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Abdominal aortic aneurysm (AAA) is a localized expansion of the abdominal aorta which

can lead to lethal complication as the rupture of aortic wall. Currently there is still neither

competent method to predict the impending rupture of aneurysm, nor effective treatment

to arrest the progression of small and asymptomatic aneurysms. Accumulating evidence

has confirmed the crucial role of extracellular vesicles (EVs) in the pathological course of

AAA, acting as important mediators of intercellular communication. Given the advantages

of intrinsic targeting properties, lower toxicity and fair stability, EVs show great potential

to serve as biomarkers, therapeutic agents and drug delivery carriers. However, EV

therapies still face several major challenges before they can be applied clinically, including

off-target effect, low accumulation rate and rapid clearance by mononuclear phagocyte

system. In this review, we first illustrate the roles of EV in the pathological process of

AAA and evaluate its possible clinical applications. We also identify present challenges

for EV applications, highlight different strategies of EV engineering and constructions of

EV-like nanoparticles, including EV display technology and membrane hybrid technology.

These leading-edge techniques have been recently employed in multiple cardiovascular

diseases and their promising application in the field of AAA is discussed.

Keywords: aortic abdominal aneurysm, extracellular vesicle, biomarker, therapeutic, engineering

INTRODUCTION

Abdominal aortic aneurysm (AAA) is mainly characterized with immune cell infiltration,
extracellular matrix (ECM) degradation and apoptosis of vascular smooth muscle cells (VSMCs),
leading to the weakening of vascular wall and dilation of abdominal aorta. The prevalence of AAA
reached up to 8% among males aged over 65 years old, and the major complication of AAA is
aortic rupture, of which themortality rate exceeds 80% and causes 150,000–200,000 deaths annually
across the world (1, 2). Although computed tomography angiography (CTA) and other advanced
imaging techniques can provide accurate anatomic information of AAA such as its location and
size, most patients of AAA are asymptomatic before the rupture occurs and the progression of
AAA toward rupture is not linear but unpredictable for medical imaging techniques, so sensitive
and specific biomarkers are needed to assess the condition of AAA and prevent impending
rupture. According to current guidelines, large asymptomatic AAAs (>55mm diameter in men
and >50mm diameter in women) and symptomatic AAAs are recommended for open repair
surgery or endovascular aortic repair (EVAR) (3). In contrast, there are no available therapy options
for small asymptomatic AAAs except for regular follower-up and monitoring of the change of
AAAs. Currently no convictable evidence can support that commonly used drugs for AAA, such
as β-blockers, angiotensin-converting enzyme inhibitors and antiplatelet agents, are beneficial to
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the limitation of AAA growth or rupture (4). In such a scenario,
the need to identify alternative approaches should be prioritized.

Extracellular vesicle (EV), an important medium for
intercellular communication, has drawn researcher’s attention
in the last few decades and been placed in the limelight in
different fields of diseases. EV was first identified in differentiated
reticulocytes by Pan et al. (5) in the 1980s but was only
regarded as “cellular garbage bags” for expired and degenerative
proteins until 2007, when Hadi Valadi et al. (6) discovered that
EV contains both mRNA and microRNA (miRNA) that can be
transferred to and act on other cells. Since then, a series of studies
have reported that EV plays an important role in various stages of
the pathogenesis of atherosclerosis, myocardial infarction (MI),
ischemia-reperfusion and other cardiovascular diseases (7–9).
Exosome is derived from the fusion of intracellular endosomes
with the plasma membrane and represents the smallest kind
of EV, which is generally 30–150 nm in diameter (10). Despite
its small size, exosome is the most important subtype of EV,
playing a vital role in mediating cell-to-cell communication.
The current review aims to summarize the crucial role and
clinical transformation value of exosome/EV in AAAs as a
promising source of biomarkers, therapeutic agents and drug
delivery carriers.

THE BIOGENESIS AND PERFORMANCE
OF EVs IN AAA DEVELOPMENT

EVs consist of a phospholipid bilayer envelope structure with a
characteristic cup-shaped appearance, and they can be secreted
by almost all types of cells and distributed throughout body
fluids, including plasma, saliva, cerebrospinal fluid, lymphatic
fluid and urine (11–14). The biogenesis of EVs is generally
initiated in the endosome system, in which case they are referred
to as exosomes. First, the plasma membrane buds inward
and fuses with the primary endocytic vesicles to form early
endosomes. Then, the endosome membrane invaginates and
sprouts to form multivesicular bodies (MVBs) which contain
multiple intraluminal vesicles (ILVs). Exosomes are considered
as ILVs that are released to the extracellular environment
after the fusion of MVBs with the plasma membrane (12, 15)
(Figure 1).

After EVs are secreted from cells, they can stably exist in
the interstitial fluid, owing to their lipid bilayer structure, which
can not only protect EVs themselves from degradation but also
ensure the integrity and security of the cargoes carried within.
During the process of EV biogenesis, a series of molecular
contents with cell biological activity are encapsulated into
EVs, such as proinflammatory and anti-inflammatory cytokines,
nucleic acids (DNA, RNA, mRNA, miRNA), enzymes and
many other proteins (16, 17). The composition of regulatory
substances carried by EVs largely depends on the cell type and
state of the secretory cells (18). When cells are exposed to
hypoxia, inflammation or other stressors, the components of
regulatory substances will change, eventually leading to high
heterogeneity in the content and types of regulatory substances
in EVs. Therefore, changes in the type and quantity of regulatory

substances in EVs may reflect the physiological or pathological
status of parent cells (6).

EVs involve in multiple pathological processes by modulating
cell-cell interaction, which significantly contributes to the
progression of AAA. As mentioned above, immune cell
infiltration is one of the major characteristics of AAA, and
macrophages are found to account for the largest proportion
of the infiltrated cells according to a recent single-cell RNA
sequencing results (19). These macrophages are recruited
mainly to the adventitia and media of the aortic wall and
most of them will switch to M1 phenotype (20). The M1
polarization of macrophages will enhance inflammatory response
and deteriorate vasculature remodeling by secreting matrix
metalloproteinase (MMP), pro-inflammatory cytokines and EVs.
Wang et al. (21) revealed that VSMCs incorporate these EVs
and implement the messages received from macrophages. The
stimulated VSMCs promote the expression of MMP-2, which
would degrade surrounding ECM and further vitiate the aortic
wall. However, the administration of GW4869, a widely used
blocker of EV secretion, can reverse the disruptive effect of
dilated aortic, which again verifies that EVs play an important
part in the development of AAA. Besides, T cells are another
major subset in human AAA, and a positive relationship has
been observed between the T cells infiltration and AAA size
(22). Dang et al. (23) found that T cell-derived EVs can
promote the macrophage migration from circulatory system to
aortic wall and subsequently potentiate AAA. In spite of the
discovery of the roles of EVs in macrophage-VSMC and T
cell-macrophage communication, the functional materials inside
EVs, their relevant signal pathways and many other types of
involved EVs still remain unclear and need further investigations.

EV-BASED BIOMARKERS AND THERAPIES
IN AAA

At present, the diameter of the aorta measured by CTA is
considered as the golden standard for AAA diagnosis, and
regular follow-ups are required to monitor potential changes
of AAA diameter. However, the progression of AAA follows a
discontinuous pattern, whichmay accelerate unexpected between
adjacent two follow-ups and cause serious adverse events. In such
condition, the identification of effective biomarkers may help
to predict the rupture of AAA and avoid potential death. EVs
appear to be an intriguing source of biomarkers, for the changes
of their circulatory numbers and contents can convey important
information and reflect the pathological status of diseases.
Martinez-Pinna et al. (24) performed a differential proteomic
study based on human plasma-derived EVs and compared
the differential expression of proteins in EVs between AAA
population and normal population. The number of identified
proteins in EVs is higher in AAA group than in normal group,
which may indicate a hyper-secretive condition in AAA disease.
And the study observed a series of proteins with enhanced
expression level including ferritin, mitochondrial Hsp60, c-
reactive protein and platelet factor 4, which are all closely related
to AAA-relevant pathological mechanisms. Ferritin and Hsp60
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FIGURE 1 | Schematic representation of exosome biogenesis. First, the cell plasma membrane buds inward to form early endosomes via endocytosis. Then, the

endosome membrane invaginates and sprouts to form ILVs, and the early endosomes mature and become MVBs. Exosomes are considered ILVs that are released to

the extracellular environment owing to the exocytosis of MVBs. ILV, intraluminal vesicle; MVB, multivesicular body.

involve in the oxidative stress and iron deposition in lesion
area (25, 26), while c-reactive protein and platelet factor 4 are
important participators in the process of inflammatory response
and intraluminal thrombogenesis. Fernandez-García et al. (27)
also found that ficolin-3, a crucial recognition molecule in the
lectin pathway of the complement system, has an increased
expression level in EVs separated from AAA patients’ serum
(28). Moreover, the expression level of ficolin-3 is also found
upregulated in EVs isolated from the aortic wall of aneurysm
and intraluminal thrombus (ILT) compared to normal aortic
wall. This discovery indicates that enhanced ficolin-3 expression
in serum is a result of active production and secretion in
lesion tissues. Apart from proteins, miRNA is another critical
cargo of EVs. It can interact with mRNAs to regulate the
protein synthesis activity. Diverse miRNAs can be selectively
packed into EVs and transferred from cells to cells to modulate
disease-related processes. Recent research enriched EVs from
serum of AAA patients and performed small RNA-sequencing
to identify potential miRNA biomarkers (29). It turns out that
the expressions of miR-122-5p, miR-2110 and miR-483-5p are
upregulated in AAA patients’ serum. However, to date no
individual biomarker has been proven to be sufficient to predict
such a complex disease as AAA, so the use of a combination of
multiple biomarkers can be a promising approach for clinical
application (30).

As in many other cardiovascular diseases, inflammatory
response plays a vital role in the development of most
AAAs. Chronic AAA is featured with recruitment of large
amounts of immune cells, particularly macrophages and T

cells, and subsequent ECM degradation and destruction of
the aortic wall. The potential of stem cell therapies in AAA
treatment has aroused great interest. By injecting stem cells from
multiple sources (such as bone marrow, adipose and placenta)
intravenously or directly to the adventitia of aortic wall, the
development of AAA is evidently restricted (31–34). Further
studies suggest the therapeutic effect of stem cell administration
comes from the secreted EVs which convey complicated
paracrine signals. Growing evidence has confirmed that EV
therapy is superior to cell-based treatment in several aspects.
While low retention and survival rates limit the progression of
stem cell administration, the EV membrane derived from their
parent cells ensures high efficiency of transmission (35). EVs can
be locally transplanted in the demanded time and space with a
defined and accurate dosage, whereas implanted stem cells may
undergo apoptosis and subsequently have a low arrival rate to
the target area (36). In addition, EVs are more stable for in
vitro conservation and transportation as non-vital vesicles and
more durable for long-term cryopreservation and freeze-thaw
processes with little change in their biochemical activities (37).
Most importantly, EV therapy prevails over cell-based treatment
based on the principle of safety assurance. Burgeoning awareness
and concern have been discussed with regard to the safety issues
that arise from cell-based treatments, such as tumorigenicity,
immunological rejection and occurrence of embolism (38, 39).
By contrast, EVs have higher safety and better tolerability due
to their low mutagenicity and low immunogenicity. Sun et al.
(40) transplanted EVs derived from human umbilical cord
mesenchymal stem cells (MSC) into rabbits, guinea pigs and
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rats, and no adverse effect were observed with respect to liver
or renal function, hemolysis, vascular and muscle stimulation,
systemic anaphylaxis, pyrogen or hematology indexes. Clinical
trials of EV administration in cancer patients also revealed
positive therapeutic outcomes without adverse effects (41, 42).

The therapeutic potential of stem cell-derived EVs has
been extensively explored in multiple cardiovascular diseases,
especially in myocardial infarction and atherosclerosis (43–
47). However, there is currently only a few researches about
the application of EV in AAA treatment. Sajeesh et al. (48)
investigated the effects of EVs derived from bone marrow-
derived MSC (BM-MSC) in the context of AAA rat model.
It appears that EVs can tip the balance of the aortic lesion
from a proteolytic milieu to an anti-proteolytic one, mainly by
suppressing the expression of elastolytic MMP2 and enhancing
the expression of natural tissue inhibitor of MMP2 (TIMP-2).
Intriguingly, it’s reported that MMP2 is primarily overexpressed
in small AAAs, whereas large, rupture-prone AAAs mainly
exhibit up-regulation of MMP-9 (49, 50). This indicates potential
therapeutic value of BM-MSC-derived EVs in the early treatment
of small AAAs. Intravenous injection or local administration of
therapeutic EVs may help to slow down the course of AAA.
As mentioned above, miRNA is a principal cargo of EVs and
is closely involved in AAA development. EVs from different
cells have diverse miRNA expression profiles and multiple
miRNAs have been reported to exert different effects on disease
progression. Spinosa et al. (51) defined the critical role of MSC-
derived EVs in attenuating the aortic dilation and relieving
inflammatory response via miR-147. And the transfection of
miR-147 inhibitor in MSC abrogates such therapeutic effect,
which in turn confirms the critical role of miR-147. Contrariwise,
some miRNAs contribute to the progression of AAA formation.
For example, miR-106a is found to down-regulate the expression
of TIMP-2 and accelerate VSMC cell apoptosis and ECM
degradation (52). Similarly, overexpression of miR-29b appears
to augment AAA expansion in a mice model, while the
administration of anti-miR-29b triggers a fibrotic response and
retards AAA growth (53). And in human AAA tissue samples,
a reduction of miR-29b expression is also observed, which
may suggest the down regulation of miR-29b is a physiological
protective response of the aortic wall to expansion. Local delivery
of anti-miRNA drugs via expandable balloons and drug-eluting
stents can be innovative avenues for small AAA treatment (54).

Altogether, as important mediators of intercellular
communication, EVs can incorporate bioactive molecules
and are endowed with intrinsic targeting properties and low
immunogenicity because of their inherited membrane from
parent cells (55). These characteristics make EVs a more
promising drug delivery system than traditional synthetic
delivery system (56). However, there are several disadvantages
hindering further utilization of EVs in a therapeutic context.
Innate EVs lack of specific molecules to exclusively bind with
target tissue or cells and their low accumulation rate also adds
to the off-target effect (57). Another major challenge is the
noteworthy loss rate of circulating EVs due to mononuclear
phagocytosis, which leads to rapid clearance and maldistribution
of EVs (58). Therefore, different strategies for EV engineering

are developed and constructions of bioinspired EV-like
nanoparticles are elaborately designed to obtain higher delivery
efficiency and better therapeutic effect.

RECENT ADVANCEMENT IN THE
ENGINEERING OF THERAPEUTIC EVs

This section will highlight the current promising strategies of EV
engineering technologies. Because only very few researches have
focused on EV engineering in the field of AAA treatment, we will
first broaden our outlook and introduce engineering strategies
applied in cardiovascular diseases, and then proposed feasible
utilizations in the area of AAA.

EV Display Technology
Although the many advantages of EV bring it further attention
as a drug delivery vehicle, an unsatisfactory targeting rate still
hinders the clinical use of EV therapies. Natural unmodified
EVs are enriched in and cleared by the liver, spleen, kidney
and other organs after systematic administration, making it
difficult to achieve effective therapeutic concentrations in target
organs (59). Selecting an efficient engineering strategy is a
necessary step to further improve EV-based therapies. EV display
technology, which allows re-engineering of the membrane
protein composition, has been extensively studied in the last
decade (60).

A popular application of EV display technology is to add
targeting ligands via transfection of parent cells with fusion
genes of targeting peptides and EV membrane proteins. The
overexpression of the fusion protein on the surface of EV
membrane can steer the engineered EVs directly toward target
area. Lysosomal-associated membrane protein 2 (Lamp2b) is
expressed abundantly on the surface of EV, which is extensively
chosen as a component of the designed fusion protein (61).Wang
et al. (62) engineered Lamp2b fused with ischemic myocardium-
targeting peptide CSTSMLKAC (IMTP) to treat myocardial
infarction. They found the bioengineered EVs can specifically
target ischemic myocardium and exert therapeutic effects on
acute myocardial infarction. Similarly, cardiac-targeting peptide
(CTP)-Lamp2b is generated and expressed on the EV membrane
and it can enhance EV delivery to heart cells and tissue
without toxicity (63). In the context of AAA, the features
of aneurysm lesions can be utilized as potential targets,
involving inflammatory cell infiltration, MMP overexpression,
ECM degradation and VSMC apoptosis. Elastin constitutes the
tunica media of aortic wall, which is always found degraded
in the pathological progression of AAA. Elastin fiber is mainly
composed of two components, which are a core of amorphous
cross-linked elastin protein and peripheral fibrils (64). Before the
degradation of elastin protein, MMPs will first break down the
peripheral glycoproteins and thus expose the hydrophobic core
of elastin (65). Sinha et al. (66) took advantage of this pathological
feature and developed an elastin antibody tethered nanoparticle
(EL-NP) to target degraded elastic lamina. They observed in
rat AAA model that the EL-NPs can specifically target AAA
after systematic administration, and accumulate in the degraded
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elastic lamina rather than healthy aorta. Inspired by this, it is
plausible to fuse the genes of elastin antibody with Lamp2b, and
the overexpressed fusion protein can guide the therapeutic EVs
toward target tissue and cells in the dilated aorta. Besides elastin,
other characteristic molecules and cells such as collagen, MMP,
VSMC and macrophages can also be considered as potential
delivery targets for EV engineering (67, 68).

Targeting molecules can also be added to the surface of
the EV membrane via a direct chemical engineering approach.
Membrane coating technology can provide an excellent platform
for the insertion of targeting peptides into EV membrane
(69). Polymeric materials, such as polylactic-co-glycolic acid
(PLGA) and polyethylene glycol (PEG), are first cocultured with
targeting peptides. Then parent cells or EVs are incubated with
the polymeric materials-peptide mixture. Polymeric materials
can self-assemble to form the membrane-coated structure with
anchored targeting peptides, which provide EVs with extended
circulation time and promoted targeting ability (70). Wang et al.
(71) attached the Arg-Gly-Asp (RGD) peptide to the surface
of EVs via linkage to PEG-lipid, which self-assembles into the
EV membrane. Since the RGD peptide can specifically bind
to integrin αVβ3 expressed on the surface of angiogenic blood
vessels, RGD can guide bioengineered EVs to blood vessels
and promote therapeutic angiogenesis. Likewise, Vandergriff
et al. (72) conjugated cardiac homing peptide (CHP) with
dioleoylphpatidylethanolamine N-hydroxysuccinimide (DOPE-
NHS) and incubated the DOPE-CHP complex with isolated EVs.
The lipophilic tails of DOPE-CHP can spontaneously insert into
the EV membrane, thus coating EVs with the CHP peptide. The
results demonstrated that the engineered EVs exhibit improved
viability and elevated targeting ability, which lead to reductions
in fibrosis and scar size at the infarcted site and promotion
of cellular proliferation and angiogenesis. Similar strategy can
be applied to the implantation of elastin antibody or other
targeting peptides on EV membrane in AAA treatment. This
chemical-based engineering approach elicits a similar effect on
the promotion of delivery efficiency compared to the parnet-cell-
based methods (73). However, the risk of a possible immune
response to synthetic polymers concerns researchers. Despite
the surface functionalization provided by the inserted peptides,
it’s difficult to accurately simulate the complex interfaces of
the natural cell membrane merely by adding certain targeting
proteins or peptides. More recently, researchers have shifted their
interests to utilizing natural cell membrane components as EV
coating materials.

In addition to targeting proteins or peptides, other specific
compounds, such as magnetic nanoparticles and nucleic acid
aptamers, can also be applied to direct exosomes toward target
cells and tissues (74–76). Taken together, above-mentioned
strategies enhance the targeting abilities of EVs by displaying or
modifying specific molecules on the surface of EV membrane
(Figure 2). However, EV display technology is not without issues.
For example, targeting peptides displayed on the surface of EV
membrane are sometimes degraded by proteases in the cells
or body fluids, resulting in a loss of their targeting ability.
Moreover, if the relative molecular weight of targeting peptide is
too high, the expression or correct folding of the fusion protein

could be disrupted, thereby restricting its effect on EV functions.
Therefore, it is of great significance to enhance the durability
of targeting peptides to biodegradation and reduce their relative
molecular weight to further develop EV display technology.

Membrane Hybrid Technology
Aswe discussed above, most naturally secreted EVs lack sufficient
targeting capability. To achieve a desired therapeutic effect, a
higher dosage of EVs is used, but this creates another dilemma
in which large amounts of EVs injected in the circulatory
system will accumulate in the liver and kidney and cause
a series of toxic responses (77). Although adding targeting
proteins or peptides on the surface of EV membrane can largely
enhance homing efficiency, this approach might be suboptimal
since these modifications are often highly labor-intensive and
time-consuming processes. Besides, the addition of several
functional membrane proteins can hardly simulate the complex
interface of the natural cell membrane and the protein-protein
interaction network. Cell membrane-camouflaged nanoparticles,
which combine the versatile functionalities of different types
of cellular membranes with therapeutic nanomaterials, have
recently gained increasing attention (78). Membranes from
various kinds of cells, such as erythrocytes, leukocytes, platelets,
stem cells and even cancer cells, are exploited as carriers
to transport drugs to treat a multitude of diseases (70, 74,
78–81). Cell membrane-camouflaged technology has emerged
as an interesting biomimetic strategy to imbue nanomaterial
with the inherent functions and properties of natural cells for
various biomedical applications. Inspired by the cell membrane-
camouflaged strategy, biomimetic engineering has been shown
to hybridize EV membrane with different cell membranes, which
has recently emerged as a novel research avenue to promote the
efficiency of EV delivery in various cardiovascular diseases.

Leukocyte infiltration is often a hallmark of inflammatory
response in cardiovascular diseases, and monocytes from the
circulatory system are the main cell type that infiltrate lesion
area and orchestrate tissue remodeling (82). After they are
recruited to the injury site, monocytes then differentiate into
macrophages and localize to the lesion, playing an important role
in ECM remodeling and removal of dead cell debris (20, 83).
Multiple adhesivemolecules collectively regulate themigration of
monocytes, including macrophage receptor 1 (Mac1; also known
as integrin αMβ2), P-selectin glycoprotein ligand 1 (PSGL1),
very late antigen 4 (VLA4; also known as integrin α4β1) and
C-C motif chemokine receptor 2 (CCR2) (84, 85). To utilize
their chemotaxis wandering ability, monocytes are processed by
cell lysis, differential centrifugation and homogenization to form
monocyte membrane vesicles, which are later hybridized with
prepared EVs via an incubation-extrusion process. Besides in vivo
homing ability, monocyte membrane also contains an important
signaling protein, CD47, which can act against opsonization
and reticuloendothelial system (RES) clearance, thus providing
membrane-hybrid EVs with immune evasion ability (86). Zhang
et al. (87) constructed monocyte-membrane-hybrid MSC-EVs
(Mon-EVs) in a mouse myocardial ischemia-reperfusion injury
model. Mon-EVs had a longer circulation time and higher
accumulation rate at the lesion than unmodified EVs did, and
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FIGURE 2 | Different strategies of EV display technology. (A), vectors which convey fusion genes of targeting peptides and EV membrane proteins are transfected into

the parent cells. The targeting peptides are overexpressed and enriched on the surface of EV membrane. (B), targeting peptides are first cocultured with polymeric

material, then the polymeric-peptide mixture self-assembles to the membrane of parent cells and their derived EVs. (C), the engineered EVs can specifically target

characteristic tissue and cells in AAA, such as elastin, vascular inflammation and MMP. EV, extracellular vesicle; MMP, matrix metalloproteinase.

Mon-EVs treatment exhibited a more favorable effects on cardiac
function and remodeling, neovascularization and endothelial
maturation. In the context of human AAA, proinflammatory
macrophages are mainly found in the adventitial layer of aortic
aneurysm (88). The recruitment of circulatory macrophages
to the lesion area largely relies on selectins and multiple
chemokine-receptor pathways, especially CCL2/CCR2 axis (89–
91). Deficiency of any signaling receptor or ligand has been
proved to decrease macrophage accumulation in the aortic
wall and reduce aneurysm formation (92–94). The fusion of
MSC-derived EVs with monocyte membranes can theoretically
endow the hybridized products with an enhanced active targeting
efficiency toward the adventitial lesion of AAA, and subsequently
achieve a better therapeutic effect.

Platelets are unique anucleate cell fragments which involve
in many pathophysiological processes, including atherosclerosis,
tumor development and inflammation (95). In circulation,
platelets can rapidly adhere to location of vascular lesion and

aggregate to form hemostatic plugs. The lipid bilayer of platelet
membrane is festooned with transmembrane proteins and other
glycoprotein integrins, including membrane binding molecules
such as GPIIb/IIIa and CD62P, and immunomodulatory proteins
such as CD47 and CD55 (96, 97). The GPIIb/IIIa complex,
also known as integrin αIIbβ3, is one of the most abundant
receptors expressed on the platelet membrane and plays a
pivotal role in mediating platelet aggregation (98). Given the
advantages of platelet membrane, Hu et al. (99) constructed
platelet-membrane-hybrid exosomes (P-XOs) in the treatment
of MI mouse model. Compared to non-modified EVs, P-
XOs showed remarkably enhanced cardiac targeting ability
because of transmembrane proteins GPIV and GPIX, and
integrin-associated tetraspanins CD9 and CD81 on the platelet
membrane. Immunomodulatory proteins such as CD47 and
CD59 help P-XOs bypass macrophagic clearance, leading
to extended circulation time. Consequently, P-XOs exhibited
improved therapeutic capacity to promote angiogenesis, inhibit
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FIGURE 3 | Preparation and experimental application of membrane hybrid technology. P-EVs can actively target the ILT which adheres to the AAA wall, while

Mon-EVs mainly accumulate in the adventitia of aortic wall and exert therapeutic effect. The membrane-hybridized EVs exhibit enhanced injury targeting ability and

immune evasion ability. P-EV, platelet-membrane-hybrid EV; ILT, intraluminal thrombus; Mon-EVs, monocyte-membrane-hybrid EV.

oxidant injury in cardiomyocytes and ameliorate cardiac
function. In the context of AAA, ILT is present in about
75% of all AAAs, which may have both accelerative effect
and protective effect on AAA growth and its potential rupture
(100). On one hand, ILT is found to harbor large quantities of
inflammatory cells and proteases, which degrade AAA matrix
and further weaken the aortic wall (101, 102). On the other
hand, ILT provides physical cushioning for AAA wall from
high hemodynamic stresses, thus protecting patients from abrupt
AAA rupture (103, 104). Based on these factors, it’s important
to steadily dissolve ILT to reduce its proteolytic effect while
stabilizing its mechanical shielding structure to protect AAAwall.
Sivaraman et al. (105) encapsulated tissue plasminogen activator
inside PLGA-nanoparticles and found the slow release of tissue
plasminogen activator can gradually lyse ILT without damaging
its general structure. Also, the porous structure of ILT facilitates
the penetration of therapeutic drugs from circulation toward
AAA wall. Further, Pawlowski et al. (106) developed platelet
microparticle-inspired nanovesicles, whichmimic the membrane
interface structure of platelet-derived EVs. These engineered
nanovesicles turned to specifically anchor onto thrombus via
active platelet integrin GPIIb/IIIa and P-selectin, and then
accurately release their thrombolytic payload. Since the platelet
membrane can supply targeting ability toward thrombus, it’s a

plausible approach to load MSC-derived EVs with thrombolytic
drugs and hybridize them with platelet membranes, in order to
achieve a therapeutic effect at both the ILT and AAA wall.

Membrane hybrid technology has emerged as a novel
and versatile strategy to endow EVs with desirable functions
and a complex surface interface similar to cell membranes,
thereby providing improved drug delivery efficiency; this would
otherwise be unachievable via peptide conjugation technology.
This method is generalizable to all kinds of EVs with simple
procedures of membrane fusion, and it may advance engineered
EVs as a promising and preferable tool in the treatment of AAA
(Figure 3).

CONCLUSIONS

The onset mechanism and different treatments for AAA have
gradually been studied in depth, yet to date the mainstream
therapies only involve surgical or endovascular repair applied
for large or symptomatic AAAs. Effective treatments for small
AAAs are absent, and a sensitive monitoring method is needed
to predict potential AAA rupture and disease progression. As
an important mediator of intercellular communication, EVs
offer exciting promise for monitoring and treatment in AAA
and possess various advantages, such as membrane stability,
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biocompatibility and intrinsic targeting properties. The bioactive
molecules inside EVs, including cytokines, enzymes and nucleic
acids, especially miRNAs, play a vital role in mediating immune
cell infiltration, MMP expression, EMC degradation and VSMC
apoptosis. Different drugs can be loaded into EVs or EV-like
nanoparticles and delivered toward the lesion to slow, arrest or
even reverse the AAA growth (107–109). However, natural EVs
lack sufficient targeting ability to specifically bind to the site
of injury, and they are easily eliminated by the mononuclear
phagocyte system. To overcome these limitations, scientists have
developed different strategies, including EV display technology
and membrane hybrid technology, to promote targeting ability
and immune evasion ability of engineered EVs. But still, the
research of EV applications for AAA is in its infancy. Current
knowledge regarding the spatial and temporal release of EVs
from various cells in the pathogenesis of AAA still largely remains
inadequate. Different experiments are required to specify the
accurate dosage and frequency of EV administration. And
important issues about in vivo pharmacokinetic properties, mode
of administration and medication safety await comprehensive

assessments. To answer these questions, extensive EV research
of AAA diagnosis and treatment is essential for the future
translation from bench to bedside.
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