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Introduction: Allogeneic hematopoietic cell transplantation (allo-HCT) o�ers

a potential cure for high-risk hematological malignancy; however, long-term

survivors experience increased cardiovascular morbidity and mortality. It is

unclear how allo-HCT impacts cardiovascular function in the short-term.

Thus, this 3-month prospective study sought to evaluate the short-term

cardiovascular impact of allo-HCT in hematological cancer patients, compared

to an age-matched non-cancer control group.

Methods: Before and ∼3-months following allo-HCT, 17 hematological

cancer patients (45 ± 18 years) underwent cardiopulmonary exercise

testing to quantify peak oxygen uptake (VO2peak)—a measure of integrative

cardiovascular function. Then, to determine the degree to which changes

in VO2peak are mediated by cardiac vs. non-cardiac factors, participants

underwent exercise cardiac MRI (cardiac reserve), resting echocardiography

(left-ventricular ejection fraction [LVEF], global longitudinal strain [GLS]),

dual-energy x-ray absorptiometry (lean [LM] and fat mass [FM]), blood pressure

(BP) assessment, hemoglobin sampling, and arteriovenous oxygen di�erence

(a-vO2di�) estimation via the Fick equation. Twelve controls (43 ± 13 years)

underwent identical testing at equivalent baseline and 3-month time intervals.

Results: Significant group-by-time interactions were observed for absolute

VO2peak (p = 0.006), bodyweight-indexed VO2peak (p = 0.015), LM

(p = 0.001) and cardiac reserve (p = 0.019), which were driven by 26, 24,

6, and 26% reductions in the allo-HCT group (all p ≤ 0.001), respectively,

as no significant changes were observed in the age-matched control group.

No significant group-by-time interactions were observed for LVEF, GLS, FM,

hemoglobin, BP or a-vO2di�, though a-vO2di� declined 12% in allo-HCT

(p = 0.028).

Conclusion: In summary, allo-HCT severely impairs VO2peak, reflecting

central and peripheral dysfunction. These results indicate allo-HCT rapidly

accelerates cardiovascular aging and reinforces the need for early preventive

cardiovascular intervention in this high-risk group.

KEYWORDS

cardiac function, cardiopulmonary fitness, hematological cancer, exercise testing,

cardiotoxicity, cardiovascular disease
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Introduction

Hematological malignancies accounted for 1.28 million

(6.6%) and 711, 840 (7.1%) cancer diagnoses and deaths

globally in 2020 (1). Accordingly, allogeneic hematopoietic cell

transplantation (allo-HCT) rates to manage these malignancies

have more than doubled between 2006–2016 (2). This

increase in allo-HCT, combined with advances in human

leukocyte antigen-matched donor selection, graft-vs.-host

disease (GvHD) prevention and management, and supportive

care have contributed to a progressive growth in long-term

cancer survivors (3, 4). However, the curative potential of

allo-HCT continues to be offset by significant cardiovascular

morbidity and mortality. Indeed, compared to age-matched

non-cancer controls, long-term allo-HCT survivors (≥2 y)

experience elevated rates of cardiovascular disease (CVD)

(5–9) and serious cardiovascular events (9–11), culminating

in a 2-to-4-fold increased risk of premature cardiovascular

mortality (11, 12). These data provide compelling evidence

of an accelerated cardiovascular aging phenotype among

allo-HCT survivors and have sparked a call for studies aimed

at understanding allo-HCT-induced CVD in order to inform

efficacious preventive intervention (13).

The paradigm explaining the deterioration in cardiovascular

health among allo-HCT survivors suggests there are multiple

contributing factors including: the cancer itself (14); anti-

cancer therapies (15); prolonged bedrest resulting in muscle

loss and physical deconditioning (16); and the inflammatory

perturbations of allografting which is exacerbated by GvHD

and its prophylaxis/treatment (17, 18). Importantly, evidence

extrapolated from studies with overlapping exposures suggests

these insults are particularly deleterious to the heart (15–17),

but also impact the entire cardiovascular-hematological-skeletal

muscle axis (15–21). However, despite evidence of accelerated

cardiovascular aging in long-term allo-HCT survivors (e.g.,

premature onset of overt CVD and related mortality), few

studies have prospectively characterized the short-term

cardiovascular impact of allo-HCT. Further, the cardiovascular

impact of allo-HCT has been minimally characterized using

sensitive biomarkers or state-of-the-art, high-resolution

physiological testing at any point of the allo-HCT survivorship

continuum. Therefore, the clinical trajectory and pathogenesis

of allo-HCT related CVD remains unclear—two factors integral

for informing the design (e.g., type and timing) of efficacious

cardiovascular intervention.

Early detection of cancer treatment-related cardiac

dysfunction is critical to facilitate prompt intervention and

more effectively prevent irreversible damage and long-term

morbidity. Accordingly, the application of exercise stress

for the quantification of cardiovascular reserve (defined as

the increase in cardiovascular function from rest to peak

exercise) has emerged as an efficacious approach in unmasking

subclinical cardiovascular pathology (22–24), and predicting

all-cause, cardiovascular, and cancer-specific mortality (25–

27). Cardiovascular reserve can be evaluated via a specific

approach using exercise cardiac magnetic resonance imaging

(exercise CMR) to directly quantify cardiac reserve (ability

to augment cardiac output during exercise), or an integrative

approach using cardiopulmonary exercise testing (CPET) for

the assessment of peak oxygen uptake (VO2peak). Importantly,

beyond capturing cardiac reserve, VO2peak also encapsulates

the integrative function of non-cardiac, “peripheral” organ

systems (hematological, vascular, skeletal muscle), which play

an important role in the pathogenesis and pathophysiology of

CVD (28–31), and are postulated to be impaired by allo-HCT.

Hence, early cardiovascular follow-up with exercise-based

measures that can provide a more accurate and comprehensive

characterization of central and peripheral organ functioning

may aid in guiding improved diagnostic and therapeutic

approaches necessary to prevent long-term cardiovascular

morbidity in this high-risk patient group.

Therefore, this 3-month prospective study sought to

evaluate the short-term cardiovascular impact of allo-HCT,

assessed primarily as VO2peak and cardiac reserve, with

direct comparison to an untreated age-matched non-cancer

control group.

Methods

Study population and design

We performed a prospective cohort study comparing adults

with hematological cancer scheduled for allo-HCT and age-

matched non-cancer controls. Allo-HCT patients were recruited

via direct referral from the Alfred Health HCT coordinators

in Melbourne, Australia. Controls were recruited from the

community who responded to advertisements seeking ostensibly

healthy adults. Exclusion criteria for both groups included:

(1) age <18 years, (2) inability to speak/understand English,

and (3) known contraindications to CPET or CMR (i.e.,

injury, pacemaker, implanted metallic foreign body or device).

Additional exclusion criteria for controls included: (1) BMI

≥35 kg.m−2, (2) presence of a significant underlying medical

condition(s), and (3) participation in ≥150-min of moderate

intensity or ≥75-min of vigorous intensity aerobic physical

activity per week.

Study protocol and experimental
measurements

Participants underwent a comprehensive battery of

physiological testing on two occasions. The allo-HCT group

underwent testing prior to [median [IQR], 16 (11–27) days],
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and ∼3-months following allo-HCT, while controls underwent

identical testing, on two time-points, ∼3-months apart.

Participants were asked to refrain from moderate to vigorous

intensity physical activity in the 24-h preceding testing and

abstain from alcohol and caffeine on the day of testing.

Participant medical history

A complete medical history of the allo-HCT patients

was obtained from the Alfred Health Clinical Database

and information relating to diagnosis, cardiovascular risk

profile, prior treatment history, allo-HCT (donor, graft

source, conditioning intensity, GvHD prophylaxis, GvHD

status) and current medication use were recorded. A general

lifestyle questionnaire was administered to controls to obtain

information relating to current health status and relevant

medical history including use of any medications.

Cardiopulmonary fitness

An incremental ramp protocol CPET was conducted on

an electronically braked cycle ergometer (Lode Excalibur Sport,

Groningen, the Netherlands) for the measurement of VO2peak.

Briefly, participants cycled at 10–25Watts for 1-min, after

which, the workload increased at a progressive rate of 10–

30 Watts.min−1 until volitional fatigue. The ramp protocol

was individualized according to participant age, weight, self-

reported exercise capacity, and physical activity history, with

the intention of achieving volitional fatigue within 8-to-12-

min. Breath-by-breath expired air gas analysis was performed

continuously throughout testing using a calibrated metabolic

cart (Vyntus CPX, Carefusion, San Diego, USA). Blood pressure

(BP) was measured at 2-min intervals using an ECG-gated

electrosphygmomanometer BP cuff (Tango M2 Stress Test

Monitor and Orbit-K Blood Pressure Cuff, SunTech Medical

Inc. Morrisville, USA). Heart rate (HR) and electrical activity

were monitored continuously with a 12-lead electrocardiogram

(VyntusTM ECG 12-lead PC-ECG, Vyaire Medical, Mettawa,

USA). VO2peak was defined as the average of the six

consecutive highest 5-sec VO2 values, and percent of age-,

height-, weight and sex-predicted VO2peak was calculated

according to the FRIEND reference equation (32). VE/VCO2

was assessed from linear regression of VE and VCO2 values

as it has been validated as an important prognostic marker

in patients with heart failure, independent of VO2peak (33).

Contraindications to CPET adhered to the American Thoracic

Society recommendations (34). In addition, a lower limit of

80 g.L−1 of hemoglobin was employed in line with clinical

hemoglobin transfusion thresholds.

Resting cardiac function

Resting cardiac function was evaluated via echocardiogram

(Vivid E95, General Electric Medical Systems, Milwaukee,

Wisconsin). Images were collected, saved in a digital format, and

analyzed offline (Echopac v13.0.00, GE, Norway) by a trained

sonographer. A three-dimensional full-volume dataset was

acquired to measure left-ventricular ejection fraction (LVEF).

Two-dimensional speckle tracking echocardiography-derived

global longitudinal strain (GLS) was quantified from three

apical views at a temporal resolution of 60–90 frames.sec−1

with GLS defined as the average negative value of the strain

rate curves.

Peak cardiac function and cardiac reserve

The biventricular response to exercise was evaluated using a

validated real-time CMR method (35). Exercise was performed

within the CMR bore using an electronically braked supine

cycle ergometer (MR Ergometer Pedal, Lode, Groningen, the

Netherlands). Cardiac images were acquired using a Siemens

MAGNETOM Prisma 3.0T CMR with a five-element phased

array coil at rest and during exercise at 60% of the maximal

power output achieved during CPET as this approximates

maximal exercise capacity in supine (35). Real-time steady-state

free-precession cineMR imaging was performedwithout cardiac

or respiratory gating at a temporal resolution of 36–38ms and a

three-dimensional stack of 10–18 adjoining 8-mm image slices,

encapsulating both ventricle and atria, were acquired in the short

axis (SAX) and horizontal long-axis (HLA) planes.

Real-time cine images were analyzed offline in RightVol

(KUL, Leuven, Belgium). End-diastole and end-systole were

retrospectivelymarked at end-expiration, and the left- and right-

ventricular endocardia (papillary muscles and trabeculations

included in the blood pool) were manually contoured on

the SAX images, with reference to the atrioventricular valve

plane in the HLA. Ventricular volumes were quantified

at rest and peak exercise via the summation of disc

method. Stroke volume index (SVI) was calculated as the

difference between end-diastolic volume and end-systolic

volume, indexed to body surface area (BSA), while cardiac

index (CI) was calculated as stroke volume multiplied by

HR, indexed to BSA. Left- and right-ventricular ejection

fractions (LVEF, RVEF) were calculated as SV/end-diastolic

volume, multiplied by 100. Cardiac (CI, SVI, HR) and

contractile (LVEF, RVEF) reserve were defined as the ability

to augment cardiac function from rest to peak exercise

(peak values—rest values). Arteriovenous oxygen difference

(a-vO2diff) was estimated via the Fick equation using

CPET-derived VO2peak and exercise CMR-derived peak

cardiac output.

Biochemistry

Blood samples were collected in the morning after an

overnight fast to measure hemoglobin concentration, cardiac

Troponin-I (cTn-I) and B-natriuretic peptide (BNP).
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Anthropometry and body composition

Height (m) and body mass (kg) were assessed and used to

calculate BMI and BSA. Total lean mass (LM, kg), fat mass (FM,

kg) and percentage body fat (%BF) were quantified using dual-

energy X-ray absorptiometry (GE Lunar iDXA, GE Healthcare,

Little Chalfont, UK), with scansmanually analyzed using enCore

software (version 14.10.022).

Blood pressure

After resting in the supine position for 10-min in a quiet

room, resting BP and HR were measured in triplicate at the

brachial artery using an automated oscillometric BP monitor

(OMRONHEM-907, OMRONCorporation, Tokyo, Japan). The

average of three measurements was used for analysis.

Definitions of cardiotoxicity and functional
disability

Cardiotoxicity was defined using standard

echocardiography criteria (15): (1) an absolute reduction

in LVEF of >15%, to a value >50%, (2) an absolute reduction

in LVEF of >10%, to a value <50% and (3) a >12% relative

reduction in GLS. Functional disability was defined as VO2peak

<18 ml.kg−1.min−1 as per the American Heart Association

Scientific Statement (36).

Sample size

The sample size calculation for the allo-HCT group was

based on the reported reduction in VO2peak following 4-weeks

of bedrest in healthy individuals (37). Indeed, the pooling of 19

bedrest investigations suggests %1 VO2peak can be explained

by the linear regression = 1.4–0.85 (days), r = −0.73 (37).

Considering the average hospital stay for allo-HCT patient is 28

days, a∼22.4% reduction in VO2peak was expected. To account

for normal variation in test-retest reproducibility (4.4%), the

study was powered to detect an 18% difference between allo-

HCT and non-cancer control groups. With estimated standard

deviation of 12% (obtained from our study in women treated

for breast cancer), 15 allo-HCT and 8 non-cancer control

completions were deemed necessary (SD = 12%; 90% power;

alpha = 0.05). Sample size was increased ∼20% to account for

possible drop-out.

Statistical analysis

Analysis was performed using SPSS software (version 24.0,

Statistical Package for the Social Sciences, IBM, Chicago, USA).

Continuous data were inspected for normality, linearity and

homoscedasticity and presented as mean ± SD or mean (95%

CI). Categorical data are presented as n (%). Independent t-

tests or Fishers exact tests were performed to assess baseline

group differences for continuous and categorical variables,

respectively. Treatment effects were assessed via generalized

linear mixed modeling with covariance structure informed by

the Akaike information criteria. The model included time as the

repeated measure, group and group-by-time as fixed effects, and

participants as random effects. Findings remained unchanged

when adjusting for sex, thus, unadjusted results are presented.

Within-group changes after 3-months are expressed as mean

(95% CI) change from baseline and between-group differences

for the mean changes after 3-months [net difference (95% CI)]

were calculated by subtracting the within-group changes from

baseline for controls from the within-group changes for allo-

HCT. CTn-I was transformed to yield a normal distribution

before analysis. Two-sided p < 0.05 indicated significance.

Results

Participant characteristics and
transplant-related information

Twenty-six individuals scheduled for allo-HCT (17 men, 9

women) and 12 age-matched non-cancer controls (5 men, 7

women) were recruited and completed all baseline assessments.

After 3-months, all controls (100%) and 17 (65%; 12 men, 5

women) allo-HCT participants completed follow up (n = 7

deceased, n = 1 declined due to perceived incapacity, n = 1

lost-to-follow-up) and were included in analyses. There were no

significant differences in baseline participant characteristics or

transplant-related factors between allo-HCT recipients who did

and did not complete follow-up (see Supplementary Table S1).

Characteristics of the allo-HCT and control participants

who completed follow-up are summarized in Tables 1, 2. There

were no significant differences in demographic, anthropometric

or traditional cardiovascular risk factors between allo-

HCT recipients and controls (Table 1). However, allo-HCT

recipients had a significantly lower VO2peak (p < 0.001),

cardiac reserve (p = 0.004), LVEF (p = 0.043), and GLS (p =

0.018), relative to controls (Table 1). Acute myeloid leukemia

was the most common transplant indication (65%) among

allo-HCT recipients, and treatment history was diverse (A

more detailed summary of prior treatments is provided in

Supplementary Table S1). Sixteen participants (94%) had

previous chemotherapy exposure, with anthracycline and anti-

metabolite agents most frequently administered (both 82%).

With regard to transplant related factors, the most common

donor type, graft source, conditioning intensity and GvHD

prophylaxis were unrelated, peripheral blood, reduced intensity,

and methotrexate/ciclosporine, respectively (Table 2).
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Exercise capacity

As shown in Figures 1A,B, a significant between-group

difference existed for the net change over 3-months for

absolute (−0.4 L.min−1 [95% CI −0.7, −0.1]; group-by-time-

interaction, p = 0.006) and bodyweight-indexed VO2peak

(−4.5ml.kg−1.min−1 [95% CI −8.1, −0.9]; group-by-time

interaction, p = 0.015), due to a 26% (−0.5 L.min−1 [95%

CI −0.7, −0.3]; p < 0.001) and 24% (−5.4ml.kg−1.min−1

[95% CI −7.7, −3.1]; p < 0.001) decline in allo-HCT

recipients, respectively, and no significant change in controls.

Consequently, allo-HCT recipients achieved a follow-up

VO2peak that was, on average, 49% below predicted (-16% from

baseline; p < 0.001), with 53% considered functionally disabled.

As shown in Table 3, significant between-group differences

(group-by-time interactions) were also observed for peak power

output (p < 0.001) and percentage of age-predicted HRpeak
(p = 0.005), which was driven by a 30% and 11% reduction

from baseline in the allo-HCT recipients (both p < 0.001)

as no significant change was observed in controls. A similar

significant group-by-time interaction was noted for VE/VCO2

slope (p = 0.008), which was due to a 17% increase in allo-HCT

recipients (p < 0.001) as there was no change in controls. Peak

a-vO2diff declined 12% in allo-HCT recipients (p = 0.028), but

a significant between-group difference for the net change from

baseline was not observed (interaction, p= 0.23), due to a slight,

non-significant downward shift in controls.

Resting cardiac function and cardiac
biomarkers

Echocardiographic measures of resting cardiac function

and cardiac biomarkers were unchanged in both groups at

3-months (Table 4). No participants developed overt CVD or

met LVEF cardiotoxicity criteria, but one allo-HCT recipient

commenced treatment for arrhythmia, and three allo-HCT

recipients and two controls had clinically significant GLS

declines. One allo-HCT recipient had a post-treatment troponin

>15 ng.L−1 and two had a post-treatment BNP >100 ng.L−1,

totalling a 35% incidence of subclinical cardiac pathology in

allo-HCT and 17% in controls (between-group difference,

p= 0.41).

Peak cardiac function and cardiac reserve

As shown in Table 4, allo-HCT was associated with a 13%

reduction in CIpeak (p< 0.001) and a 9% reduction in SVIpeak (p

= 0.003), but no change in HRpeak. CIpeak, SVIpeak and HRpeak
remained unchanged in controls, resulting in a net group

difference for the change at 3-months for CIpeak (interaction,

p = 0.042), a trend toward a significant net group difference for

TABLE 1 Baseline characteristics for Allo-HCT and Control

participants who completed baseline and follow-up assessments.

Allo-HCT Control

(n = 17) (n = 12)

Sex, % male 70% 42%

Age, years 45± 18 43± 13

Weight, kg 80.7± 18.0 74.3± 14.4

Body mass index, kg.m−2 27.4± 6.2 24.6± 3.7

Cardiovascular function

LVEF, % 54.7± 5.5* 59.5± 5.7*

GLS, % −17.8± 2.0* −20.0± 2.4

CI Reserve, L.min−1 .m−2 3.8± 1.4** 5.9± 1.7

VO2peak, ml.kg−1 .min−1 22.9± 8.0*** 34.8± 8.1

VO2peak, % predicted 67± 12*** 104± 16

Functional disability, n (%) 5 (29) 0 (0)

Cardiovascular risk factors, n (%)

Hypertension 4 (24) 0 (0)

Hyperlipidaemia 2 (12) 0 (0)

Diabetes 1 (6) 0 (0)

Body mass index ≥25 kg.m−2 9 (53) 5 (42)

Previous cardiovascular event 2 (12) 0 (0)

≥1 cardiovascular risk factor 10 (59) 5 (42)

Cardiovascular medications, n (%)

Statin/Cholesterol absorption inhibitor 1 (6) 0 (0)

Antihypertensives 2 (12) 0 (0)

Beta–blocker 1 (6) 0 (0)

Antidiabetic 1 (6) 0 (0)

Non–steroidal anti–inflammatory 3 (18) 1 (8)

Diagnosis, n (%)

Acute myeloid leukemia 11 (65) n/a

Non–Hodgkin lymphoma 3 (18) n/a

Acute lymphoblastic leukemia 2 (12) n/a

Myelodysplasia 1 (6) n/a

Prior cancer treatment, n (%)

No prior treatment 1 (6) n/a

Chemotherapy 16 (94) n/a

Cumulative anthracycline dose, mg.m−2 180 (100−270) n/a

Targeted Therapy 5 (29) n/a

Immunotherapy 3 (18) n/a

Radiation 2 (12) n/a

Autologous stem cell transplant 1 (6) n/a

Data are mean± SD, median (IQR) or n (%). CI, cardiac index; GLS, global longitudinal

strain; LVEF, left-ventricular ejection fraction; VO2peak, peak oxygen uptake. *p < 0.05,

**p < 0.01, ***p < 0.001 vs. control.

SVIpeak (interaction, p = 0.058), but not HRpeak (interaction,

p = 0.37). With respect to peak biventricular contractility,

LVEFpeak and RVEFpeak remained unchanged in controls but

decreased (absolute) 1.9% (p = 0.033) and 3.2% (p = 0.004),
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TABLE 2 Transplant related information for Allo-HCT participants that

completed baseline and follow–up assessments.

N (%)

Donor type

Related 8 (47)

Unrelated 9 (53)

Graft source

Bone marrow 3 (18)

Peripheral blood stem cell 14 (82)

Conditioning intensity

Myeloablative 7 (41)

Reduced Intensity 10 (59)

Conditioning regimen

Ciclosporin/TBI 6 (35)

Flu/Mel 6 (35)

Flu/Mel/Campath 3 (18)

ETP/TBI 1 (6)

LACE 1 (6)

GvHD prophylaxis

MTX/Ciclosporin± ATG 10 (59)

PTCy/Ciclosporin 4 (24)

Ciclosporin 2 (12)

TAC 1 (6)

Acute GvHD grade

No GvHD 10 (59)

Grade I 6 (35)

Grade II 1 (6)

Hospital length of stay, days 31 (21–39)

Data are n (%) or median (range). ATG, ATGAM thymoglobulin; ETP, Etoposide;

Flu, Fludarabine; GvHD, Graft–vs.–host disease; LACE, Lomustine, Cytarabine,

Cyclophosphamide, Etoposide; Mel, Melphalan; MTX, Methotrexate; PTCy, Post–

transplant Cyclophosphamide; TAC, Tacrolimus; TBI, Total body irradiation.

respectively, following allo-HCT, leading to a significant group-

by-time interaction for RVEFpeak (p= 0.010), but not LVEFpeak
(p= 0.14).

Results pertaining to changes in cardiac and contractile

reserve (ability to augment function above resting) are shown

in Figures 2A–E. CI, SVI and HR reserve were unchanged in

controls at 3-months, but were further blunted in allo-HCT

recipients (p = 0.001, p = 0.010, p = 0.020, respectively),

resulting in a net group difference for the change at 3-months

for CI reserve (interaction, p = 0.019) and trends toward

significant net group differences for SVI reserve and HR

reserve (interaction, p = 0.081 and p = 0.056, respectively).

A significant interaction was observed for RVEF reserve

(p = 0.010), due to a blunted augmentation from rest to

peak exercise in allo-HCT (p = 0.001) and no change in

controls. There were no within- or between-group differences

for LVEF reserve.

Body composition and indices of vascular
and hematological function

Weight declined 3.8 kg in allo-HCT recipients (p = 0.002),

but this was not significantly different from the change in

controls (−0.6 kg, p = 0.65; interaction, p = 0.082) (Table 5).

Conversely, allo-HCT recipients experienced a significant net

loss of 3.2 kg in LM relative to controls after 3-months

(interaction, p = 0.001). No significant changes existed in

either group for FM, %BF, hemoglobin, or BP. Three allo-HCT

recipients and one control developed new-onset hypertension

at 3-months, totaling a 35 and 8% prevalence, respectively

(between-group difference, p= 0.19).

Discussion

To our knowledge, this is the first study to prospectively

evaluate the short-term cardiovascular impact of allo-HCT

among early transplant survivors, with comparison to an age-

matched control group. Utilizing novel, state-of-the-art, non-

invasive measures of cardiac function, this study demonstrated

that, relative to matched controls, patients scheduled for allo-

HCT presented with marked impairment in VO2peak and

cardiac reserve. Importantly, we extend these findings and

demonstrate that VO2peak and cardiac reserve deteriorate

further in the 3-months following allo-HCT. Moreover, such

impairments coincided with a reduction in a-vO2diff which

makes an important contribution to the symptomatology of

cardiovascular disorders such as heart failure (30). Collectively,

these findings provide evidence of an accelerated cardiovascular

aging phenotype that is present prior to transplant but is further

exacerbated by the transplant and hospitalization process.

The inverse relationship between VO2peak and risk

of cardiovascular morbidity, cardiovascular mortality, all-

cause mortality, and cancer-specific mortality has been well

established (25–27). In the present study, we observed a

26 and 24% reduction in absolute and bodyweight-indexed

VO2peak in allo-HCT recipients over 3-months, which was∼9-

fold greater than that observed in age-matched controls and

approximates the degree of cardiovascular aging expected over

24 years of normal aging (38). While the 5.4ml.kg−1.min−1

decline in VO2peak in allo-HCT recipients is profound,

the true vulnerability of this population becomes especially

evident when viewed in the context of the already diminished

cardiovascular function prior to undergoing allo-HCT. Indeed,

evidence from large prospective studies in ostensibly healthy

non-cancer populations demonstrates that for each 1 MET

(3.5ml.kg−1.min−1) decrement in VO2peak, the risk of

incident heart failure and all-cause mortality increases 16–

21 and 25%, respectively (25, 39). In the present study, allo-

HCT recipients achieved a VO2peak at follow-up that was

50% (16.4ml.kg−1.min−1 or 4.7 METs) lower than controls,
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FIGURE 1

(A,B) Mean (95% CI) 3-month change from baseline in absolute and bodyweight-indexed VO2peak in Allo-HCT and Control assessed by

cardiopulmonary exercise testing. There was a significant between-group di�erence for the net change from baseline for absolute and

bodyweight-indexed VO2peak (p = 0.006 and p = 0.015, respectively), which was due to a significant decrease in allo-HCT and no change

in controls.

but of clinical relevance is that 53% of allo-HCT recipients

were classified as being functionally disabled (VO2peak

<18ml.kg−1.min−1) at 3-months. This threshold has been

associated with a reduced capacity to independently perform

activities of daily living (40), and serves as a strong prognostic

threshold, below which, the risk of incident heart failure and

all-cause mortality are heightened 7-to-9-fold (26, 36). Notably,

cross-sectional evaluation of VO2peak among long-term allo-

HCT survivors (median time since allo-HCT, 9.8 years [range,

3−20]) indicates that these deleterious impairments in VO2peak

do not fully recover over time, remaining substantially lower

than predicted (22% below predicted) (7). Taken together, and

consistent with the increased cardiovascular burden reported

among long-term survivors (5–7, 9–12), these findings infer

that allo-HCT recipients face a substantially greater risk of

developing CVD relative to controls and provide novel insight

into the potential trajectory of cardiovascular dysfunction in

this cohort.

Dissecting the cardiac contribution to these reductions in

VO2peak is critical given the potential role for pharmacological

and non-pharmacological (i.e., lifestyle) interventions to

attenuate cardiotoxicity. Using state-of-the-art exercise CMR,

we provide the first evidence that treatment with allo-HCT

significantly blunts cardiac reserve. Indeed, compared to

pre-transplant, allo-HCT recipients experienced a blunted

increase in SVI and HR from rest to peak exercise, resulting

in a reduced augmentation in CI during exercise. These

changes are indicative of myocardial injury/maladaptation—

likely ascribed to both direct (i.e., cardiotoxic conditioning

regimens) and indirect (i.e., physical inactivity, sedentary

behavior) pathological perturbations (15, 16). The exact

pathological mechanisms of allo-HCT induced cardiotoxicity

are incompletely understood, but growing evidence suggests

chemotherapy, radiotherapy, physical inactivity, and the

allograft itself (by way of alloreactive donor T cell mediated

immune and pro-inflammatory cytokine activation) can

perturb the redox and inflammatory balance, which would

theoretically lead to DNA damage, mitochondrial dysfunction,

impaired sarcoplasmic reticulum calcium uptake activity, and

extracellular matrix remodeling (i.e., fibrosis), and ultimately

contractile dysfunction and cardiomyocyte apoptosis (41–44).

The “mechanical unloading” associated with physical inactivity

and bedrest may further compromise cardiac output via

deconditioning of the cardiac muscle or via reductions in

venous return and therefore stroke volume (45, 46). Moreover,

it is important to highlight these declines in cardiac reserve

induced by allo-HCT occurred on top of a reserve that was

already diminished at baseline, such that following allo-HCT,

CIpeak, LVEFpeak and RVEFpeak were 26%, 7% (absolute), and

3% (absolute) lower than age-matched controls. Given that an

inability to generate sufficient cardiac output during periods

of high metabolic demand is an early hallmark of heart failure

(24, 47), extrapolating these results over the years following allo-

HCT—wherein normal age-related decline in cardiac function

continues—may offer a possible explanation for the heightened

prevalence of premature CVD and associated cardiovascular

events and mortality in long-term survivors. Another intriguing

finding from our study was that these allo-HCT induced

reductions in cardiac reserve ensued whereas standard resting

measures of cardiac function (LVEF, GLS, cardiac biomarkers)

were unchanged. Indeed, echocardiographic parameters

remained, on average, within normal ranges, and interpreted

as an isolated assessment, would not flag an increased risk of

CVD. These results are consistent with that observed among

long-term allo-HCT survivors (normal LVEF despite impaired

VO2peak at a median of 9.8 years after allo-HCT) (7) but are

in contrast to Moriyama et al. (48) whom detected significant

left-ventricular systolic dysfunction (characterized as a decrease
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TABLE 3 Mean baseline values, within-group changes after 3–months and the net between-group di�erences for the change for peak CPET

parameters in Allo-HCT and Control groups.

Measure Allo-HCT Control 1 net difference Group, Time, Group x Time,

(HCT vs. Con) p p p

VO2peak, L.min−1

Baseline 1.8± 0.6 2.6± 0.7

3–months 1.3± 0.4 2.5± 0.7

1 −0.5 (−0.7,−0.3)*** −0.1 (−0.2, 0.1) −0.4 (−0.7,−0.1) < 0.001 < 0.001 0.006

VO2peak, ml.kg−1.min−1

Baseline 22.9± 8.0 34.8± 8.1

3–months 17.5± 5.7 33.9± 8.0

1 −5.4 (−7.7,−3.1)*** −0.9 (−3.6, 1.8) −4.5 (−8.1,−0.9) < 0.001 0.001 0.015

VO2peak, % predicted

Baseline 67± 12 104± 16

3–months 51± 13 101± 17

1 −16 (−23,−10)*** −3 (−11, 4) −13 (−23,−3) < 0.001 < 0.001 0.012

Peak Power Output, Watts

Baseline 154± 62 254± 68

3–months 108± 44 258± 69

1 −46 (−59,−32)*** 4 (−12, 19) −50 (−70,−29) < 0.001 < 0.001 < 0.001

HRpeak , % predicted

Baseline 96± 8 102± 4

3–months 85± 11 101± 4

1 −11 (−15,−6)*** −1 (−6, 5) −10 (−17,−3) < 0.001 0.002 0.005

Peak RER

Baseline 1.38± 0.09 1.33± 0.15

3–months 1.31± 0.14 1.33± 0.07

1 −0.07 (−0.13,−0.01)* 0.00 (−0.07, 0.07) −0.07 (−0.16, 0.02) 0.79 0.13 0.15

VE/VCO2 slope

Baseline 27.8± 3.4 26.8± 2.9

3–months 32.5± 5.5 26.5± 4.0

1 4.7 (2.3, 7.1)*** −0.3 (−3.0, 2.4) 5.0 (1.4, 8.6) 0.011 0.017 0.008

Peak a–vO2diff, %

Baseline 12.0± 2.6 14.7± 1.7

3–months 10.5± 2.7 14.4± 1.9

1 −1.5 (−2.8,−0.2)* −0.3 (−1.7, 1.0) −1.1 (−3.0, 0.7) < 0.001 0.06 0.23

All baseline and 3–month values are unadjustedmeans± SDs; all within-group changes are unadjustedmean (95%CI) and expressed as absolute change from baseline.Mean net differences

were calculated by subtracting the within–group changes from baseline in the control group from the within–group change from baseline in the allo-HCT group after 3 months. *p < 0.05,

***p < 0.001 vs. baseline. VO2peak, peak oxygen uptake; HRpeak , peak heart rate; RER, respiratory exchange ratio; peak a–vO2diff, peak arteriovenous oxygen difference.

in LVEF of ≥10% or LVEF ≤53%) in 17% of patients within

100 days after allo-HCT. These discrepant echocardiographic

observations may be explained by differences in study design

and potential selection bias. Indeed, we conducted a prospective

echocardiographic assessment of all allo-SCT recipients

whereas Moriyama et al. (48) conducted a retrospective review

of allo-SCT recipients who underwent echocardiographic

assessment at physician discretion (136/416 patients), biasing

the likelihood of a cardiac finding. Nonetheless, the results of

our study are consistent with the pattern of cardiac impairment

seen among heart failure and anthracycline-treated cancer

patients, wherein reductions in cardiac reserve often precede

impairment in resting function (22–24, 47). Therefore, whilst

not the primary aim of this study, our results also highlight

the added utility of exercise cardiac reserve assessment in

unmasking early treatment induced cardiac dysfunction in

vulnerable populations.

Importantly, given non-cardiac factors also make important

contributions to VO2peak (28) and the CVD phenotype

(29–31), we explored whether the reduction in VO2peak
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TABLE 4 Mean baseline values, within-group changes after 3–months and the net between-group di�erences for the change for cardiac

parameters in Allo-HCT and Control groups.

Measure Allo-HCT Control 1 net difference Group, Time, Group x Time,

(HCT vs. Con) p p p

Cardiac biomarkers

cTn–I, ng.L−1

Baseline 4.6± 4.2 2.8± 1.2

3–months 5.4± 5.7 2.9± 1.1

1 0.8 (−1.8, 3.4) 0.1 (−2.8, 3.0) 0.71 (−3.2, 4.6) 0.14 0.63 0.72

BNP, ng.L−1

Baseline 40.5± 32.0 33.2± 22.9

3–months 54.3± 35.6 31.7± 28.5

1 13.8 (−3.2, 30.8) −1.6 (−21.2, 18.1) 15.4 (−10.6, 41.3) 0.22 0.34 0.24

Resting echocardiography

LVEF, %

Baseline 54.7± 5.5 59.5± 5.7

3–months 56.1± 3.8 57.6± 4.4

1 1.4 (−1.3, 4.1) −1.8 (−4.9, 1.3) 3.2 (−0.9, 7.3) 0.065 0.84 0.12

GLS, %

Baseline −17.8± 2.0 −20.0± 2.4

3–months −17.3± 1.5 −19.4± 1.9

1 0.5 (−0.6, 1.6) 0.6 (−0.7, 2.0) −0.1 (−1.8, 1.6) 0.001 0.18 0.90

Resting CMR

HR, beats.min−1

Baseline 81± 12 66± 9

3–months 84± 6 63± 9

1 3 (−5, 10) −3 (−11, 5) 6 (−5, 16) < 0.001 0.98 0.30

SVI, ml.m−2

Baseline 50.0± 7.4 54.2± 9.2

3–months 47.6± 9.0 53.7± 8.3

1 −2.4 (−5.2, 0.3) −0.5 (−3.4, 2.4) −1.9 (−5.9, 2.1) 0.14 0.14 0.33

CI, L.min−1.m−2

Baseline 4.0± 0.8 3.6± 0.6

3–months 4.0± 0.9 3.4± 0.5

1 0.0 (−0.4, 0.4) −0.2 (−0.6, 0.2) 0.2 (−0.4, 0.7) 0.032 0.42 0.58

LVEF, %

Baseline 53.4± 5.5 56.5± 2.6

3–months 53.2± 4.3 56.2± 3.2

1 −0.2 (−3.2, 2.8) −0.3 (−3.4, 2.8) 0.1 (−4.2, 4.4) 0.026 0.80 0.96

RVEF, %

Baseline 55.5± 3.7 52.4± 4.7

3–months 55.6± 2.9 52.8± 4.3

1 0.1 (−1.9, 2.1) 0.5 (−1.6, 2.6) −0.3 (−3.2, 2.5) 0.054 0.67 0.81

Exercise CMR

HRpeak , beats.min−1

Baseline 136± 16 147± 13

3–months 130± 16 146± 14

1 −6 (−12, 1) −2 (−8, 6) −4 (−14, 5) 0.029 0.14 0.37

SVIpeak , ml.m−2

Baseline 57.9± 10.0 63.8± 11.6

3–months 52.9± 11.0 63.2± 9.6

1 −5.0 (−8.1,−1.9)** −0.6 (−3.9, 2.7) −4.4 (−8.9, 0.2) 0.063 0.017 0.058

(Continued)
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TABLE 4 (Continued)

Measure Allo-HCT Control 1 net difference Group, Time, Group x Time,

(HCT vs. Con) p p p

CIpeak , L.min−1.m−2

Baseline 7.8± 1.5 9.4± 2.1

3–months 6.8± 1.3 9.2± 1.7

1 −1.0 (−1.5,−0.5)*** −0.2 (−0.8, 0.2) −0.8 (−1.6, 0.0) 0.004 0.002 0.042

LVEFpeak , %

Baseline 59.2± 4.3 64.1± 3.7

3–months 57.3± 5.4 64.1± 3.6

1 −1.9 (−3.6,−0.2)* 0.0 (−1.8, 1.8) −1.9 (−4.4, 0.6) 0.001 0.13 0.14

RVEFpeak , %

Baseline 62.4± 3.0 61.9± 5.5

3–months 59.2± 4.5 62.8± 5.0

1 −3.2 (−5.3,−1.1)** 0.9 (−1.3, 3.1) −4.1 (−7.2,−1.0) 0.37 0.14 0.01

All baseline and 3–month values are unadjustedmeans± SDs; all within-group changes are unadjustedmean (95%CI) and expressed as absolute change from baseline.Mean net differences

were calculated by subtracting the within–group changes from baseline in the control group from the within–group change from baseline in the allo-HCT group after 3 months. *p < 0.05,

**p < 0.01, ***p < 0.001 vs. baseline. BNP, brain natriuretic peptide; CI, cardiac index; cTn-I, troponin I; CMR, cardiac magnetic resonance imaging; GLS, global longitudinal strain; HR,

heart rate; LVEF, left-ventricular ejection fraction; RVEF, right-ventricular ejection fraction; SVI, stroke volume index.

FIGURE 2

(A–E) Cardiac and contractile reserve at baseline and 3-month follow-up for Allo-HCT (n = 12) and Control (n = 11). After 3-months, cardiac

and contractile reserve were maintained in controls, but allo-HCT experienced a blunted CI, SVI, HR, and RVEF reserve, resulting in a significant

between-group di�erence for the net change from baseline for CI reserve and RVEF reserve and a trend toward a significant between-group

di�erence for the net change from baseline for SVI reserve and HR reserve. *p < 0.05 and **p < 0.01 for within-group change in reserve. Data

are unadjusted mean (95% CI). CI, cardiac index; HR, heart rate; LVEF, left-ventricular ejection fraction; RVEF, right-ventricular ejection fraction;

SVI, stroke volume index.

observed among allo-HCT recipients could also reflect

impairment in non-cardiac factors that determine peripheral

muscle O2 delivery and utilization. In the present study,

deficits in O2 carrying capacity as a result of anemia due

to disease and prior therapies likely contributed to the

baseline deficit in VO2peak among allo-HCT recipients

Frontiers inCardiovascularMedicine 10 frontiersin.org

https://doi.org/10.3389/fcvm.2022.926064
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Dillon et al. 10.3389/fcvm.2022.926064

TABLE 5 Mean baseline values, within-group changes after 3–months and the net between-group di�erences for the change for body composition

and indices of vascular and hematological function in Allo-HCT and Control groups.

Measure Allo-HCT Control 1 net difference Group, Time, Group x Time,

(HCT vs. Con) p p p

Weight, kg

Baseline 80.7± 18.2 74.3± 14.4

3–months 76.9± 18.1 73.6± 15.2

1 −3.8 (−6.0,−1.5)** −0.6 (−3.3, 2.1) −3.2 (−6.7, 0.4) 0.48 0.016 0.082

Body mass index, kg.m−2

Baseline 27.4± 6.2 24.6± 3.7

3–months 26.2± 6.3 24.4± 3.7

1 −1.2 (−2.0,−0.5)** −0.2 (−1.1, 0.7) −1.0 (−2.2, 0.2) 0.26 0.014 0.090

Total LM, kg

Baseline 51.7± 12.9 49.5± 10.1

3–months 48.5± 11.9 49.5± 10.3

1 −3.2 (−4.3,−2.0)*** 0.0 (−1.4, 1.4) −3.2 (−5.0,−1.3) 0.001 0.88 0.001

Total FM, kg

Baseline 25.9± 10.3 21.8± 8.8

3–months 25.3± 9.6 21.3± 8.1

1 −0.6 (−2.7, 1.5) −0.5 (−3.0, 2.0) −0.1 (−3.4, 3.2) 0.25 0.48 0.95

Body fat percentage, %

Baseline 31.8± 8.9 29.0± 8.8

3–months 32.5± 8.5 28.6± 7.5

1 0.7 (−1.4, 2.9) −0.4 (−3.0, 2.2) 1.1 (−2.2, 4.5) 0.28 0.84 0.50

SBP, mmHg

Baseline 129± 19 118± 15

3–months 127± 20 118± 14

1 −2 (−10, 6) 0 (−10, 10) −2 (−14, 11) 0.071 0.78 0.80

DBP, mmHg

Baseline 77± 15 70± 11

3–months 77± 13 70± 11

1 0 (−5, 5) −1 (−7, 6) 1 (−7, 8) 0.11 0.90 0.90

Hemoglobin, g.L−1

Baseline 114.5± 20.0 138.9± 10.5

3–months 107.2± 13.3 142.3± 9.7

1 −7.3 (−16.5, 1.9) 3.4 (−8.6, 15.4) −10.7 (−25.8, 4.4) < 0.001 0.61 0.16

All baseline and 3–month values are unadjustedmeans± SDs; all within-group changes are unadjustedmean (95%CI) and expressed as absolute change from baseline.Mean net differences

were calculated by subtracting the within–group changes from baseline in the control group from the within–group change from baseline in the allo–HCT group after 3 months. **p <

0.01, ***p < 0.001 vs. baseline. DBP, diastolic blood pressure; FM, fat mass; LM, lean body mass; SBP, systolic blood pressure.

(relative to controls) (49), but any further reductions in

hemoglobin induced by allo-HCT had recovered at 3-

months, and is therefore unlikely to explain the allo-HCT

induced decline in VO2peak. We did, however, observe a

significant reduction in peak a-vO2diff among allo-HCT

recipients at 3-months. This is an important and novel

finding as the impact of allo-HCT on skeletal muscle

oxygenation has not been fully appreciated but may also

contribute to the premature development of CVD and

functional impairment in this population. Delineating the

contribution of vascular and skeletal muscle factors to this

decline in a-vO2diff will provide important insight into its

clinical significance.

Premature vascular aging in allo-HCT patients may have

been expected based on evidence from small cross-sectional and

prospective studies which have evaluated vascular structure and

function in the allo-HCT setting. Indeed, allo-HCT recipients

have been shown to exhibit increased endothelial damage

and dysfunction (evidenced by elevated circulating endothelial

cells and soluble markers of endothelial damage, and lower
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endothelial dependent flow-mediated dilation) (50–53), central

arterial stiffening (evidenced by increased aortic pulse wave

velocity and reduced carotid distensibility, compliance and

incremental elastic modulus) (54–56), and carotid intima-media

thickening (54) compared to age-matched healthy controls or

pre-transplant values. Consequently, hypertension is a common

early (1-month incidence: 38–61%) (57, 58) and persistent

complication of allo-HCT (odds ratio: 3.65 [95% CI, 1.82–

7.32] at 8.6 years after allo-SCT) (59). It was therefore

somewhat unexpected that the baseline prevalence and 3-

month incidence of hypertension was similar between allo-

HCT recipients and controls. This discrepancy could reflect

the comparatively lower occurrence of grade II-IV GvHD and

subsequent immunosuppressant exposure in our study (17, 18).

Beyond this, it is important to note that subclinical vascular

damage (i.e., endothelial dysfunction, arterial stiffness, intimal

thickening) often precedes the development of hypertension and

can remain “silent” for years before manifesting clinically, and

therefore cannot be excluded as a possiblemediator of allo-HCT-

induced impairments in a-vO2diff and subsequently VO2peak.

Moreover, there is emerging evidence that impairments in

a-vO2diff, and subsequent exercise capacity following allo-

HCT are explicable by concomitant skeletal muscle atrophy

and mitochondrial dysfunction (60, 61). Indeed, as per-stated,

generation of reactive oxygen species is a common effect of

allo-HCT conditioning (41), allografting (43), and associated

physical inactivity which can perturb homeostatic control of

energy balance, upregulate muscle proteolytic and apoptotic

signaling pathways, downregulate mitochondrial biogenesis and

quality control pathways, and induce mitochondrial dysfunction

(62). These deleterious processes may be further exacerbated by

indirect treatment effects such as reductions in physical activity

and dietary intake (63). Mitochondrial function was not directly

assessed in the present study, but we did observe a significant

reduction in LM which is a key determinant of VO2peak and

risk factor for CVD (29). Taken together, with the cardiac

insults, our results draw attention to the global nature of allo-

HCT induced cardiovascular toxicity and highlights the need

for cardiovascular preventive therapies capable of preserving

and/or augmenting both central and peripheral determinants

of VO2peak.

The strengths of this study include the prospective

design, inclusion of a control group and the comprehensive

cardiovascular evaluations employed which facilitated a

more detailed characterization of the global cardiovascular

consequences of allo-HCT than previously documented. A key

limitation of the present study is the small cohort size which

increases the possibility of type II error and precluded analyses

of treatment-related and demographic modifiers of VO2peak

and organ-specific function in our allo-SCT group. Such factors,

particularly the impact of conditioning intensity (myeloablative

vs. reduced intensity) which presumably impact the degree of

cardiovascular damage incurred, warrant investigation in larger

studies. Additionally, whilst we may speculate on the evolution

of these changes in the years following allo-HCT, the short-term

nature of this study limits our ability to explicitly discern

the degree to which the observed changes depict persistent

cardiovascular dysfunction that may culminate in overt CVD.

Longitudinal assessment of these effects over subsequent years

will be integral to understand their clinical trajectory and

potential clinical significance. The selection of a cancer-free

control group may be considered a limitation, however, the

challenges associated with recruiting a suitable comparator

should be acknowledged. Indeed, whilst ideal, it is implausible

to compare to patients with similar hematological malignancies

without allo-SCT due to the severity of the underlying illness

and need for active treatment. From an alternate perspective, the

inclusion of a cancer-free control group effectively highlights

the pathological nature of the observed changes seen among

allo-SCT recipients and provides important context of the

true vulnerability of this high-risk patient group. Finally, we

cannot exclude the possibility of subclinical allo-SCT induced

vascular toxicity. A more detailed characterisation of effects

of allo-HCT on subclinical vascular damage (e.g., endothelial

dysfunction, arterial compliance) is required to provide a more

complete understanding of the mechanisms underscoring the

reduced VO2peak.

In summary, treatment with allo-HCT was associated with

a marked reduction in VO2peak, reflecting a deterioration in

both exercise cardiac reserve and a-vO2diff. Considering the

inverse association between VO2peak and CVD risk, our results

suggest that allo-HCT is a potent accelerator of cardiovascular

aging, and provides valuable insight into the potential trajectory

and pathogenesis of CVD in allo-HCT survivors. Combining

these results with the existing cardiovascular dysfunction

identified pre-allo-HCT, our study highlights the urgent need

for preventive interventions—initiated early in, or even prior

to, the allo-HCT process and capable of targeting the heart

and periphery—to mitigate cardiovascular dysfunction in this

high-risk patient group.
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