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Objective: FAP plays a vital role in myocardial injury and fibrosis. Although

initially used to study imaging of primary and metastatic tumors, the use

of FAPI tracers has recently been studied in cardiac remodeling after

myocardial infarction. The study aimed to investigate the application of

FAPI PET/CT imaging in human myocardial fibrosis and its relationship with

clinical factors.

Materials and methods: Retrospective analysis of FAPI PET/CT scans of

twenty-one oncological patients from 05/2021 to 03/2022 with visual

uptake of FAPI in the myocardium were applying the American Heart

Association 17-segment model of the left ventricle. The patients’ general data,

echocardiography, and laboratory examination results were collected, and

the correlation between PET imaging data and the above data was analyzed.

Linear regression models, Kendall’s TaU-B test, the Spearman test, and the

Mann–Whitney U test were used for the statistical analysis.

Results: 21 patients (60.1 ± 9.4 years; 17 men) were evaluated with an overall

mean LVEF of 59.3 ± 5.4%. The calcific plaque burden of LAD, LCX, and

RCA are 14 (66.7%), 12 (57.1%), and 9 (42.9%). High left ventricular SUVmax

correlated with BMI (P < 0.05) and blood glucose level (P < 0.05), and

TBR correlated with age (P < 0.05). A strong correlation was demonstrated

between SUVmean and CTnImax (r = 0.711, P < 0.01). Negative correlation

of SUVmean and LVEF (r = −0.61, P < 0.01), SUVmax and LVEF (r = −0.65,

P < 0.01) were found. ROC curve for predicting calcified plaques by

myocardial FAPI uptake (SUVmean) in LAD, LCX, and RCA territory showed

AUCs were 0.786, 0.759, and 0.769.
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Conclusion: FAPI PET/CT scans might be used as a new potential method

to evaluate cardiac fibrosis to help patients’ management further. FAPI

PET imaging can reflect the process of myocardial fibrosis. High FAPI

uptakes correlate with cardiovascular risk factors and the distribution of

coronary plaques.
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Introduction

Cardiovascular disease (CVD) is rapidly becoming a global
health problem, with an increasing incidence in low-income
countries (1). The ability to identify CVD-prone individuals
depends on understanding and detecting risk factors (1).
In the INTERHEART Study, a case-control study of acute
myocardial infarction, participants were recruited from 52
low-, middle-, and high-income countries in South and
Southeast Asia, Africa, China, Japan, Europe, and the Middle
East, Australia/New Zealand, North and South America (2)
demonstrated nine easily assessed and common traditional risk
factors which were statistically associated with an increased
risk of myocardial infarction, including tobacco smoking,
dyslipidemia, hypertension, diabetes, abdominal obesity, and
psychosocial factors (2). It is urgent that a reliable imaging
technique is developed which can quantify the impact of these
common risk factors on cardiac remodeling. Fibroblasts play a
crucial role in cardiac tissue remodeling and wound healing (3).
One significant characteristic of activated cardiac fibroblasts is
the expression of fibroblast activation protein (FAP) (4). After
myocardial infarction, FAP is strongly expressed compared with
resting fibroblasts (5). Lindner et al. developed a tracer for
PET scans that targets FAP in 2018. The tracer consists of
a quinolone-based FAP inhibitor (FAPI) labeled with a radio
nucleoid, which reliably binds and stains FAP (6). It has been
proven to be useful in a variety of tumor imaging applications
(7). In previous studies, FAPI-04 has been shown to be a
promising radiotracer of post-MI fibroblast activation (5, 8–
11), or may provide a novel biomarker of left ventricular
remodeling that is complementary to existing techniques such
as MRI (12, 13). In this study, we aimed to compare FAPI
tracer accumulation and the benefit of FAPI PET/CT scans in
patients with various CVD risk factors and whether can assist in
evaluating the degree of fibrosis of coronary artery plaques.

Materials and methods

Patients

A total of 21 of 159 oncological patients with increased
myocardial FAPI uptake who had undergone Al18F NOTA

FAPI-04 PET were retrospectively analyzed. All patients gave
written informed consent to undergo FAPI PET/CT following
the German Pharmaceuticals Act § 13(2b) regulations.
The clinical translational study of Al18F-NOTA-FAPI-
04 was approved by the Ethics Committee (approval no.
2021XJSS01) and registered in the Chinese Clinical Trial
Registry (ChiCTR2100051406). All patients enrolled in this
study signed written informed consent forms. We assessed
clinical features, including cardiovascular risk factors, imaging
parameters from echocardiography, and a broad laboratory
panel. Only patients who had a contraindication to undergo
PET/CT (e.g., pregnant women and women of childbearing age)
or patients who refused the procedure did not undergo imaging.
All reported investigations were conducted by the Declaration
of Helsinki and with the national regulations.

Radiotracer synthesis

The synthesis and labeling of Al18F-NOTA-FAPI-04 have
already been described previously (14). Following the Drug
Administration Law of the People’s Republic of China,
indication and labeling of the FAPI-tracers were conducted
under the physician’s direct responsibility. Injected activities
were dependent on labeling yields. Synthesis and labeling of
FAPI-04 have already been described previously (6) –an effective
dose of 1.6 mSv/100 MBq—an upper limit of 370 MBq regarding
radiation exposure and a lower limit of 100 MBq per exam to
achieve a sufficient count rate have been considered (15).

PET/CT image acquisition

No patients were required to fast, and venous blood glucose
levels were not controlled. Radioactivity ranging from 129.5 to
148 MBq of Al18F-NOTA-FAPI-04 isotope (Jiangyuan Industrial
technology trade Co., Ltd., Jiangsu, China, radiochemical
purity > 95%) was intravenously injected. After urinating in
quiet, light-avoidance conditions (15 min), the PET/CT images
were acquired using a 16-slice Gemini GXL PET/CT scanner
(Philips Medical System). A low-dose CT scan (tube voltage:
120 kV, tube current: 50 mAs, slice thickness: 5.0 mm, pitch:
1.0) was acquired for attenuation correction, and then the PET
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TABLE 1 Patient characteristics (n = 21 patients).

Characteristics Values

Male, n (%) 17 (81.0)

Age at FAPI scan, mean ± SD, years 60.1 ± 9.4

LVEF, mean ± SD, (%) 59.3 ± 5.4

Cardiovascular risk factors

Diabetes, n (%) 12 (57.1)

HTN, n (%) 11 (52.4)

Current smoker, n (%) 11 (52.4)

Current drinker, n (%) 10 (47.6)

History of CAD, n (%) 11 (52.4)

BMI, mean ± SD, kg/m2 22.2 ± 3.5

Blood Results

Median (interquartile range) peak cTnI, ng/ml 0.03 (0.5)

Median (interquartile range) peak CK, U/l 97.7 (309.3)

Median (interquartile range) peak CKMB, ng/ml 1.1 (9.5)

Median (interquartile range) peak Hs-CRP, mg/L 11.8 (79.1)

Median (interquartile range) peak TG, mmol/L 1.37 (2.42)

Vessels of calcific plaques, n (%)

LAD 14 (66.7)

LCX 12 (57.1)

RCA 9 (42.9)

images were acquired (1.5 min per bed position, 6–7 PET bed
positions). According to the agency’s standard clinical protocols,
the scan range was from the head to the mid-thigh. The line

of response reconstruction algorithm was used to reconstruct
the image without post-reconstruction filtering after automatic
random and scattering correction.

Image evaluation

PET data were analyzed by two nuclear medicine specialists
(Zhao CJ, Fu P) on a consensus decision who were board-
certified. Myocardial tracer uptake was quantified as SUVmax,
SUVmean, and target to background ratio (TBR) from static
images 15 min after tracer injection. The background (blood
pool, right atrium) was quantified using a circular 1-cm-
diameter sphere. Tracer-uptake patterns in axial images were
assessed according to the 17-segment model of the American
Heart Association blinded for the affected coronary vessels
(culprit lesions). The left ventricle is divided into three areas: a.
LAD area including Seg. 1, 2, 7, 8, 13, 14, and 17; b. LCX area
including Seg. 5, 6, 11, 12, and 16; c. RCA area including Seg. 3,
4, 9, 10, and 15.

Statistical analysis

Statistical analyses were performed using SPSS software
version 25.0 (SPSS, Chicago, IL, United States), GraphPad
Prism (version 8.4.2; GraphPad Software, San Diego, CA,

FIGURE 1

Study flow chart. Patients were consecutively enrolled.
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United States), and the R language (version 3.6.31). Quantitative
values were expressed as mean ± SD or median and
appropriate range, and categorical variables were presented
as a rate or percentage. Shapiro–Wilk test for continuous
variables shows that all continuous variable data do not
meet normal distribution. A comparison of non-parametric
data was performed using a Wilcoxon test. For correlation
analyses, Kendall’s TaU-B test was used to test the correlation
between categorical and continuous variables. The Spearman
test was used to test the correlation between continuous and
continuous variables. THE Mann–Whitney U test was used for
univariate analysis of continuous and categorical variables. All
statistical tests were performed 2-sided, and P < 0.05 indicated
statistical significance.

1 http://www.r-project.org

Results

Patients’ characteristics

Detailed characteristics are presented in Table 1. From
05/2021 to 03/2022, N = 21 of 159 patients underwent PET
imaging for staging different kinds of cancers or for definitive
diagnosis with visual uptake of FAPI in the myocardium
(Figure 1). The majority of patients were male (17/21, 81.0%),
with an overall mean age of 60.1 ± 9.4 years at the time of the
PET scan. The overall mean left ventricular ejection fraction
(LVEF) is 59.3 ± 5.4%. Median levels of cardiac troponin
I (CTnI) at admission and peak creatine kinase isoenzyme
(CKMB) were 0.03 ng/ml (75th percentile > 0.5 ng/ml) and 1.1
ng/ml (75th percentile > 9.5 ng/ml), respectively. The calcific
plaque burden of LAD, LCX and RCA are 14 (66.7%), 12
(57.1%), and 9 (42.9%), respectively.

FIGURE 2

A 68-years-old male patient was diagnosed with ulcerative colitis and diabetes mellitus. (A) The whole-body MIP of Al18F-NOTA-FAPI-04 PET
imaging demonstrated diffused uptake pattern in LV (black arrow) and diffused uptake with colons. (B) The PET imaging showed the highest
uptake of SUVmax was 7.0 (black arrow). (C) Unfused CT image of the heart. (D) The fusion imaging showed the septal wall of prominent uptake
of FAPI-04.
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Visual and quantitative assessment of
myocardial FAPI uptake in the overall
cohort

FAPI imaging demonstrated moderate to intense myocardial
uptake on visual interpretation in all twenty-one patients. All
patients had diffused or focal uptake in the left ventricular
(LV) myocardium [21/21 (100%)], and five patients also
demonstrated tracer uptake in the right ventricular (RV) wall.
There were three distinct patterns: diffuse, focal on diffuse,
and focal. 6 out of twenty-one patients (28.6%) demonstrated
focal myocardial FAPI uptake above background, 4 patients
(19.0%) demonstrated diffused FAPI uptake, and the other 11
patients (52.4%) demonstrated focal on diffused FAPI uptake.
The highest SUVmax, SUVmean, and TBR were found at 15 min
with 7.0, 3.1, and 7.2, respectively (Figure 2). Average uptake
showed an SUVmax of 4.4 ± 1.2 (range, 2.6–7.0), SUVmean of
2.0 ± 0.5 (range, 1.2–3.1), TBR of 3.5 ± 1.3 (range, 1.8–7.2).

Signal intensity correlates with patient
characteristics and cardiovascular risk
factors

In the linear regression analysis, high left ventricular
SUVmax correlated with BMI (P < 0.05) and blood glucose level
(P < 0.05), and TBR correlated with age (P < 0.05) (Figure 3).
Correlation analysis showed a significant correlation between
BMI and FAPI uptake (SUVmax) (r = 0.44, P < 0.05), diabetes
mellitus and FAPI uptake (SUVmax) (r = 0.44, P < 0.05), age
and FAPI uptake (TBR) (r = −0.38, P < 0.05) (Figure 4A).
However, there was no significant difference in SUVmax between
BMI normal group and BMI overweight group (3.7 vs. 5.5,
P = 0.5); diabetes mellitus group, and non-diabetes mellitus
group (4.9 vs. 3.6, P = 0.26), TBR between age > 60 group and
age < 60 group (2.9 vs. 4.0, P = 0.3). There was also no significant
difference in FAPI uptake (SUVmean) in any cardiovascular
risk factor groups.

Association of myocardial FAPI uptake
with a blood test and left ventricular
ejection fraction

Strong correlation was demonstrated between SUVmean and
CTnImax (r = 0.711, P < 0.01), followed by a moderate
correlation between SUVmean and CKMBmax, TGmax,
respectively (r = 0.41, P < 0.05; 0.53, P < 0.01) (Figure 4A).
There was also a moderate correlation between SUVmax

and CTnImax, CKMBmax, and TGmax (r = 0.53, 0.61, and
0.53, all P < 0.01) (Figure 4A). TBR was only weakly
related to CKMBmax (r = 0.38, P < 0.05) (Figure 4A).
There was no significant correlation between other PET
parameters and myocardial injury markers. Negative
correlation of SUVmean and LVEF (r = −0.61, P < 0.01),
SUVmax and LVEF (r = −0.65, P < 0.01) were found,
indicating a moderate inverse relation between those
3 measurements. The multiple linear regression showed
CKMB and CTnI were independent risk factors for increased
SUVmax (R2 = 0.676, P < 0.01) and SUVmean (R2 = 0.690,
P < 0.01), respectively.

Association of myocardial FAPI uptake
in 17-segment model with DM, BMI,
blood test and left ventricular ejection
fraction

We noticed a significantly higher FAPI uptake in the septal
than the lateral segments (3.05 vs. 2.58, P = 0.005) when
analyzing FAPI SUVmax uptake in the 17-segment model of the
LV. In the correlation analysis, SUVmax of the Seg. 11, 12, 13,
and 16 correlated with the DM (r = 0.46, 0.56, 0.46 and 0.53,
all P < 0.05); SUVmax of the Seg. 1, 2, 7, 8, 12, 13, and 16
correlated with the BMI (r = 0.46, 0.44, 0.68, 0.58, 0.74, 0.71
and 0.49, all P < 0.05). A strong correlation was shown among
SUVmax of most segments of LV, CTnImax, CKMBmax, TGmax,
and LVEF (Figure 4B).

FIGURE 3

Linear regression analysis showed that blood glucose level and BMI were positively correlated with SUVmax, while age was negatively correlated
with TBR.
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FIGURE 4

(A) Heat map of cardiovascular risk factors, blood tests, and left ventricular ejection fraction associated with SUV uptake. BMI and DM
demonstrated a correlation with SUVmax (P < 0.05). Age showed a negative correlation with TBR (P < 0.05). (B) Heat map of correlation
analysis among SUVmax value of 17-segment of the left ventricle with DM, BMI, blood test, and LVEF.

The relationship between the
myocardial FAPI uptake and calcific
plaques of culprit vessel territory

The numbers of LAD, LCX, and RCA affected by calcified
plaques were 14, 12, and 9. In the univariate analysis, the
SUVmean of LAD, LCX, and RCA non-calcific areas showed
significantly higher than those of calcific areas (2.27 vs. 1.72,
2.06 vs. 1.31, 2.02 vs. 1.47, all P < 0.05) (Figure 5). ROC
curve for predicting calcified plaques by myocardial FAPI
uptake (SUVmean) in LAD, LCX, and RCA territory showed
areas under the curve (AUCs) were 0.786 (95%CI: 0.581–0.99),
0.759 (95%CI: 0.521–0.998), and 0.769 (95%CI: 0.559–0.978),

respectively (Figure 6). The SUVmean cutoff values of LAD, LCX,
and RCA areas were 1.988, 1.257, and 1.438, respectively. The
accuracy, sensitivity, and specificity of LAD, LCX, and RCA
areas were showed in Table 2. The ROC curve for predicting
calcified plaques by myocardial FAPI uptake (SUVmax and
SUVTBR) in LAD, LCX, and RCA territory were showed in
Supplementary figures A,B.

Discussion

Due to the lack of functional imaging techniques, early
detection of CVD has been unsatisfactory. A cardiac biopsy
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FIGURE 5

Violin plot of univariate analysis of FAPI uptake difference in left ventricular calcification and non-calcification region. “1” stands for the calcific
area, “0” stands for the non-calcific area. SUVmean demonstrated higher FAPI uptake in non-calcific areas than calcific areas.

is considered as the gold standard, but a diagnosis is not
immediately available. A biopsy can be falsely negative if there is
the patchy distribution of the pathology (16). Thus, myocardial
fibrosis needs to be evaluated non-invasively to monitor the
process of myocardial fibrosis. A fibroblast activation protein
(FAP) is an atypical type II transmembrane serine protease
with both endopeptidase and post-proline dipeptidyl peptidase
activity (17). Activated FAP is almost exclusively found in
wound healing and pathological conditions such as scar
formations (18), liver cirrhosis (19), inflammation (20) and
cancer (21).

Researchers conducted preclinical studies showing that anti-
fibrosis therapy inhibits static fibroblast activation and facilitates
fibroblast interconversion, resulting in improved left ventricular
function (22–26). A promising field of active research targets the
immune system to benefit injured hearts (24). Transferring T
cells expressing a chimeric antigen receptor against fibroblast
activation protein results in a significant reduction of cardiac
fibrosis and restoration of cardiac function after injury in mice
(23). After the coronary injury, Varasteh et al. showed that 68Ga-
FAPI uptake peaked at day 6 post-MI, most of which occurred
in the border-ischemic area (5). In contrast, some results suggest
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FIGURE 6

The ROC curve for predicting calcified plaques by myocardial
FAPI uptake (SUVmean) in LAD, LCX, and RCA territory showed
areas under the curve (AUCs) were 0.786 (95%CI: 0.581–0.99),
0.759 (95%CI: 0.521–0.998), and 0.769 (95%CI: 0.559–0.978),
respectively.

TABLE 2 Comparison of the difference in predictive ability between
the calcification and the SUVmean FAPI uptake.

ACC SEN SPE Cutoff AUC AUC.SE P-value

LAD 0.81 0.857 0.786 1.988 0.786 0.104 0.019

LCX 0.762 0.889 0.667 1.257 0.759 0.122 0.025

RCA 0.762 0.833 0.667 1.438 0.769 0.107 0.02

that FAP is not crucial for cell proliferation, adherence and
migration within the myocardium after MI (8). The lack of non-
invasive tools that can monitor fibroblast activation in humans,
however, has limited the success of translating these results to
human patients. This is due to the lack of non-invasive tools that
can monitor fibroblast activation in patients (5). Specifically,
myofibroblasts play a beneficial role in the adverse effects of
the long-term increase in reactive fibrosis, and the timing of
safe and effective anti-fibrotic therapy needs to be carefully
selected. Therefore, diagnostic strategies aimed at detecting
active myofibroblasts could better understand their presence in
damaged myocardium and evaluate the efficacy of anti-fibrosis
therapies (9, 10).

For the first time, this study describes cardiac FAPI uptake
patterns in patients undergoing PET imaging with Al18F-
NOTA-FAPI-04. As the most studied and reported FAPI tracer,
68Ga-FAPI-04 has the highest level of PET molecular imaging
research, but it is limited in its batch activity (21, 27). Al18F-
NOTA-FAPI-04 is a promising alternative that combines the
advantages of a chelator-based radiolabeling method with
the unique properties of fluorine-18 (27). Under convenient
manual operation, Al18F-NOTA-FAPI can be achieved with
high radiolabeling yields and specific activities (14). This study

reports an association between FAPI uptake and risk factors
for cardiovascular diseases. Diabetes mellitus, overweight, and
aging were associated with increased FAPI uptake, suggesting
metabolic changes and cardiac FAP activation might be related.

A major phenotypic characteristic of cardiac fibroblasts
that respond to stimulation is increased proliferation in the
myocardium. Cardiac FAP activation has been reported in
a variety of pathological conditions (3, 28–30). Myocardial
fibrosis after myocardial infarction has been reported in
several studies (5, 9, 11, 31). Radiotracer delivery may be
inadequate in infarcted areas, explaining this pattern of tracer
uptake. There is a need for these studies to assess whether
FAPI can image the reaction of fibroblasts during coronary
intervention. As reported by Nagaraju et al. in an MI pig
model, upregulated expression of TGF-β1, a strong stimulator
for fibroblast differentiation and positive FAP-α staining, was
seen in the border and remote myocardium in addition to the
scar region, suggesting that the activation of fibroblasts can
occur in the non-infarcted area (28).

According to our study, myocardial fibrosis can still be
detected by FAPI imaging under cardiovascular risk factors
even in the absence of coronary artery occlusion, providing
more evidence for clinical decision-making. As part of our
current research on cardiac tracer accumulation in humans,
we found that approximately 13.2% (21/159) of individuals
in this cohort showed cardiac tracer accumulation in an
unselected population. These results suggest that FAPI PET/CT
imaging may assist in the visualization of myocardial injury.
Accumulation of FAPI is likely to be caused by prior myocardial
injury associated with CVD. FAPI accumulation revealed that
patients with FAPI accumulation were older and more likely
to have diabetes mellitus, obesity and lower LVEF. This is
consistent with other studies’ data suggesting that LV function
(32, 33), age (34), and especially DM (35) are associated with
myocardial fibrosis.

Our study showed that SUVmax values were positively
correlated with blood glucose and BMI, but not SUVmean or TBR
values. This might be because SUVmax measured the maximum
value of the region of interest, which was higher than the average
value, and achieved an excellent observation. TBR values were
negatively correlated with age, which may indicate that the
progression of myocardial fibrosis is gradually declining with the
prolongation of the disease, thus affecting the uptake of FAPI.
Interestingly, however, SUVmax and SUVmean did not show a
meaningful correlation, which reflects the importance of FAPI-
PET multi-parameter analysis, and further observation is still
needed in follow-up large-sample studies. Patients with multiple
risk factors showed a greater increase than those with a single
risk factor. FAPI enrichment is a hallmark of metabolic diseases
such as diabetes and obesity (36). Both diabetes mellitus and
transaortic constriction promote cardiomyocyte hypertrophy
and excessive cardiac fibrosis based on animal studies (37,
38). According to these models, cardiac fibrosis is caused by
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activated inflammatory pathways and TGFβ/Mothers Against
Decapentaplegic Homolog Protein signaling (8, 35). There may
be a simultaneous dysregulation of metabolic and hypertrophic
pathways in the human heart responsible for the increase in
FAPI uptake. Previous studies demonstrated circulating FAP
and TGF-β1 levels significantly declined (31). The inconsistency
between tissue-level and circulating-level biomarkers raises
the possibility that peripheral biomarkers may not be reliable
indicators of tissue status (39).

Additionally, we demonstrated that FAPI uptake exhibits
an inverse relationship with left ventricular systolic function,
as well as a positive relationship with maximum CTnImax,
CKMBmax, and TGmax, reflecting the extent of myocardial
damage. Kessler L et al. also demonstrate a strong inverse
correlation between the amount of activated fibroblasts and left
ventricular systolic function as well as a very strong positive
correlation between the amount of activated fibroblasts and
maximum CK reflecting the extent of myocardial damage (11).
A minimal change in LVEF may accompany progressive fibrosis.
It can help with identifying a high-risk cohort and individuals
with DCM (40). This suggests that visualization of FAP
expression by FAPI PET/CT imaging could help determine the
degree of myocardial damage following DM in progressive CAD
and other chronic myocardial diseases. A strong correlation
between the FAPI uptake, the peak cTnI/CKMB/TG serum
levels, and the LVEF in our study demonstrates that FAPI
PET/CT might be an accurate assessment of myocardial damage.
The serum levels of cardiomyocyte injury markers (LDH, CK-
MB, and CTnI), TG, and TC were also increased in CHD rats
(41). This finding may lead to the potential of the FAPI PET
imaging method to assist in hazard risk stratification in CVD
patients (11).

Different extracellular matrix components have been
evaluated for molecular imaging of cardiac fibrosis, and
several candidate biological processes have been evaluated.
(42). However, fibrosis is the outcome of fibroblast activation.
Reversing the deposition of collagen and other proteins in ECM
is often a challenge once fibrosis has occurred. Indirect evidence
of collagen deposition or fiber formation can be derived from
the evaluation of fibroblast activation. As a result, it determines
when fibrosis can still be prevented and the course of the disease
altered (43, 44). According to Stein S et al., constitutive deletion
of FAP decreases experimental atherosclerosis progression and
increases plaque stability with reduced collagen breakdown (45).

Our data showed higher SUVmean uptake in non-calcific
coronary artery territory, which may be a critical measurement
in estimating the developmental stage of myocardial fibrosis.
Since calcification is a late result of coronary plaques, using
SUV value stratification can help identify coronary plaque
activity and intervene in advance. Our cohorts’ data showed
that SUVmean has certain diagnostic efficacy in distinguishing
calcified and non-calcified plaques. Due to the focal type
of FAPI uptake in most myocardium, SUVmax values in

other myocardium uptake regions were near the low level
of background, except for the higher SUVmax values in the
myocardium uptake regions. SUVmean values seem to reflect the
overall FAPI uptake of the myocardium in the case of low FAPI
uptake in most myocardial regions. Studies in combination
with coronary angiography or CTA examination should be
intensified in the future.

Limitations

This study has several limitations. An analysis of FAPI
imaging was conducted on a small group of individuals with
varying levels of cardiovascular risk, limiting the interpretation
of statistical relationships between PET parameters, biomarkers,
and LVEF. However, the study is a retrospective pilot
investigation on a heterogeneous group of patients, allowing
for a more accurate assessment of fibroblast activation under
different circumstances. Our patients typically had multivessel
coronary artery disease, which presented another limitation.
Since not all patients underwent coronary CTA or coronary
arteriography, this study cannot determine the extent to which
other non-culprit stenoses influenced the tracer uptake. There
is no comparison with alternative imaging methods of cardiac
fibrosis, such as MRI, since the complementary anatomical,
functional and molecular information provided by hybrid
systems can simplify the evaluation procedure of various
pathologies in a routine clinical setting. Subsequent more
detailed population classification and large sample study is the
direction of research.

Conclusion

Al18F-NOTA-FAPI PET imaging can reflect the process
of myocardial fibrosis. FAPI PET imaging is helpful for early
intervention and treatment in patients at elevated risk of
CVD, especially in patients with diabetes, obesity, and the
elderly. Meanwhile, the combination of FAPI PET imaging
with coronary artery CTA, nuclear magnetic myocardial
perfusion imaging, echocardiography, and other non-invasive
examination methods may significantly improve the accuracy of
the assessment of myocardial fibrosis degree. Finally, applying
different parameters of FAPI PET imaging such as SUVmax,
SUVmean, SUVpeak, and TBR to evaluate myocardial fibrosis is
still worthy of further investigation.
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SUPPLEMENTARY FIGURE 1

(A) The ROC curve for predicting calcified plaques by myocardial FAPI
uptake (SUVmax) in LAD, LCX, and RCA territory showed areas under the
curve (AUCs) were 0.633 (95%CI: 0.365–0.9), 0.565 (95%CI:
0.294–0.835), and 0.537 (95%CI: 0.269–0.805), respectively. (B) The
ROC curve for predicting calcified plaques by myocardial FAPI uptake
(SUVTBR) in LAD, LCX, and RCA territory showed areas under the curve
(AUCs) were 0.663 (95%CI: 0.414–0.913), 0.565 (95%CI: 0.308–0.822),
and 0.63 (95%CI: 0.358–0.902), respectively.
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