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An acute hypotensive episode (AHE) can lead to severe consequences and

complications that threaten patients’ lives within a short period of time. How

to accurately and non-invasively predict AHE in advance has become a hot

clinical topic that has attracted a lot of attention in themedical and engineering

communities. In the last 20 years, with rapid advancements inmachine learning

methodology, this topic has been viewed from a di�erent perspective. This

review paper examines studies published from 2008 to 2021 that evaluated

the performance of various machine learning algorithms developed to predict

AHE. A total of 437 articles were found in four databases that were searched,

and 35 full-text articles were included in this review. Fourteen machine

learning algorithms were assessed in these 35 articles; the Support Vector

Machine algorithm was studied in 12 articles, followed by Logistic Regression

(six articles) and Artificial Neural Network (six articles). The accuracy of the

algorithms ranged from 70 to 96%. The size of the study sample varied from

small (12 subjects) to very large (3,825 subjects). Recommendations for future

work are also discussed in this review.

KEYWORDS

digital health, hypotension, hypertension, intensive care unit, anesthesia, obstetric

and gynecologic, emergency and critical care, low blood pressure

Introduction

It is widely accepted that hypotension is defined as absolute mean arterial pressure

(MAP) below 60–65 mmHg (1). The incidence of hypotension is estimated to affect

around half of the population worldwide (2, 3). While chronic low blood pressure

without symptoms is usually not concerning, health problems may occur when blood

pressure drops suddenly.

An acute hypotensive episodes (AHE) is defined as lasting for 30 min to 1 h or longer

during which at least 90% of the MAP is at or below 60 mmHg. While this definition

is widely used, it is not based on consensus or is not part of a medical guideline; rather,

it is from the 10th PhysioNet/CinC Challenge (2009) (4). It has also been noted that

intra-operative hypotension should be defined as a relative difference from baseline

MAP (5, 6). AHE often happens in the intensive care unit (ICU) or operation rooms,

commonly caused by sepsis, myocardial infarction, cardiac arrhythmia, pulmonary

embolism, hemorrhage, dehydration, and anaphylaxis (4). Hypotension reduces the
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oxygen supply, resulting in cell and tissue injury and loss

of function. Therefore, AHE requires an immediate and

appropriate intervention. Without this, patients are at an

increased risk of irreversible organ damage and even death.

Currently, several scoring systems are used to predict critical

medical events; however, these systems have not been specifically

developed for AHE (7, 8). The symptoms of AHE may not be

noticeable, and they might last only a few seconds. Hence, an

adequately early prediction or warning system is desired to give

nurses and physicians enough time to administer preventive

care. This is especially important in an ICU setting, as often there

is a shortage of nurses.

The importance of predicting AHE was first noted in the

European AVERT-IT (Advanced Arterial Hypotension Adverse

Event prediction through a Novel Bayesian Neural Network)

project in 2008, which was funded by the European Commission

to develop a novel bedside monitoring and alerting system

to predict AHE (9). In 2009, in the 10th PhysioNet/CinC

Challenge, using an automated method, the participants were

expected to predict which patients in the challenge dataset

(MIMIC II) would experience an AHE (4). Since the challenge,

there has been continuous interest in this topic, and more

researchers have studied it.

This paper reviews the relevant literature published between

2008 and 2021. Before 2008, there were very few studies in

this area, and the methodologies were mainly statistical models

rather than machine learning algorithms. Given the advances in

machine learning in the last decade, we are re-visiting this topic

with a focus on answering the following questions: (1) How well

do machine learning algorithms perform in predicting AHE?

and (2) What is the potential of these current ML algorithms in

the clinical setting?

Methods

Study guidelines

This review was conducted according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

statement (PRISMA) (10). A prior review protocol was drafted

using the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses Protocols (11) for internal use amongst the

research team but it was not externally published or registered

prospectively.

Search strategy and study eligibility

The PubMed, IEEE database, Embase, and Google Scholar

were searched for articles published between January 1, 2008,

and January 1, 2022, for all English-language papers using

the following keywords: (hypotensive or hypotension or low

blood pressure) and (ECG or electrocardiogram or MIMIC)

and (automatic detection or machine learning or artificial

intelligence or deep learning or prediction) were used. The

detailed strategy was discussed in Supplementary material. Gray

literature was not included in this review in an attempt to

only include peer-reviewed studies. This timeframe was chosen

to reflect advances in artificial intelligence technologies and

applications in medicine. The search for this review was

completed in May 2022.

Inclusion and exclusion criteria

Articles were excluded (a) if the focus was not on

hypotension, (b) if ECG data were not used, (c) if a machine

learning algorithm was not used, (d) if the article was a review, a

book chapter, or a thesis, and (e) if the article did not address the

topic (predicting hypotension). One reviewer (AZ) conducted

the literature search and two reviewers (AZ and ME) screened

the titles, abstracts and full-texts independently for potentially

eligible studies. Reference lists of eligible studies were also hand-

searched but no additional studies were included on this basis.

Study selection and data extraction

One author (AZ) conducted the literature search, and two

authors (AZ and ME) independently screened the titles and

abstracts for potentially eligible studies. Each potential study

for inclusion underwent full-text screening and was assessed

to extract study-specific information and data. For each of

the included articles, we extracted information from the below

perspectives: the year the paper was published, author(s),

number of subjects, gender split of the subjects, the signal

used, sampling frequency, features extracted, machine learning

algorithms evaluated in the study, training data window length,

prediction window length, data source, evaluation metric(s) of

the machine learning algorithms.

Results

Search results

As shown in Figure 1, a total of 485 records were identified

with the above-mentioned keywords and year range in the four

databases. After comparing the literature titles and authors,

48 duplicates were confirmed and removed, resulted in 437

search records. With the five exclusion criteria mentioned in

the Methods section, 354 of the 437 records were excluded after

reading the abstract: 40 studies did not use electrocardiogram

(ECG) as one of the signals; 161 studies did not investigate

hypotension; 63 studies did not aim for blood pressure
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FIGURE 1

Flow chart of the methodology used to screen the articles. Thirty-five articles published between 2008 and 2021 were included in the review.

prediction; 89 were a review article or chapter in a book or a

thesis; fiver were excluded because they were either not written

in English or the full text was unavailable.

The full text was assessed in 83 articles. Of those, 48 articles

were further excluded: 11 studies did not use machine learning

as a forecasting method; 16 studies focused on blood pressure

estimation rather than prediction; six studies forecasted blood

pressure in general but not as a way to predict AHE; six

studies used blood pressure to forecast other diseases; three

studies aimed to determine which feature has the greatest

predictive power, rather than to assess an algorithm; one study

used an animal model, one focused on developing a new

sensor, one aimed to detect artifacts, and one focused on

photoplethysmography rather than ECG. Ultimately, 35 articles

were included in this systematic review.

Characteristics of included reviews

We read and summarized the included articles based on

(a) the year in which the article was published, (b) how many

subjects were included in the study and the gender info, (c)

what signal(s) was/were used, and the sampling frequency used

to obtain the signal, (d) what features were extracted, (e) what

machine learning algorithm(s) was/were evaluated in the study,

(f) the evaluation metrics of the machine learning algorithm, (g)

the duration of the observation window and prediction window,

and (h) what data source the authors referred to, as shown

in Table 1.

Overall, as shown in Figure 2, the articles were published

during the years of the search range; most of the articles were

published in 2010 (n= 5), followed by 2009, 2016, 2017, 2021 (n

= 4, each). In 2019 and 2020, three articles were published each

year. In 2011, 2013, and 2014, only two papers were published

on this topic. In 2015 and 2018, only one article was published

each year.

Results of studies

Most of the studies (37%, 13 out of 35) were large-

scaled (1,110–4,000 patients were included). However, small-

sized studies were also common: seven studies included 60–100

patients, six studies included 12–50 patients, and five studies

included 110–500 patients. Medium-sized studies were relatively

rare; only three studies had 510–1,000 patients. Of the 35 articles,

31 did not report the gender of the subjects; of those that did

report on gender, the percentage of females was 40% (n = 2),

44.8% (n = 1), and 52.5% (n = 1). More than half of the

articles (n = 18) used the arterial blood pressure (ABP) signal
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TABLE 1 Overview of studies included in the systematic review.

References Subject Gender

split

Signal Samp Freq Feature ML algorithm Training

window

Predicted

length

Data

source

Evaluation metric

Zhang et al. (12) 1,055 F = 425 ABP N/R Max, min, avg, median, STD,

skewness, kurtosis, upper

quartile, avg absolute deviation,

range, variance

• LR

• AdaBoost

• SVM

• RF

• XGBoost

• Gradient boosting

• Ensemble

5 h 60 min MIMIC II

(13)

Accuracy(%)

• LR= 77.8

• AdaBoost= 82.0

• SVM= 80.1

• RF= 81.0

• XGB= 80.4

• GB= 81.0

• Ensemble= 82.2

Ribeiro et al. (14) 3,825 N/R HR, RR, SpO2, SBP,

DBP, MAP time

series, PP, CO

N/R Interquartile range, max, min,

mean, median, skewness,

kurtosis, linear slope, SD,

variance, wavelet energy,

cross-correlations between

signals

Layered Learning (LL),

the adopted classifier in

each layer was a Light

Gradient Boosting

Machine

60 min 60 min MIMIC III

(15)

Accuracy (%)= 75.9±

4.2

Tang et al. (16) 30 N/R Patient’s NE

infusion rate per

unit weight, ECG,

ABP

125 Hz HR, PP, KR • Physiology based

approach (our

method)

• RRLS

• IIR filter

• ARMAX

1.3–6.67 h 3.33–20

min

Inter-

mountain

Medical

Center,

MIMIC-III

(15)

Mins to 5 mmHg RMSE

• Our method= 11.5

• RRLS= 9.5

• IIR= 8

• ARMAX <3

Lee et al. (17) 3,301 F = 1,479 • Invasive:

AP+ECG

+PPG+EtCO2

vs. AP

• Non invasive:

ECG+

PPG+EtCO2 vs.

PPG

100 Hz N/R DL consisted of seven

convolutional layers

30 s 5, 10, 15

min

VitalDB

database

(18)

AUROC(%)

• Invasive: 89.7 vs. 89.1

• Non invasive: 76.2 vs.

69.4

(Continued)
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TABLE 1 Continued

References Subject Gender

split

Signal Samp Freq Feature ML algorithm Training

window

Predicted

length

Data

source

Evaluation metric

Moghadam et al.

(19)

1,000 F = 396 ABP, HR, SBP, DBP,

Resp, SpO2; PP,

MAP, CO,

MAP2HR, RR

N/R 33 scalar feature • LR

• SVM

• KNN

• Decision tree

• Discriminant analysis

• Naive Bayes

• Ensemble

5 min 30 min MIMIC III

(15)

Accuracy(%)

• LR= 95

• SVM= 94

• KNN= 92

• DT= 93

• DA= 93

• NB= 88

• Ensemble= 93

Lee et al. (20) 282 F = 148 Non invasive BP,

HR, Mechanical

Ventilation data,

Bispectral index

N/R Min, max, mean, std. Experiment

performed 3-fold: 27, 56, 67

features then sum and dim

reduction to get 98, 45, 20, 29.

Best performance are 56 for 1st

experiment and 20 for 2nd

experiment

• RF

• Xgboost

• CNN

4–1 min

before

intubation

1 min Soonchunhyang

University

Bucheon

Hospital

database

Accuracy (%) Raw

feature vs. plus statistics

features:

• RF=70.3 vs. 74.9

• CNN= 72.6 vs. 69.0

• Xgboost= 64.6

Moghadam et al.

(21)

1,000 N/R ABP,HR,SBP, DBP,

Resp, SpO2; PP,

MAP, CO,

MAP2HR, RR

N/R 33 scalar features. PCA optimize

the feature set and resulted into

11 combined features

• LR

• SVM

• KNN

• DT

• Discriminant analysis

• Naive Bayes

• Ensemble

5 min 30 min MIMIC III

(15)

Accuracy(%)

• LR= 95

• SVM= 94

• KNN= 92

• DT= 93

• DA= 93

• NB= 88

• Ensemble= 93

Xiao et al. (22) 2,866 N/R ABP N/R decompose MAP with SW and

ensemble EMD, then a 3-layer

auto encoder to get 50 outputs

Multiple gene expression

programming classier

2 h 60 min MIMIC II

(13)

Voting combination

strategy vs. 10-fold cross

validation (%)

• Accuracy = 85.7 vs.

86.2

• Sensitivity = 86.4 vs.

86.8

• Specificity = 85.5 vs.

85.9

(Continued)
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TABLE 1 Continued

References Subject Gender

split

Signal Samp Freq Feature ML algorithm Training

window

Predicted

length

Data

source

Evaluation metric

Shin et al. (23) 207 N/R MAP N/R • LR: mean, slope, SD of MAP

of past 5, 10, 20, 30, 45, 60 min

• AR: MAP values with t and

preceding 5 min time-steps

were computed as the median

MAP

• Logistic regression

(LR)

• Auto-regressive model

(AR)

60 min 30 min MIMIC II

(“Hospital

1”) (13),

Mass

General

Hospital

(“Hospital

2”)

• LR predicted on

average 7.0 min before

onset (Hospital 1)

and 2.5 min before

(Hospital 2)

• AR predicted 10.5 and

2.0 min before

Chan et al. (24) 538 N/R MAP, HR, SPO2 N/R N/R Long Short-Term

Memory, three layers

each with 100 units

10–60 min 10–60 min Kingston

General

Hospital

• Accuracy(%)= 80

• AUC(%)= 87

Angelotti et al. (25) 86 N/R ABP and ECG

containing at least

one ECG lead

N/R SBP statistical moments; LF, HF,

VLF spectral powers (for both

RR and SBP); LF/HF (for both

RR and SBP); Baroreflex

amplitude; Baroreflex frequency

• 4 classification trees

• 6 SVM

• 6 KNN

• LR

20 min 10 min MIMIC III

(15)

AUC(%) with vs. w/o

BRFX:

• Trees= 67 vs. 63

• SVM= 68 vs. 62

• KNN= 64 vs. 57

• LR= 62 vs. 54

Pathinaru-pothi et

al. (26)

30 N/R MAP N/R Use MAP severity quantizer,

Consensus motif extractor, SVM

based prediction engine for

feature extraction

SVM 15 min 2.75 h MIMIC II

(13)

F1 score (%)= 82

Kim et al. (27) 2,291 N/R MAP N/R N/R Collision Frequency

Locality Sensitive

Hashing

5 h 60 min MIMIC II

(13)

Accuracy (%) in the

range (93, 96)

Hamano et al. (28) 100 N/R MAP, EtCO2, MAC,

HR, SpO2, and

body temperature

N/R Each variable is mapped via the

similarity-based approach, and

trial and error to get 6,000

combinations

Spiking neural networks 15 min 5 min OR of a

tertiary

hospital,

Auckland

NZ

37.6% of the experiments

had an SNR above 0,

which means better

prediction than the naive

method

(Continued)
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TABLE 1 Continued

References Subject Gender

split

Signal Samp Freq Feature ML algorithm Training

window

Predicted

length

Data

source

Evaluation metric

Jiang et al. (29) 2,866 N/R MAP 1 Hz 55 feature incl peak, mode,

skewness, kurtosis, and Shannon

entropy from original time series,

first 9 IMFs and last IMF

Multi GP 2 h 60 min MIMIC II

(13)

Accuracy (%)= 82.9 in

the training set and 79.9

in the testing set

Ghosh et al. (30) 50 N/R MAP N/R A gap-constrained sequential

contrast pattern P is required (1)

Positive Support: countP (D+, g)

>= alpha (2) Negative Support:

countP (D-, g) <= delta

Sequential pattern

mining

30, 60 min 60, 120 min MIMIC II

(13)

Accuracy (%) single

mode performance with

10 symbols vs. multi

mode performance with

15 symbols:

• 30 min= 82.3 vs. 81.3

• 60 min= 83.6 vs. 80.9

Ghosh et al. (31) 528 N/R MAP N/R Utilize sequential contrast

patterns as features to build

classification models

SVM 60, 90 min 30, 60 min MIMIC II

(13)

Accuracy (%)= 85.8

Kim et al. (32) 2,291 N/R MAP N/R N/R LSH with two variants,

the bit sampling based

(L1LSH), the random

projection based

(E2LSH)

5 h 60 min MIMIC II

(13)

Accuracy (%)

• L1LSH >95

• E2LSH >90

Jiang et al. (33) 2,866 N/R MAP 1 Hz EMD to decompose MAP into 77

IMFs. Statistical features: min,

mean, max, median, variance,

max instantaneous freq, HF/LF

energy ration

• Multi GP

• SVM

2 h 60 min MIMIC II

(13)

Accuracy (%)

• MGP = 79.1 in

training set and 78.0 in

testing set

• SVM= 76.2 and 75.5

Fan et al. (34) 1,599 N/R ABP 125 Hz EMD to extract 77 features then

group to 30. Extracted features:

min,mean,max, median,variance.

Calculated features: max

instantaneous freq, HF/LF. Also,

the 12th percentile, skewness,

kurtosis, mode of the last IMF

RF based on GP 30 min N/R MIMIC II

(13)

Accuracy (%)= 77.6

(Continued)
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TABLE 1 Continued

References Subject Gender

split

Signal Samp Freq Feature ML algorithm Training

window

Predicted

length

Data

source

Evaluation metric

Kim et al. (35) 2,291 N/R ABP 125 Hz The first and second differences,

20-min variance and slope

• Dynamic Bayesian

network

• KNN

30 min 30, 60 min MIMIC

II(13)

Accuracy (%)

• DBN= 80

• KNN= 82

Jiang et al. (36) 110 N/R MAP N/R EMD was used to calculate MAP

time series and BW of the AM,

FM, power of IMF

GP 2 h 60 min MIMIC II

(13)

Accuracy (%)= 83.4 in

the training set and 80.6

in the testing set

Zhang et al. (37) 12 N/R MAP, HR, SBP, and

DBP

N/R MAP, HR, SBP, and DBP ANN with one hidden

layer

30 min 60 min MIMIC II

(13)

Median Absolute

Difference between the

predicted and actual HI

was 0.070, ranged from

0.012 to 0.175

Sun et al. (38) 2,863 N/R MAP 1 Hz The 2 cluster centers, x1Mean

and x2Mean, the 2 cluster ratios,

x1Ratio and x2Ratio, the average

of 15 min MAP signal before T0

SVM 60 min 60 min MIMIC II

(13)

• Accuracy= 81.2%

• Sensitivity= 83.2%

• Specificity= 80.4%

Janghorbani et al.

(39)

95 N/R HR, SAP, DAP,

MAP

N/R • LR: 10% DAP, mean MAP,

max ECO;

• LR+GA: same as LR, 95%

ECO, skewness dHR, mean

ECO slope, 5% ECO slope,

mean MAP slope, mean DAP

slope;

• SVM+GA: HR/SAP IPR

10-5%, 50% HR/MAP, 95%

dHR, skewness dHR, mean

MAP slope, 5% MAP slope,

5% SAP slope;

• LR

• SVM

30 min 60 min MIMIC II

(13)

Accuracy (%)

• LR= 80

• LR+GA= 86

• SVM+GA= 88

Rocha et al. (40) 311 N/R MAP 125 Hz N/R Neural network

multi-models

12 h 60 min MIMIC II

(13)

• Sensitivity= 82.8%

• Specificity= 78.4%

(Continued)
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TABLE 1 Continued

References Subject Gender

split

Signal Samp Freq Feature ML algorithm Training

window

Predicted

length

Data

source

Evaluation metric

Sun et al. (41) 1,500 N/R SBP, DBP, MAP,

SpO2, HR

N/R top-10 wavelet coefficients as the

features

Locally Supervised

Metric Learning (LSML)

60 min 60 min MIMIC II

(13)

Accuracy (%)= 85.51

Lee et al. (42) 1,357 N/R HR, SBP, DBP, MAP N/R Mean, median, SD, variance,

interquartile range, skewness,

kurtosis, linear regression slope,

and relative energies in different

spectral bands. A total of 45

features, whose space dim was

reduced via PCA to 15–16

Feed-forward,

three-layer artificial

neural networks (ANNs)

30 min 1–4 h MIMIC

II(13)

Accuracy (%)

• 1 h= 87.3± 0.8

• 2 h= 84.2± 1.4

• 3 h= 83.5± 1.7

• 4 h= 81.0± 1.9

Afsar (43) 60 N/R ABP 125 Hz SBP and Area under SBP wave

along with the 1st, 3rd, and 6th

principle component averaged

over beats in each 60 s interval

Linear support vector

machine (LSVC)

1.5 h 60 min MIMIC II

(13)

Accuracy (%)

• No Feature Reduction

= 79.4

• Using GA Features =

93.7

Wang et al. (44) 70 N/R MAP N/R db3 as wavelet mother function

to decompose the MAP signal at

three levels to get the LF

coefficient cA3 and HF

coefficients cD1, cD2, and cD3.

Then extract median and

maximum

SVM 60 min 60 min MIMIC II

(13)

Accuracy (%)= 90

Rocha et al. (45) 110 N/R ABP N/R The filtered signals are

down-sampled by 2 and the

results are called approximation

and detail coefficients

Feed-forward neural

Networks with two

hidden layers

2 h 60 min MIMIC II

(13)

• Sensitivity= 94.7%

• Specificity= 93.6%

• Accuracy= 94.0%

Fournier et al. (46) 60 N/R ECG, PAP, ABP,

central venous

pressure, HR, RR,

SpO2, CO, and

alarms annotations

N/R Use KL divergence to identify the

most discriminative features

Nearest neighbors (NN) 30 min MIMIC II

(13)

Accuracy (%)= 80

(Continued)
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to focus on MAP, while some (n = 10) used more than three

data sources. A few studies (n= 7) used ABP+ECG as the signal

inputs. The majority of the articles (n = 25) did not mention

what sampling frequency was used to acquire the signals. Of

those that did report on this factor, 125 Hz was most frequently

used (n = 6), followed by 1 Hz (n = 3) and 100 Hz (n = 1).

Some (n = 8) of the 35 articles did not mention the features

extracted because they simply used the raw data. Five articles

described the methodology used to extract the features, but

did not mention the exact number of features. Seven articles

described the methodology and provided the final number of

features, but they did not mention what the features were.

Fifteen articles provided a list of the features that were extracted.

Statistics of the raw signal (e.g., maximum,minimum,mean)

were the most common features extracted; this was adopted

by 13 out of the 27 studies that described the methodology to

extract the features, followed by clinical equations that were

calculated based on the raw signal (n = 7), Empirical Mode

Decomposition (n = 5), wavelet transform (n =3), and contrast

sequential pattern and sliding window (n = 2 each). Only five

of the 27 studies also conducted feature reduction, and Principal

Component Analysis was the only methodology used by more

than one study (n= 2).

Most of the studies (n = 24) only investigated one machine

learning algorithm. A few of the studies (n = 6) evaluated

three to seven machine learning algorithms and a few (n =

5) compared two machine learning algorithms. Of the type

of machine learning algorithms used, Support Vector Machine

(SVM) was the most studied (n = 12), followed by Logistic

Regression (LR) and Artificial Neural Network (ANN) (n =

6 each). Other common machine learning algorithms include

Nearest Neighbors (KNN) (n = 5), Genetic Programming (GP)

(n = 4), Random Forest (RF), Gradient Boosting Machine,

Decision Tree, Naive Bayes (NB), or Dynamic Bayesian Network

(n = 3, each), and Locality Sensitive Hashing (LSH) (n = 2).

The least examined algorithms were Deep Learning, Spiking

Neural Network, Sequential Pattern Mining, and Long-Short-

Term Memory (n= 1, each).

Most of the articles (n = 27) reported accuracy as

the evaluation metric for the machine learning algorithm(s)

that were studied. Eight other articles had their own way

of measuring performance without assessing accuracy; those

methods included F1 score, area under the curve (AUC),

sensitivity (SE), and specificity (SP), prediction time, and the

absolute difference between the prediction and the actual

hypotension index.

The length of the prediction window depends on the time

the AHE is expected to happen. Among the 35 articles, most

of the studies (n = 30) focused on predicting AHE in the ICU,

where the most common prediction window was 60 min prior

to the onset of the event (n = 21), followed by 30 min (n = 4),

120 min (n = 2), or 165 and 10 min (n = 1, each). Some articles

looked at a time range, for example 10–60 min or 1–4 h (n = 1,
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FIGURE 2

Number of publications by year.

each). Two studies did not report prediction window, assuming

that the prediction window occurred right after the observation

window.

A second type of prediction looked at intra-operative AHE;

but only three studies focused on this area. Therefore, the

prediction window is very short, either 1 min (n = 1), 5 min

(n= 1) or 5, 10, or 15 min (n= 1), because intra-operative AHE

occurs during anesthesia and only after intubation. The last type

of study checked AHE that occurred during medication against

septic shock. Data from patients given vasopressor infusion (n

= 1) or norepinephrine infusion (n= 1) were studied to predict

AHE. The prediction window for this type of forecast was 30min

(n= 1) or 3–20 min (n= 1) before the onset of the AHE.

Similarly, the observation window depends on whether the

AHE is post-operation, intra-operative, or occurs when taking

medication. For the first type of AHE, the observation window

values, ranging frommost common to least common, are 30min

(n = 7), 60 min (n = 6), 2 h (n = 6), 5 h (n = 3), 5 min (n =

2), 90 min (n = 2), 15 min (n = 1), 20 min (n = 1), 10 h (n =

1), 12 h (n = 1), 6 h (n = 1), or 10–60 min (n = 1). For intra-

operative AHE prediction, the observation windows are 1–4min

before intubation, 30 s and 15 min (n = 1, each). For the AHE

prediction during medication, the observation window is either

60 min or 1.3–6.67 h (n= 1, each).

The MIMIC-II database (n = 26) was the most frequently

used data source, followed by the MIMIC-III database (n = 4),

or a hospital database that is not public (n = 3). The Vital DB

was rarely used (n = 1); it is a public database. One study used

both the MIMIC-II database and a hospital database.

Discussion

The sample sizes of the studies varied greatly, ranging from

a very small-scaled analysis with only a few dozen patients to

very large-scaled studies that include several thousand people.

Such a large variation in the number of subjects means that

a comparison of different studies is not possible or could

be strongly biased. Kim et al. (35) demonstrated that the

performance of both of the chosen algorithms improved up to

FIGURE 3

Prediction accuracy based on the type of algorithm. LSH is the

most accurate algorithm, although only a few studies used it.

SVM is the algorithm that was most often studied, and RF is the

least accurate algorithm. RF, random forest; GP, genetic

programming; DT, decision tree; KNN, K-nearest neighbors;

SVM, support vector machine; LR, logistic regression; ANN,

artificial neural network; LSH, locality sensitive hashing.

a point when the size of the training dataset increased. Patient

information, including gender, age, comorbidity, medication,

etc., was not reported in most of the reviewed studies, and these

factors could have an impact on whether an AHE could occur.

The MIMIC database was mostly often used in the reviewed

studies, probably due to its freely accessible nature. There might

be data quality concerns regarding this database, for example,

missing data. Moreover, the database is continuously updated,

meaning that different studies, although all referring to the same

database, might not have used the same data.

Since accuracy was the performance measure mostly often

reported, we compared the performance of different machine

learning algorithms based on this evaluation metric (Figure 3).

LSH has the highest average accuracy; however, only two studies

used this algorithm, and both had the same first author: Kim and

O’Reilly (32). In contrast to some other algorithms that are better

established and more widely studied, the performance of LSH

needs to be further assessed in future studies. Kim and O’Reilly
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TABLE 2 Summary of the prediction window.

Type Time length (mins) Number of study

Post-operative AHE 10 1

30 4

60 21

120 2

165 1

Intra-operative AHE 1 1

5 2

10 1

15 1

AHE during medication 3–20 1

30 1

Most studies focused on predicting post-operative AHE. A 60 min prediction time length

was the most common. Fewer studies aimed to predict AHE during an operation or when

taking medication.

(32) observed that LSH variants have very different robustness

against data irregularities, and noted that further work is needed

to develop an effective data representation that can be integrated

into the general LSH framework.

AHE prediction

When researchers use the same data but different prediction

window, as shown in Table 2, they will get different results even

with the same machine learning algorithm. In our analysis, we

found there is no standard prediction window consensus in

this area yet. Thus, the choice of prediction window is mostly

subjective. Zhang et al. (12) analyzed the impact of prediction

gaps on six machine learning algorithms and concluded that

some methodologies are less impacted than others when the

prediction gaps change. Lee et al. (42) studied the gap window

size ranging from 1 to 4 h and showed that, in general, the overall

performance degrades as the gap size increases.

Regarding the training data time length, Lee et al. (20)

studied the intra-operative AHE scenario and found 3 min of

data performed better than 2 and 1 min. It is not difficult

to imagine that a shorter prediction window and a longer

training data time would provide better prediction accuracy, but

a prediction window that is too short would be clinically less

valuable to healthcare providers in terms of providing them with

sufficient time to check the patient’s situation and decide if an

intervention is needed.

Summarization frequency may also impact the accuracy

performance. In Pathinarupothi et al. (26) summarization was

done once every 5 and 10 min; they found that a 10 min

summarization can predict AHE with at least a 10% better F1

score, on average.

Feature extraction

Feature selection is the process of trying to fit the dataset.

As mentioned in the previous three sub-sections, the missing

patient background information, the diversity in the sample size

and the prediction window, and the dynamics of the database

can impact the data to be studied, while directly impacting the

features to be selected.

However, the way in which the features were extracted

also varied in the studies. While many studies described what

methodology was used to extract the features (27 out of 35

articles), as shown in Figure 4 (left panel), eight articles did

not provide details, mostly because raw data were applied and

not processed. Kim et al. (35) found that the performance

of the models utilizing derived features was worse than the

performance of the models simply using the raw time series.

In the study of Zhang et al. (12) feature reduction did not

impact the accuracy or AUC performance of the selected

machine learning algorithms. Afsar (43) reported that using

dimensionality reduction effectively improved the prediction

accuracy, and only five features were needed for the calculation.

Note that themost used number of features is between 2 and 9, as

shown in Figure 4 (right panel). Lee et al. (20) compared the use

of vital records with the use of vital records plus electronic health

records (EHR), and found that for the convolutional neural

network model, EHR improves the accuracy by 0.39%; however,

for other algorithms, such as RF, Xgboost, and deep neural

network, the differences were negligible. Therefore, with these

completely different findings, it is difficult to conclude which

methodology is the best for extracting the features, what features

are universally effective no matter what algorithms are applied,

or how feature reduction impacts prediction performance.

When considering the different combinations of feature

extractions and time windows, the situation could become very

complicated. Ghosh et al. (30) studied different combinations of

observation windows (30, 60 min), prediction windows (60, 120

min), and feature classification methods (single mode, multi-

mode). They found that the prediction accuracy was the highest

when both the observation window and prediction window

times were 60 min for a single mode extraction mechanism, but

the highest prediction accuracy occurred when the observation

window was 30 min and the prediction window was 60 min for

the multi-mode classification method.

Evaluation metrics

As shown in Figure 5, most of the studies (n = 27) reported

accuracy as one of the evaluation metrics, followed by sensitivity

(n= 17) and specificity (n= 16).

However, Ribeiro et al. (14) and Moghadam et al. (21)

mentioned that the common ways of measuring performance

(including accuracy, sensitivity, specificity, etc.) might not be
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FIGURE 4

(Left) The methodology used to extract the features was very diverse; no single methodology accounts for more than half of the studies.

Statistics (e.g., maximum, minimum, mean values of the raw data) are the extracted features most often studied, followed by clinical equations

(apply raw data to the equation to calculate some of the derived information, e.g., cardiac output, MAP to HR ratio). (Right) Graph showing how

many features were extracted to predict AHE. The number varies greatly among the studies, with a single feature extraction being the most

common.

FIGURE 5

Evaluation metrics. The way in which the performance of

machine learning algorithms is evaluated varies from study to

study. Accuracy is the most common metric; it was adopted by

almost 80% of the studies. AC, accuracy; SE, sensitivity; SP,

specificity; PPV, positive predictive value; AUC, area under the

ROC curve; F1, F1-score; NPV, negative predictive value; MCC,

Matthews correlation coe�cient.

sufficient to evaluate the performance of an algorithm in

predicting AHE, as the data are highly skewed. In Moghadam

et al. (21) the Naive Bayes (NB) algorithm raised 17,271 false

positive alarms; true positive was only seen in 23,552 cases.

However, the accuracy, sensitivity, and specificity of NB were 88,

85, and 88%, respectively. Based on those results, NB is a good

machine learning algorithm candidate. However, in clinical

practice, such a high false alarm rate means the healthcare

providers would gradually lose confidence in the accuracy of the

alarm and may not react when a true positive incident occurs.

Both authors suggested using positive predictive value (PPV)

or the F1 score to evaluate the machine learning algorithm to

predict AHE, but PPV and F1 scores are missing in many of the

current studies.

Deep learning models have generated great interest due

to breakthroughs in fields like image analysis and speech

recognition. However, we noticed that as regards to predicting

AHE, deep learning algorithms were not so widely studied,

and the performances were not better than other traditional

methods (17, 24, 37). One possible explanation could be that

deep learning models require a massive dataset for learning,

which is usually lacking in the ICU setting; therefore, the interest

in exploring deep learning’s potential in predicting AHE is

less prominent. Another reason might be that deep learning is

known to be good at learning from features. At the same time,

some research (35) has shown that for predicting AHE, raw data

could sometimes be even better, probably because MAP itself is

already a good indicator. Thus, a simpler but faster model could

be sufficient to fulfill the expectation in AHE prediction.

Recommendation for future work

Summarizing the study findings, we recommend that

researchers consider the following aspects when designing future

studies:

1. Use a large number of subjects (>100) balanced in gender,

age, and ethnicity. Moreover, the health status of the subjects

needs to be stated, such as comorbidities.

2. Examine a consistent prediction window, precisely 30, 60

min, or both.

3. Elaborate on the feature selection phase, including the

number of features extracted, how the feature extraction was

done, and what the features are, since these aspects would

impact the algorithm performances.

4. Report different evaluation metrics such as accuracy,

sensitivity, specificity, Matthews correlation coefficient

(MCC), and F1 score is essential for objective assessment.

Limitations

Due to time constraints, we searched only four databases.

It is, therefore, possible that we missed some articles available
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in other databases. The keyword choice might also lead

to the omission of relevant research. Some studies checked

applications of machine learning algorithms in multiple areas,

which could include but are not limited to AHE prediction.

Conclusion

This review summarizes the application of machine learning

algorithms for predicting AHE in articles published from 2008 to

2021. Most of the studies included in the review focused on the

prediction of post-operative AHE 30 or 60 min before the onset

utilizing ABP signals from the MIMIC database. The machine

learning algorithm showed an accuracy between 76.3 and 96.5%.

The machine learning algorithms perform well when evaluated

with metrics like accuracy, sensitivity, and specificity. However,

some researchers (14, 21) reported high false positives in some

algorithms, when usingmetrics like PPV or F1 score. As many of

the studies currently do not reportMCC or F1 score, it is difficult

to say if and which of the machine learning algorithms are ready

to be used clinically.

By examining the metrics and machine learning algorithms

used in previous studies, this review aimed to enable future

researchers to better design experiments and pave the way for the

findings to be adopted in a clinical environment. Little evidence

is currently available for a meta-analysis due to the variations in

the scope and methodologies used in previous studies. Further

research is needed to evaluate the technology in real life and

examine its impact on patients and healthcare providers.
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