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Chimeric antigen receptor T-cell (CAR T) therapy is a revolutionary

personalized therapy that has significantly impacted the treatment of patients

with hematologic malignancies refractory to other therapies. Cytokine release

syndrome (CRS) is a major side e�ect of CAR T therapy that can occur in 70–

90% of patients, with roughly 40% of patients at grade 2 or higher. CRS can

cause an intense inflammatory state leading to cardiovascular complications,

including troponin elevation, arrhythmias, hemodynamic instability, and

depressed left ventricular systolic function. There are currently no standardized

guidelines for the management of cardiovascular complications due to CAR

T therapy, but systematic practice patterns are emerging. In this review, we

contextualize the history and indications of CAR T cell therapy, side e�ects

related to this treatment, strategies to optimize the cardiovascular health prior

to CAR T and themanagement of cardiovascular complications related to CRS.

We analyze the existing data and discuss potential future approaches.

KEYWORDS

chimeric antigen receptor (CAR T), cardio-oncology, immunotherapy, cytokine

release syndrome (CRS), cellular therapy, cardiovascular disease

Introduction

The power of the immune system in treating neoplastic diseases has long been

recognized in the medical community. However, starting from adoptive cell transfer,

the precursor of CAR T, various cardiovascular toxic side effects have also been

identified. Herein we review the available data, and propose a strategy for prevention,

surveillance and management of cardiovascular toxicity in patients receiving immune

cellular therapies.
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Adoptive cell transfer

Adoptively acquired immunity is the process through which

active immune tissues are transferred from a donor to a recipient

(1–3). Initial studies performed in the 1950’s demonstrated

in mouse that immune tissue (i.e., spleen or lymph nodes)

but not antigens or peripheral cells from a primary transplant

tolerant host induced sustained resistance to rejection in a

secondary host (1). In a landmark paper published in 1957,

E. Donnall Thomas and colleagues demonstrated a sustained

response after bone marrow infusion in several patients with

bone marrow deficiency following radiation and chemotherapy

(3). This led to the first allogeneic bone marrow transplantations

in the early 1960s, using bone marrow from twin siblings.

With the subsequent development of autologous stem cell

transplantation, adoptive cellular therapies have become a

mainstay in the treatment of hematologic malignancies (4).

Modern development of cellular
therapies

Following the historic success of bone marrow

transplantation, the next phase of adoptive cell transfer

came in the 1980s with the emergence of tumor-infiltrating

lymphocytes (TIL) (5–8). In this therapy, B- and T-cells isolated

from the tumor biopsy are expanded in a laboratory and

subsequently infused back into the original host after a dose of

chemotherapy (5, 6). TIL were combined with interleukin-2, a

key cytokine in the proliferation and differentiation of effector

T cells, to enhance their antitumor effects (5, 6).

With the advent of gene-transfer techniques, the potential

of peripheral blood T cells was further harnessed through

genetic modifications that increase their specificity and augment

their function (9, 10). These “first-generation” genetically

modified T cells were engineered to express a chimeric antigen

Abbreviations: ALL, acute lymphocytic leukemia; CAD, coronary artery

disease; CAR T-cell, chimeric antigen receptor T-cell; CAR NK-cell,

chimeric antigen receptor natural killer cell; CEA, carcinoembryonic

antigen; CHF, congestive heart failure; CMR, cardiacmagnetic resonance;

CRS, cytokine release syndrome; CV, cardiovascular; CVD, cardiovascular

disease; ECG, electrocardiogram; FAP, fibroblast activation protein; FDA,

Food and Drug Administration; GD2, disialoganglioside 2; HER2,

human epidermal growth factor receptor 2; HLH, hemophagocytic

lymphohystiocytosis; ICANS, immune cell-associated neurotoxicity

syndrome; IFN-γ, interferon-gamma; IL, interleukin; L1CAM, L1 cell

adhesion molecule; MCP-1, monocyte chemoattractant protein-1; MI,

myocardial infarction; MIP-1β, macrophage inflammatory protein-1

beta; REMS, risk evaluation and mitigation strategy; TIL, tumor-infiltrating

lymphocytes; TNFα, tumor necrosis factor alpha; TTE, transthoracic

echocardiogram.

receptor (CAR)—composed of an extracellular single-chain

variable fragment (scFv) that serves as the targeting moiety, a

transmembrane spacer, and intracellular signaling/activation

domain(s)—to target surface-exposed tumor-associated

antigens (10–12). Over time, CARs evolved to more complex

“second-” and “third-generation” CARs that have augmented T

cell persistence and proliferation (13–16).

Chimeric antigen receptor T-cell
therapy mechanism and indications

The development of CAR T cell therapy triggered a

paradigm shift in cancer immunotherapy, demonstrating

remarkable success particularly in CD-19 expressing

malignancies, as the first genetically engineered personalized

therapy option. This therapeutic option has become a viable and

commercially available treatment option for several hematologic

malignancies (Table 1). Promising results emerged from the

initial CART trials of tisagenlecleucel (tisa-cel) and axicabtagene

ciloleucel (axi-cel) in 2017 (17). Tisa-cel was the first anti-CD-19

CAR T product approved by the Food and Drug Administration

(FDA), for patients up to 25 years of age with relapsed or

refractory B-cell precursor acute lymphoblastic leukemia (ALL)

in 2017 (17). Axi-cel, an anti-CD-19 targeting CAR T-cell,

approval followed soon after in 2017 for patients with relapsed

or refractory diffuse large B-cell lymphoma (18). Axi-cel was

subsequently also approved for the management of patients

with relapsed or refractory follicular lymphoma after 2 prior

lines of therapy (19). Since then, the FDA has approved 6 total

CAR T therapies for the treatment of hematologic malignancies,

including lisocabtagene maraleucel (liso-cel) for relapsed or

refractory diffuse large B-cell lymphoma, brexucabtagene

autoleucel (brexu-cel) for relapsed or refractory mantle cell

lymphoma and relapsed or refractory ALL, and idecabtagene

vicleucel (ide-cel) and ciltacabtagene autoleucel (cita-cel) for

relapsed and refractory multiple myeloma (18, 20–23) (Table 1).

Responses for all these agents average around 60 to 80% with

complete remissions achieved in approximately 40 to 60% of

the patients (17–19, 21, 22). These results are especially striking

given the failure of conventional chemotherapy, including

high-dose chemotherapy and stem cell transplantation in

this population.

Chimeric antigen receptor T-cell
therapy induction and administration

The administration of CAR T requires the identification

of optimal patients who would generally be considered

healthy and fit to undergo this procedure. While there

is no established consensus on the optimal patient profile

that would be considered suitable, various guidelines suggest
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TABLE 1 Summary of current FDA-approved CAR T generic names,

trade names, and indications.

CAR product

(generic name)

CAR product

(trade name)

Indication(s)

Tisagenlecleucel Kymriah Acute lymphoblastic

leukemia, B-cell lymphoma

(17)

Axicabtagene ciloleucel Yescarta B-cell lymphoma, follicular

lymphoma (18, 19)

Lisocabtagene

maraleucel

Breyanzi B-cell lymphoma (20)

Brexucabtagene

autoleucel

Tecartus Mantle cell lymphoma (21)

Idecabtagene vicleucel Abecma Multiple myeloma (22)

Ciltacabtagene

autoleucel (cita-cel)

Carvykti Multiple myeloma (23)

CAR, chimeric antigen receptor.

utilizing established fitness and morbidity scores to determine

eligibility (24–26). After harvesting the peripheral blood product

through a routine apheresis procedure, the cells typically

require processing and manufacturing which can take up to

4–6 weeks. During this interval, patients frequently require

“bridging therapy” to ensure that they do not have rapid

and symptomatic disease progression. Following successful

manufacturing and receipt of the product, patients undergo

lymphodepleting chemotherapy typically with fludarabine and

cyclophosphamide over 3 days for up to a week prior to

reinfusion of the cells. Patients are subsequently monitored

closely for the development of cytokine release syndrome (CRS)

and neurotoxicity which can manifest for approximately the

first month after reinfusion of cells (24, 25). Because of the

risks noted with CRS, patients must enter a risk evaluation and

mitigation strategy (REMS) program and stay within 2 h of the

CAR T center for the first month and must not drive for 2

months following CAR T.

Immune cell-related adverse events

Robust systemic release of a high level of cytokines following

overwhelming T cell activation as well as specific interactions

between the CAR and its target antigen expressed by non-

malignant cells are two mechanisms thought to mediate

CAR T toxicities (27). One of the most common CAR T

cell-related adverse events is CRS. CRS is a multisystem

inflammatory response mediated by a surge of cytokines

triggered by an infusion of CAR T cells. Among other toxic

phenomena, CRS, in particular, affects 37–93% of patients with

lymphoma (28), and 77–93% of patients with leukemia (28–31).

Clinical manifestations can range from fevers and constitutional

symptoms to hypoxia, hypotension, end-organ damage, and

even sepsis-like syndrome or death in severe cases (29). CRS

is thought to result from widespread simultaneous activation

of T-cells and release of cytokines and chemokines (30, 32).

CRS has been associated with elevation of interleukin (IL)-6,

IL-8, IL-10, IL-15, GM-CSF, interferon (IFN)-g, MCP-1, MIP-

1b, ferritin, CRP, and in severe cases soluble IL-2 receptor

(28, 33). Management includes supportive care and antipyretics

in mild cases, administration of IL-6-receptor antagonists like

tocilizumab in moderate CRS or those not responding to

supportive care, and corticosteroids like dexamethasone in more

severe cases of CRS (34, 35). CRS can occasionally mimic

macrophage activation syndrome (MAS) or hemophagocytic

lymphohistiocytosis (HLH) in severe cases, which is often

treated with anakinra, an IL-1 receptor antagonist, if the

above measures are not effective (36–39). Serum inflammatory

markers (acute phase reactants) including c-reactive protein

(CRP) and ferritin may be followed clinically to help aid in

prediction of impending CRS or to monitor response to therapy,

though cytokine levels are not often readily available in real

time (39).

CRS may contribute to the development of immune

cell-associated neurotoxicity syndrome (ICANS), which

can manifest along a spectrum from mild delirium with

confusion to cerebral edema, seizures, and even death (34, 40).

Cardiovascular manifestations of CRS Although the underlying

mechanism of ICANS is incompletely understood compared

to CRS, studies have also shown a correlation with elevated

levels of inflammatory cytokines like IL-6, IFN-γ and TNFα

(33, 41, 42). These signals are postulated to cause endothelial

damage and activation with disruption of the blood brain

barrier and capillary leak. It requires careful monitoring,

frequent assessments, and promptly initiated therapy. ICANS

has also been associated with sinus bradycardia that is often

self-limited without need for intervention but should be

monitored closely (43). Other constitutional, hematologic,

renal, gastrointestinal, and dermatologic toxicities have also

been observed (28, 41, 44–46).

Cardiovascular complications of
cellular imunotherapies

While there has been a consistent trend of improvement

in the survival following both autologous and allogeneic

hematopoietic cell transplantation bone marrow transplant

therapies decade over decade (47, 48), cardiovascular toxicities

(49) continue to be frequent complications, along with

infections and graft vs. host disease. This has resulted in

evolving practice guidelines targeting preventive evaluations

pretransplant, monitoring peri-transplant, and surveillance

in long term survivors (50, 51). With regard to CAR T

therapy, the current information about cardiovascular side
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effects related to CAR T therapies is limited to a few

retrospective studies (Table 2), but concepts established for

other adoptive cell transfers likely apply. In particular, with the

growing prevalence of cardiovascular disease combined with the

increase in available CAR T cell therapies for the treatment

of hematologic malignancies, attempting to understand the

mechanisms of these complications is essential as this may help

guide interventions.

The impact of CAR T cell therapy on the cardiovascular

system manifests as hemodynamic compromise, myocardial

injury/dysfunction, and/or cardiac arrhythmias (60, 61). There

is also the potential for pericardial complications, such as

in a case report (62) describing a patient with high-grade

lymphoma who developed a pericardial effusion and tamponade

with cardiogenic shock after CAR T therapy. Higher-grade

CRS appears to be linked to adverse cardiovascular events of

all types. This is likely driven by the release of inflammatory

cytokines into the bloodstreamwith CAR T therapy, particularly

the secretion of interleukin-6 (IL-6). This cytokine is a

mediator of systemic inflammation, leading to hemodynamic

compromise and even circulatory collapse in CRS. Of the studies

published so far in patients treated with CAR T cell therapy,

cardiovascular monitoring was performed in 3 pediatric studies

and 5 adult studies (52–59). All studies in adult populations

were retrospective, single-center observational cohort studies.

Across all studies, cardiovascular complications have been

inconsistently monitored. In children, transient and reversible

hypotension in the setting of high-grade CRS was more

commonly noted. In studies that monitored for cardiovascular

complications in adults, the most frequently observed were

cardiac arrhythmias and heart failure, albeit with relatively

low event rates overall. Interestingly, preexisting cardiovascular

disease (including heart failure) has not been shown to be

reliably associated with the development of cardiovascular

complications after CAR T cell therapy in one cohort study (57).

In contrast, in another cohort study (55), troponin elevation

was notably associated with cardiovascular adverse events in

patients undergoing CAR T cell therapy. The patients with

troponin elevation in this study were older and had more

traditional cardiovascular risk factors. In both these cohort

studies cardiovascular complications occurred with increased

frequency at higher grades of CRS (2 or greater). As such,

additional studies in larger cohorts are needed to establish risk

factors, biomarker elevation patterns, imaging findings, event

rates, and outcomes after CAR T cell therapy.

CRS monitoring and grading

Most patients undergoing CAR T can be managed on the

regular cell therapy hospital floor with only a minority requiring

ICU care, but close monitoring and specialty care is. due to rapid

onset of CRS, it is recommended that this therapy is given at a

specialized center with CAR T experience and credentialling.

Grading of CRS is now done per the American Society

of Transplantation and Cellular Therapy (ASTCT) consensus

guidelines (Table 3) (34).

CRS management

Rates of CRS and median time to onset vary depending on

the particular CAR T product and disease burden. For example,

in the KarMMa study of ide-cel for relapsed/refractory multiple

myeloma (22), CRS was seen in 84% of patients, but most cases

were only grade 1 or 2, with only 5% of patients developing

grade 3–5. Median time to onset of CRS in the KarMMa study

was 1 day (range 1–12 days) with a median duration of 5 days

(range 1–63).

Management of CRS required tocilizumab in 52% patients,

but only 15% required glucocorticoids (22, 63). On the other

hand, in the Zuma-1 study of axi-cel for relapsed/refractory large

B-cell lymphomas, CRS was a nearly universal side effect, with

93% of patients experiencing any grade CRS and 11% with grade

3 or higher, and hypotension was seen in 63%, tachycardia in

40%, and hypoxia in 34% (64). The median time to onset of CRS

was 2 days (range 1–12) with a median duration of 8 days (65).

All patients had resolution of their CRS, except for one patient

who died from complications of HLH, and another patient who

died of cardiac arrest with ongoing CRS. Tocilizumab was given

in 43% and corticosteroids were required in 27% of Zuma-

1 patients; however, more recently the FDA has issued a new

label change for axi-cel allowing the prophylactic use of 3 days

of corticosteroids based on a study showing much less severe

CRS and ICANS without impairment of lymphoma response

rates (66). The decision regarding inpatient vs. outpatient care

and aggressive early therapy vs. minimal therapy for CRS is not

only made based on the track record of the particular CAR T

product but also based on risk factors such as age, frailty, and

tumor burden, as higher tumor burden consistently correlates

with increased incidence and severity of CRS (67).

Surveillance for cardiovascular
toxicity

At our institution, cardiovascular (CV) surveillance

for CAR-T therapy begins with CV risk stratification prior

to infusion. Patients with CV comorbidities (especially

heart failure, coronary artery disease, arrhythmias) or

new/worsening CV symptoms (i.e., chest pain, dyspnea

on exertion, lower extremity edema) represent a high CV

risk group. Older age and prior cardiotoxic cancer therapy

(i.e., anthracyclines, chest radiation) may also raise the

risk of CV toxicity after treatment (68). In these high CV
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TABLE 2 Summary of pediatric and adult studies investigated cardiovascular complications and CAR T-cell therapy.

References No. of

subjects

Oncologic diagnosis CAR T* therapy Preexisting cardiovascular

disease–n (%)

Patients

with CRS+ [%,

(grade)]

Adverse cardiovascular

events – n (%)

Fitzgerald et al. (52)a 39 Acute lymphoblastic leukemia CD19-directed T-cells Not captured 92% (any grade);

46% (3,4)

Vasoplegic shock−13 (36)

Cardiomyopathy−1 (2)c

Burstein et al. (53)a 98 Leukemia/lymphoma CD19-directed T-cells Cardiomyopathy−10 (10)

Structural disease−6 (6)

24% (≥2) Shock−24 (24)

Cardiac dysfunction−10 (10)d

Shalabi et al. (54)a 52 Leukemia/lymphoma CD19-directed T-cells Not captured 12% (any grade) Cardiomyopathy−6 (11)e

Sinus tachycardia−36 (69)

Alvi et al. (55)b 137 Lymphoma, multiple myeloma axi-cel, tisa-cel Coronary artery disease−10 (7)

Heart failure−5 (4)

Atrial fibrillation−18 (13)

59% (any grade);

39% (≥2)

Cardiovascular mortality−6 (4)f

Heart failure−6 (4)e

Arrhythmia−5 (4)g

Ganatra et al. (56)b 187 Leukemia/lymphoma axi-cel, tisa-cel Coronary artery disease−20 (11) 83% (any grade);

46% (≥2)

Cardiomyopathy−12 (6)e

Arrhythmia−13 (7)

Lefebvre et al. (57)b 145 Leukemia/lymphoma axi-cel, tisa-cel Coronary artery disease−14 (10)

Heart failure−12 (8)

Atrial fibrillation−4 (3)

72% (any grade) Heart failure−21 (15)h

Atrial fibrillation−11 (7)

Brammer et al. (58)b 90 Lymphoma Axi-cel, tisa-cel, brexu-cel Coronary artery disease−7 (8)

Heart failure−8 (9)

Atrial fibrillation−10 (11)

49% (≥2) Arrhythmia−11 (12)i

Myocarditis−2 (2)

Heart failure−1 (1)h

Steiner et al. (59)b 165 Lymphoma axi-cel, tisa-cel Coronary artery disease−15 (9)

Heart failure−14 (8)

14% (≥3) Arrhythmia−15 (9)j

Heart failure−3 (2)h

Myocardial infarction−3 (2)k

*CAR T, chimeric antigen receptor T-cell + CRS, cytokine release syndrome.

Study specific parameters: a Pediatric population; b Adult population; c Cardiomyopathy, defined as decreased left ventricular systolic function requiring milrinone; d Cardiac dysfunction, defined as either an echocardiographic decrease of ≥10% in

ejection fraction or ≥5% in shortening fraction from normal baseline ejection fraction > 55% or shortening fraction > 28%; e Cardiac dysfunction, defined as either a >10% absolute decrease in LVEF compared with baseline or new-onset LV systolic

dysfunction (LVEF <50%); f Cardiovascular mortality, defined as a combination of death due to heart failure, cardiogenic shock, cardiac arrest, or an arrhythmia; g Arrhythmia, defined as new-onset supraventricular tachycardia, atrial fibrillation, or

atrial flutter requiring intervention; h Heart failure, defined as clinical signs of heart failure on physical examination, laboratory or imaging or radiographic findings of heart failure (B-type natriuretic peptide or N-terminal pro–B-type natriuretic peptide,

Kerley B-lines or pulmonary edema, pleural effusion, decreased left ventricular ejection fraction, and initiation of new treatment for heart failure (pharmacological therapies such as diuretic agents and/or mechanical support); iArrhythmia, defined

as atrial fibrillation, ventricular tachycardia; j Arrhythmia, defined as non-sustained ventricular tachycardia, atrial fibrillation; k Myocardial infarction, defined as angina or anginal equivalent symptoms with cardiac enzyme elevation, with or without

EKG/echocardiographic changes.

PubMed search performed using the following terms: Chimeric antigen receptor; cardiovascular; cytokine release syndrome.
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TABLE 3 American Society of Blood and Marrow Transplantation (ASBMT) consensus grading of cytokine release syndrome (CRS) severity (34).

Cytokine release

syndrome

parameter

Grade 1 Grade 2 Grade 3 Grade 4

Fever Temperature ≥38◦C Temperature ≥38◦C Temperature ≥38◦C Temperature ≥38◦C

With

Hypotension None Not requiring vasopressors Requiring one vasopressor with or

without vasopressin

Requiring multiple vasopressors

(excluding vasopressin)

And/or*

Hypoxia None Requiring low-flow nasal

cannula or blow-by

Requiring high-flow nasal cannula,

facemask, nonrebreather mask, or

Venturi mask

Requiring positive pressure (e.g.,

CPAP, BiPAP, intubation, and

mechanical ventilation)

CPAP, Continuous Positive Airway Pressure; BiPAP, Bilevel Positive Airway Pressure.

*CRS grade is determined by the more severe event: hypotension or hypoxia not attributable to any other cause.

Fever is defined as temperature≥38◦C not attributable to any other cause. In patients who have CRS then receive antipyretic or anti-cytokine therapy such as tocilizumab or steroids, fever

is no longer required to grade subsequent CRS severity.

Low-flow nasal cannula is defined as oxygen delivered at ≤6 L/min. Lowflow also includes blow-by oxygen delivery, sometimes used in pediatrics. High-flow nasal cannula is defined as

oxygen delivered at>6 L/min.

FIGURE 1

Proposed pre- and post-CAR T cardiac screening. CAR, chimeric antigen receptor; ECG, electrocardiography; NT-proBNP, N-terminal

pro–B-type natriuretic peptide. *arrhythmias, coronary artery disease, heart failure.

risk patients, standard baseline testing should include a

12-lead electrocardiogram, cardiac biomarkers (troponin,

NT-proBNP), and transthoracic echocardiography. In some

cases, cardiac MRI may clarify features of cardiac structure

and/or function that would guide optimization of CV therapy.

Cardioprotective therapies such as beta-blockers and renin-

angiotensin-aldosterone system blockers, diuretics, and/or

antiarrhythmics should be utilized as clinically indicated.

In addition, any patient with the above cardiovascular

comorbidities, and whose baseline electrocardiogram

or transthoracic echocardiogram is abnormal, should

be considered for cardio-oncology referral pre-CAR T

therapy.

Inpatient monitoring after CAR-T infusion is strongly

recommended for patients with increased baseline CV risk.

Figure 1 shows our institutional algorithm for surveillance

and monitoring in this population. Standard monitoring

protocols after CAR-T infusion include daily blood counts

and metabolic profiling, physical examination, and screening

for CRS (69). Patients at high baseline CV risk should

additionally be monitored on telemetry with close monitoring

of oral and intravenous fluid input, urine output, and daily
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body weight measurement. Given the observed association

between CRS and CV events after CAR-T (55, 57), all patients

with grade 3 or 4 CRS should also be placed on these CV

monitoring protocols.

The utility of routine cardiac biomarker testing for

detection of CV toxicity after CAR-T is uncertain. Where

there is clinical suspicion for a CV event after CAR-

T infusion based on symptoms or monitoring, initial

evaluation should include cardiac biomarkers (troponin, NT-

proBNP), 12-lead electrocardiogram (ECG), and transthoracic

echocardiography (TTE). Cardio-oncology consultation should

be obtained, if available, to direct further diagnostic evaluation

and management.

Data are limited regarding the optimal surveillance and

testing protocol for patients undergoing CAR T cell therapy.

Current standards of practice have been previously published by

Hayden et al. (26), Ghosh et al. (60), and Totzeck et al. (70), with

similar approaches to our institution and each other with regard

to screening and surveillance while on CAR T therapy. Ghosh

et al. propose that all patients undergo baseline cardiac magnetic

resonance imaging (CMR) with follow-up CMR in patients with

abnormal biomarkers, ECG, and/or TTE. We generally agree

with these publications on the initial evaluation of patients after

a cardiovascular event with CAR-T infusion, including cardiac

blood biomarkers (troponin, NT-proBNP), ECG, and TTE, with

judicious use of CMR in appropriate cases. By contrast, there is

some variability in the post-CAR T surveillance and monitoring

approaches proposed by the other consensus approaches. For

example, Ghosh et al. recommend for all patients to follow-

up with cardio-oncology 3 months after CAR T cell therapy,

whereas the other two consensus recommendations propose a

7-day follow-up visit. We propose a patient-specific approach

depending on the type of cardiovascular event that patient

experienced. The utility of monitoring for late effects (i.e., at 3

months post CAR-T and beyond) and the potential for long-

term CV consequences of CAR-T itself stand out as areas for

future study.

Future directions

Current targets of CAR T are malignant immune cells,

but new targets continue to develop. There has been an

expanding focus on targeting solid tumors, and overall,

nearly 600 clinical trials are underway (71–73). Multiple

new endeavors are focusing on solid tumor surface antigens

such as carcinoembryonic antigen (CEA), ganglioside GD2

subtype, mesothelin, interleukin-13 receptor α (IL-13Rα),

human epidermal growth factor receptor 2 (HER2), fibroblast

activation protein (FAP), and L1 cell adhesion molecule

(L1CAM) (16, 74–79).

Multiple trials are currently ongoing evaluating various CAR

T products in different disease entities including allogeneic

products utilizing various T-cell and NK-cell engineering and

manufacturing procedures. Moreover, the well-documented

side effects of CAR T–most notably, CRS–have spurred the

recent discussion surrounding CAR NK-cell therapy, a potential

avenue to mitigatehe systemic immune effects (73). CAR T

has been shown to effectively target and remove activated

cardiac fibroblasts in mice, suggesting potential applications

to address myocardial scar and fibrosis (80, 81). At the same

time, early signals have raised concerns about the unique

dangers of systemic immune effects in patients with preceding

cardiovascular diseases or cardiovascular risks, with limited

information about cardiotoxicity available from the initial

CAR T trials. Clinical practice guidelines are emerging to

address immune cell-related adverse events (82). Next steps

also include validated risk prediction tools for cardiovascular

complications after CAR-T, elucidate mechanisms of these

immune-mediated complications, development of preventative

therapies by integrating timelines of cardiac blood biomarkers

and immunophenotyping in this population.

Conclusions

The rapid development of immunocellular personalized

therapeutic modalities is creating unprecedented opportunities

for treatment of cancers. To optimize the cardiovascular

outcomes in patients treated with CAR T several lessons

learned from other anticancer therapies and from early

CAR T studies may be beneficial. While early studies have

established the specific indications for these therapies,

cardiovascular risk profiles will need to be defined further

during their real-life application. The awareness of interactions

between the cardiovascular risks, underlying cardiovascular

problems and the cytokine release syndrome is prompting

the definition of systematic assessments before and during

CAR T therapy. Yet unknown potential latent effects, such as

vascular inflammation seen after other immunotherapeutic

interventions (i.e., immune checkpoint inhibitor therapies) will

need to be taken in consideration for long-term cardiovascular

surveillance. Inclusion of cardiovascular endpoints in trials, as

well as broad collaborative, prospective clinical registries

have the potential to provide new information about

these risks. And not the least, the further investigation

of such observations in targeted research studies has

the potential to refine this technology and expand its

safe applicability.
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