF by WGCNA. (A) Clustering dendrograms of genes from normalized six datasets. In the column of
clinical status, red indicates AF, and white means the SR individuals. (B) The scale-free fit index (left) and the mean connectivity (right) for various soft-thresholding
powers. (C) Clustering of module eigengenes. The cut height (red line) was 0.25. (D) Hierarchical cluster tree. (E) Heatmap showing the relationship between module
eigengenes and clinical status. The numbers in cells mean the correlation coefficients and p-values. (F) Cluster analysis and heatmap of the genes in different
modules. Red means a positive correlation, and blue indicates a negative correlation. (G) Scatter plot of module eigengenes in the dark-green module. (H) Venn
diagram. The overlapped genes between WGCNA analysis and PPI analysis. AF, atrial fibrillation; SR, sinus rhythm. WGCNA, weighted gene coexpression network
analysis; DEG, differentially expressed gene; TOM, topological overlap matrix; PPI, protein–protein interaction.

indicated in Figures 8A–C, CD4 memory T cells, mast cells,
neutrophils, and gamma delta (γδ) T cells showed greater
infiltration in the high CXCL12 group, and Treg cells showed
lower levels of infiltration in the high CXCL12 group. These

results indicated that high CXCL12 expression was associated
with increased immune cell infiltration and might be associated
with greater inflammatory activity. Use of different approaches
confirmed the stability and repeatability of the findings, and
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FIGURE 6 | Heatmap showing each compound from the CMap that shares mechanisms of action (rows) and sorted by descending number of compounds with
shared mechanisms of action.

suggested that CXCL12 could be a marker to distinguish
subsets of AF.

Physicochemical Properties of CXCL12
ProtParam, ProtScale, and Protein Atlas analyses were used
to interpret the physiochemical properties of CXCL12. The
results showed that the CXCL12 protein consists 93 amino
acids and has a half-life of 30 h in mammals. The amino acid
composition of CXCL12 includes five negatively charged amino
acid residues (Asp + Glu) and 16 positively charged amino

acid residues (Arg + Lys). The theoretical isoelectric point is
9.92. The instability index of CXCL12 is estimated to be 22.75,
which indicates that the protein is stable. In addition, the grand
mean of the hydrophobic value is 0.082, which was consistent
with the ProtScale analysis result showing that CXCL12 protein
had similar numbers of hydrophobic and hydrophilic regions
(Figure 9B). Analysis using Protein Atlas demonstrates that
CXCL12 is a stable secretory protein (Figure 9A). Finally,
CXCL12 does not include any transmembrane domains, as
determined using the TMHMM server (Figure 9C).
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FIGURE 7 | Gene Ontology/KEGG pathway enrichment of CXCL12-high and CXCL12-low group, GSEA and ssGSEA analysis of AF. (A) Volcano plot of DEGs
between CXCL12-high and CXCL12-low group. (B) The top 10 enriched GO annotation terms. (C) The top 15 enriched KEGG pathway. (D,E) GSEA results in the
context of gene sets for canonical pathways gene sets derived from the KEGG pathway database (D) and gene sets that contain genes annotated by the HallMark
ontology term (E). (F) Analyzing the types of immune cell infiltration in the CXCL12-high and CXCL12-low groups by ssGSEA. The color scale from blue to red
indicates downregulation to upregulation. (G) Correlation heatmap among different immune cells. GSEA, Gene Set Enrichment Analysis; ssGSEA, single-sample
Gene Set Enrichment Analysis.

The Potential TF-miRNA-mRNA
Regulatory Network for CXCL12
Studies have shown that miRNA and TF play essential roles in
onset and progression of AF. We used the “limma” package in R
software to identify DE-miRNAs with adjusted p value < 0.05 as
the threshold (Supplementary Figure 3). We identified three up-
regulated miRNAs and three down-regulated miRNAs. Among
the DE-miRNAs, hsa-mir-146b and hsa-mir-125b were involved

in regulation of TFs that mediated the expression of CXCL12, as
shown in Figures 9D–F.

Diagnostic Model
An XGBoost classification model was used to construct
a diagnostic model, whose parameters were listed in
Supplementary Table 4. All four hub genes were selected as
variables. The model was internally validated using the bootstrap
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FIGURE 8 | Immune infiltration analysis by CIBERSOT. (A) Heatplot showing the relative infiltration fraction of immune cells in CXCL12-high and CXCL12-low
individuals. (B) Relative proportion of immune cell infiltration in CXCL12-high and CXCL12-low individuals. (C) Differences in immune cell infiltration between
CXCL12-high and CXCL12-low individuals. *P < 0.05, **P < 0.01, *** P < 0.001, ****P < 0.0001, ns, no significance.

method with 1,000 resampling iterations. The model resulted in
an AUC of 0.9385 (95% CI: 0.9044–0.9725; Figure 10A). The
calibration plot is shown in Figure 10B. The Brier score was 0.12,
which verified the reliability of the model.

Model Interpretation Using the Sharpley
Additive exPlanations
The variance importance plot, decision plot, and force plot from
the original set are shown in Figures 10C–E. For each prediction,
the SHAP value was positively associated with risk of AF. The
features were ordered according to the importance scores of each
value in this model (Figure 10C). Higher values of CXCL12,
LOXL1, and IGFBP3 (than the average) were strongly associated
with diagnosis of AF, and lower values of LTBP1 (than the

average) were associated with diagnosis of AF (Supplementary
Figure 4). The decision plot (Figure 10D) showed global
interpretability of the model, whereas the force plot showed local
interpretability (explanation of an individual case) (Figure 10E).

DISCUSSION

The mechanism of AF is complex and heterogeneous (22,
23). Although some actionable and reversible precipitants are
identified, like hyperthyroidism (24), endurance sport (25),
alcohol consumption (26), sleep disordered breathing (27),
channelopathies (28), the etiology and pathogenesis of AF are still
waiting to be clarified.
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FIGURE 9 | Biological features and regulation analysis of CXCL12 in AF. (A) The prediction model of the cellular location of CXCL12 protein. (B) The
hydrophilcity/hydrophobicity analysis of CXCL12 protein by ProtScale. (C) The prediction of transmembrane helices of CXCL12 by TMHMM. (D) The different mRNA
expression of CXCL12 between AF and SR individuals. (E) TF-miRNA-mRNA regulation network for CXCL12 in AF. (F) Sub regulation net for CXCL12 in AF based
on DE-miRNAs identified by GSE28954 dataset.

In the current study, we included datasets derived from
atrium or sleeve of pulmonary vein tissues to minimize
influences from peripheral blood on the results. We identified
four hub genes that were closely interacted. Besides, potential
small molecule compounds, underlying molecular regulatory
mechanism of AF were investigated by integrating bioinformatic
tools. Then, we constructed a reliable diagnostic model using
the identified hub genes, which would aid in personalized
management (Figure 11).

CXCL12 May Be an Upstream Mediator
of Atrial Fibrillation and a Biomarker for
Identification of Atrial Fibrillation
Subsets
Previous study showed that CXCL12 was associated with anabatic
atrial inflammation and fibrosis (29) and its serum concentration
varied among sinus rhythm, paroxysmal AF and persistent
AF individuals (30). Besides, the increased CXCL12 in plasma
was associated with AF progression (31, 32). However, the
role of CXCL12 in the local inflammatory microenvironment
regulation and its regulatory network in AF was not fully
revealed. Our study indicated that CXCL12 might perform as
an important regulator of inflammation in AF by increasing
the infiltration of mast cells, neutrophils, and γδ T cells, and
reducing infiltration of regulatory T cells. Studies have shown
that neutrophils (33) were the main source of reactive oxygen
species (ROS) and myeloperoxidase (MPO), which are highly
associated with fibrosis in AF. One study (34) suggested that

atrial fibrosis and collagen deposition could be reversed by a
mast cell stabilizer and a PDGF-A blocker, which indicated
that mast cells might be therapeutic targets to control atrial
fibrosis. Dumitriu et al. showed that levels of anti-inflammatory
Tregs were significantly reduced in AF (35), and He et al.
reported that a higher Th17/Treg ratio in serum predicted
onset of post-operative AF (36). Recently, Zhang et al. also
suggested that oral administration of B. fragilis attenuated the
inflammatory response by increasing infiltration of Treg cells,
thereby preventing age-related AF (37). The present study
showed that CXCL12 was associated with regulation of Treg
infiltration, which represented a novel mechanism of Treg
regulation in AF.

Collectively, the immune infiltration analysis in the current
study suggested that CXCL12 might play a crucial role in
induction of inflammation and immune cell infiltration in
AF. Cytokine antagonists or CXCR4 inhibitors (29) might be
effective therapeutic agents. The present study also suggested
that CXCL12 expression might be a marker for determination
of AF subsets for making actionable personalized treatment
plans. Besides, in current study, we found that the CXCL12
expression could be regulated by a TF-miRNA-mRNA
network. Previous study reported the role of miR-146b-5p
in atrial fibrosis in AF by repressing TIMP-4 (38, 39). Our
result showed that miR-146b-5p might participate in local
inflammation regulation in AF by negatively regulating
NF-κB. The downregulation of miR-125b was reported in
valvular AF patients (40). However, the role of miR-125b in
the NF-κB pathway regulation varied in different diseases
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FIGURE 10 | Diagnostic model construction, validation and visualization. (A) ROC plot of XGBoost algorithm-based diagnostic model. (B) The calibration curve of
the diagnostic model. (C) Importance plot of the diagnostic model. (D) The decision plot showing global interpretability of the model. (E) The force plot showing
example explanation on an individual case.

background (41, 42). Further studies need to confirm its role
in AF setting.

The Lysyl Oxidase/Related Lysyl
Oxidase-Like Family, LTBP1, and IGFBP3
Might Contribute to Atrium Substrate
Remodeling
Lysyl oxidase (LOX) and related LOX-like (LOXL) isoforms
play vital roles in remodeling of the extracellular matrix (ECM)
(43). LOXL1 is a member in LOX family with highly similar
catalytic domains as LOX. It has been characterized in diseases
such as exfoliation syndrome (44), cardiac hypertrophy (45),
and endothelial dysfunction, and is thought to be essential
for elastic fiber homeostasis (46). Recent studies have shown

that LOX/LOXL inhibitors modulated fibrotic atrial remodeling
(47, 48). Interestingly, LOXL2, another member of the LOX
family, was highly expressed in patients with permanent atrial
fibrillation (49). Further characterization of the role of LOX-
family proteins in AF and development of inhibitors with better
specificity and reduced side effects (50) may result in better
therapeutic performance.

LTBP1 is the major source of TGF-β (51) in the ECM. LTBP1
forms a disulfide linked complex with the TGF-β propeptide in
the endoplasmic reticulum prior to secretion, and promotes TGF-
β activation (52). Stacy et al. reported that activation of LTBP1
was associated with regional atrial fibrosis and vulnerability to AF
following myocardial infarction (53).

IGFBP3, which is the main binding target of IGF-1, plays an
important role in regulating the activity and transport of IGF-1,
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FIGURE 11 | Central illustration of the key findings. CXCL12 may play as an upstream mediator and its TF-miRNA-mRNA regulation network was shown in the
graph. LOXL1, IGFBP3, LTBP1 may impose important effect on atrial fibrosis, which was the pathogenetic cornerstone of AF. The ML-based model could be used in
personalized diagnosis and management. MEK inhibitor and EGFR inhibitor may be potential non-channel drugs for atrial fibrillation. AF, atrial fibrillation. ML, machine
learning. MEK, mitogen-activated protein kinase. EGFR, epidermal growth factor receptor (Created with BioRender.com).

and was reported to be independently associated with AF in the
elderly population in the System-IGF-1 Pathway and Alzheimer’s
Disease Clinical Trial (SIGAL) (54). Busch et al. suggested
that low IGF-1/IGFBP-3 ratios were associated with a higher
prevalence of AF in the Study of Health in Pomerania (SHIP)
(55). Our study confirmed that transcript levels of IGFBP-3 were
associated with AF and that IGFBP-3 may be a biomarker of AF.

Mitogen-Activated Protein
Kinase/Epidermal Growth Factor
Receptor Inhibitors Are Promising
Pharmacologic Interference Targets for
Atrial fibrillation
Treatment options for AF exhibit limited efficacy.
Pharmacotherapy identifying interventions which target
atrial cardiomyopathy evolution (56) might postpone or even
prevent the development of AF (57) and it deserves high priority.
We found that MEK inhibitors and EGFR inhibitors may be
promising agents for treatment of AF.

Activation of the MEK/ERK-MAPK cascade by the Ang-
II signaling pathway has been previously associated with AF

(58, 59). Specific inhibition of MEK and ERK with PD98059 or
U0126 during AF may prevent fibrous tissue formation (60). It
was serendipity that some studies had indicated that patients with
melanoma were at reduced risk for development of AF when
treated with BRAF and MEK inhibitors compared to patients
treated with BRAF inhibitor monotherapy (61).

Epidermal growth factor receptor inhibitors have typically
been used for treatment of cancer. However, increasing
evidence has supported use of EGFR inhibitors to treat
cardiovascular diseases based on the ability of these inhibitors
to regulate EGFR-AT1R crosstalk (62). Recent studies of EGFR-
AT1R crosstalk have focused on cardiac hypertrophy (63),
smooth vascular cell dysfunction (64), vascular remodeling (65),
and ECM formation (66). The relationship between EGFR-
AT1R crosstalk and AF has not been elucidated. Although
administration of ibrutinib (a Bruton tyrosine kinase inhibitor)
was shown to increase the risk for development of AF, the
pro-arrhythmic effects of ibrutinib resulted from inhibition
of C-terminal Src kinase but not inhibition of tyrosine
kinase (67).

A previous study showed an association between genetic
variants in the EFGR gene locus and AF progression (68).
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A subsequent study showed that EGF and heparin-binding
EGF-like growth factor levels in patients with AF were
significantly higher than those in control individuals (69).
Further investigation is needed to characterize the relationship
between EGFR and AF.

Diagnostic Model for Use in Clinical
Decision Making
In the present study, we developed and validated an interpretable
ML-based diagnostic tool for prediction of AF. Our findings
indicated that the model exhibited excellent discriminatory
performance, with an average AUC of 0.9385. Using the SHAP
method, we visualized the model to help users understand the
complex integration model. Since the included genes were closely
related to the mechanism of AF, we anticipate that this model
will have clinical applicability for prediction of progression and
recurrence of AF.

Collectively, it is unlikely that there will be an “one-size-
fit-for-all” option for AF management, it will be essential to
identify the subset of AF patients who are most likely to benefit
from a given therapy. Enormous progress in radiology (70–
72) and multiomics study (73) has changed our view about
the management of AF, and we are expecting to conduct more
integrative, precise and personalized therapeutic practice for
AF in the future.

Limitations
The current study only included bioinformatics analyses.
Future in vitro and in vivo studies will be needed to
explore the molecular mechanisms and pathways identified in
this study. The current work was based on transcriptomic
data, in which mutational variance was not investigated. The
inflammatory mechanisms among AF patients might vary.
Considering that CXCL12 is an important pro-inflammatory
cytokine-related gene, so we conducted non-negative matrix
factorization clustering analysis based on cytokine-related genes
derived from Immport database12 and found that included
samples could be divided into four cytokine-related subgroups
which showed distinctive expression pattern (Supplementary
Figure 6 and Supplementary Table 6). However, owing to
the lack of detailed clinical data of the included patients,
further investigations are required to identify the clinical
significance and feasibility of this framework. Additionally,
external validation of the ML-based model generated in this
study is required to verify its robustness and efficacy in
other data sets.
12 https://www.immport.org/resources

CONCLUSION

In this study, we identified four key genes involved in the
pathogenesis of AF, and identified potential therapeutic targets
for treatment of AF. The biological features and regulatory
mechanisms ofCXCL12 in AF were comprehensively investigated
using integrative bioinformatics tools. The results indicated that
CXCL12 might be a potential marker to distinguish AF subsets,
and showed that it could be an important intermediate between
the local inflammatory microenvironment and atrial fibrosis.
A reliable ML-based diagnostic model was constructed that is
suitable for evaluation of AF progression and recurrence. Our
work provided novel insights into AF and generated an effective
tool that could be used in clinical practice.
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