
fcvm-09-945142 August 18, 2022 Time: 21:1 # 1

TYPE Review
PUBLISHED 24 August 2022
DOI 10.3389/fcvm.2022.945142

OPEN ACCESS

EDITED BY

Salvatore Pepe,
Royal Children’s Hospital, Australia

REVIEWED BY

Qun Chen,
Virginia Commonwealth University,
United States
Shyam Nandi,
University of Nebraska Medical Center,
United States

*CORRESPONDENCE

Xiaogang Guo
gxg22222@zju.edu.cn

SPECIALTY SECTION

This article was submitted to
Cardiovascular Therapeutics,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 16 May 2022
ACCEPTED 04 August 2022
PUBLISHED 24 August 2022

CITATION

Liu M, Lv J, Pan Z, Wang D, Zhao L and
Guo X (2022) Mitochondrial
dysfunction in heart failure and its
therapeutic implications.
Front. Cardiovasc. Med. 9:945142.
doi: 10.3389/fcvm.2022.945142

COPYRIGHT

© 2022 Liu, Lv, Pan, Wang, Zhao and
Guo. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Mitochondrial dysfunction in
heart failure and its therapeutic
implications
Miaosen Liu1, Jialan Lv2, Zhicheng Pan2, Dongfei Wang2,
Liding Zhao2 and Xiaogang Guo2*
1Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China, 2Department
of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

The ATP consumption in heart is very intensive to support muscle contraction

and relaxation. Mitochondrion is the power plant of the cell. Mitochondrial

dysfunction has long been believed as the primary mechanism responsible for

the inability of energy generation and utilization in heart failure. In addition,

emerging evidence has demonstrated that mitochondrial dysfunction also

contributes to calcium dysregulation, oxidative stress, proteotoxic insults

and cardiomyocyte death. These elements interact with each other to form

a vicious circle in failing heart. The role of mitochondrial dysfunction in

the pathogenesis of heart failure has attracted increasing attention. The

complex signaling of mitochondrial quality control provides multiple targets

for maintaining mitochondrial function. Design of therapeutic strategies

targeting mitochondrial dysfunction holds promise for the prevention and

treatment of heart failure.

KEYWORDS
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Introduction

Mitochondrion is cellular organelle surrounded by two membranes, which is the
source of energy production within the cells. Beyond its critical role in supplying energy,
mitochondrion is also closely related to reactive oxygen species (ROS) production, Ca2+

homeostasis and related signal transduction (1, 2). Mitochondrion is highly plastic,
and the number, shape and function remain relatively stable under normal conditions.
Mitochondrial homeostasis is crucial for cell fate (3–5).

Mitochondrion is able to quickly adapt to changing conditions. Mitochondrion
adjusts its morphology and function to meet the needs of cell, which is conducive to
respond to internal and external stimuli and maintain the physiological function (3).
Conversely, mitochondrial dysfunction may in turn cause cell fate transition, leading
to the damage of structure, function and metabolism, and even cell death (6, 7), which
takes part in the genesis and development of a variety of diseases (8–11). Accumulating
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studies demonstrated that mitochondrial dysfunction
contributes to the pathogenesis of common cardiovascular
diseases (CVD) (12–16), culminating in end-stage heart failure
(17, 18). In this review, we mainly discuss mitochondrial
dysfunction-mediated energy metabolism disturbance, Ca2+

dysregulation, oxidative stress, proteostasis imbalance, and
mitophagy deficiency in the development of heart failure.

Mitochondrial quality control

Mitochondrial quality control mainly includes the
ubiquitin-proteasome system (UPS) which recognizes and
degrades misfolded and damaged proteins to maintain
mitochondrial protein homeostasis (19), mitochondrial fusion
and fission to ensure the number, morphology and proper
intracellular distribution of mitochondria (20), and mitophagy
to selectively remove damaged and redundant mitochondria
(21). Mitochondrial quality control is of vital importance to
maintain mitochondrial homeostasis. Mitochondrial metabolic
disorders, morphological and functional changes are closely
related to the occurrence, development and treatment of
various diseases such as aging, cancer, metabolic disorders,
neurodegenerative diseases and CVD (22–24).

Disturbance of mitochondrial
energy metabolism in heart failure

Heart failure is a clinical syndrome resulted from a
wide range of causes, including ischemic, hypertensive,
inflammatory, and toxic heart diseases. The heart is a very
high energy consumption organ and must continually generate
ATP to support muscle contraction and relaxation. The energy
substrates in mitochondria of failing heart are switched. There
is about 70% of ATP coming from the beta-oxidation using fatty
acids as the primary fuel in mitochondria of healthy adult heart,
and the contribution of fatty acids beta-oxidation to overall
ATP production can even reach to almost 100% of the total
energy requirement of the heart (25). Glucose, lactate, pyruvate,
ketone body and amino acid are also substrates for myocardial
energy provision (26). During the pathological progression of
heart failure, the energy metabolism mode of cardiomyocytes
gradually changes, with an increased proportion from glucose
and a decreased proportion from fatty acids beta-oxidation (27).
This metabolic remodeling of substrate utilization shifts cardiac
metabolism to a fetal energy metabolism (28, 29). Compared
with fatty acids, the oxygen consumption of energy production
is lessened when glucose is used as the substrate (30). To some
extent, this switch helps to maintain cardiac function in the
process of chronic heart disease.

The oxidative phosphorylation in mitochondria is impaired
and energy starvation is observed in the human biopsies

of failing heart (31). Heart failure is mainly divided into
ischemic and non-ischemic heart failure. Ischemic heart failure
is related to coronary artery diseases especially myocardial
infarction and accounts for about 50% of heart failure (32).
The energy substrates adaptively shift toward glucose, which
increases the stoichiometric ratio of ATP production to oxygen
consumption and improves cardiac function in ischemic heart
(33, 34). Thus replacing fatty acids by glucose is considered
to be able to increase oxygen efficiency and benefit energy
provision in failing heart. The “adaptive” mechanism during
the progression of heart failure is not well understood.
Amorim et al. reported that insulin-induced phosphorylation
of Akt is normal and the expression of glucose transporter
type 4 is unchanged, while the expression of the genes
regulating fatty acid oxidation, e.g., long-chain-acyl-coenzyme
A dehydrogenase, carnitine palmitoyltransferase 1 (CPT I)
and peroxisome proliferator-activated receptor-α, is reduced
in the infarcted hearts (35). Oxidative phosphorylation is
badly damaged due to severe hypoxia in heart with acute
myocardial infarction. Anaerobic glycolysis is inefficient to
produce adequate ATP to meet the energy requirement of the
heart and also results in the accumulation of lactate (36, 37). ATP
depletion and acidosis lead to impaired myocardial contractility
and injured membrane pumps and ion channels. The alterations
of membrane pumps and ion channels cause mitochondrial
swelling, Ca2+ accumulation and the opening of mitochondrial
permeability transition pore (mPTP), which is prominent in
cardiomyocyte of myocardial ischemic injury and has been
demonstrated to play a critical role in various forms of cell death
in myocardial ischemia/reperfusion injury (38, 39).

Non-ischemic heart failure is mainly related to hypertrophic
cardiomyopathy and dilated cardiomyopathy (DCM) (34).
Mitochondrial energy substrates switch is prevalent in
non-ischemic heart failure, which is driven by energy
metabolic reprogramming leading to altered enzymes and
substrate flux (29). Accumulating evidence has indicated
that enzymes involved in fatty acids beta-oxidation pathway
decrease significantly in the myocardium from heart failure
patients. Martin et al. reported that total CPT and CPT II
activities decrease in failing heart, and carnitine deficiency
is related to ventricle dysfunction (40). Very long-chain
acyl-CoA dehydrogenase (VLCAD) deficiency is the most
common defect of mitochondrial long-chain fatty acid β-
oxidation. Mitochondrial energy metabolism is impaired in
VLCAD−/− mice, and hypertrophic cardiomyopathy is a
typical manifestation of VLCAD deficiency in human (41, 42).
The changes in energy metabolic gene expression and substrates
progressively lead to energy starvation. On the other hand,
the pathological remodeling increases energy consumption
in diseased heart. The impairment of mitochondrial energy
metabolism leads to energy deficiency, which is in contradiction
with the increased energy demand in hypertrophic heart caused
by pathological remodeling.
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Recent studies revealed that mitochondrial pyruvate carrier
(MPC), which transports pyruvate into the mitochondria, is
reduced in failing human and mouse hearts (43, 44). Cardiac
assist device was found to increase MPC expression in the
myocardium and promote myocardial recovery in patients with
chronic heart failure (45). Mice with cardiac-specific deletion of
MPC1 or/and MPC2 resulted in cardiac hypertrophy, dilated
cardiomyopathy, and contractile dysfunction (43–46). These
results indicate an important role of pyruvate metabolism in
myocardial metabolism and function. Pyruvate dehydrogenase
(PDH), an enzyme converts pyruvate into acetyl-CoA, was
reported to be inactivated in advanced pathological conditions
of heart failure (47, 48). However, a recent study found that
PDH is activated at an early phase before the down-regulation
of fatty acid oxidation and tricarboxylic acid (TCA) cycle,
suggesting that PDH activation is one of the earliest events to
compensate for metabolic impairment from myocardial damage
(49). Increased PDH expression and activity were evident with
decreased expression of PDH kinase 4, MPC1 and MPC2,
sustaining the capacity for PDH to facilitate glucose metabolism
in end-stage systolic heart failure (50).

Dysregulation of Ca2+

homeostasis in heart failure

As a second messenger, Ca2+ plays a central role in
myocardial excitation-contraction coupling (51). Using the
energy of ATP hydrolysis, Ca2+ pump transports Ca2+ ions
from the cytoplasm into the sarcoplasmic reticulum (SR) or
out of the cell. Therefore, energy deficiency always couples with
the dysregulation of Ca2+ transportation in failing heart, which
consequently leads to excitation-contraction uncoupling and
cardiac dysfunction (52). Dysregulation of Ca2+ homeostasis is
also associated with abnormal leak of Ca2+ from SR through
ryanodine receptors (RyR) and results in increased cytosolic
Ca2+ at baseline but reduced cytosolic Ca2+ transients during
excitation (53, 54). Overwhelming studies revealed that Ca2+

leaked from the SR via RyR2 causes mitochondrial Ca2+

overload, which plays a key role in heart failure (55).
Mitochondrial Ca2+ uptake and efflux also influence

cytosolic Ca2+ homeostasis (56). Mitochondrial Ca2+ uptake
depends on the mitochondrial Ca2+ uniporter (MCU) (57, 58),
while mitochondrial Ca2+ efflux is mainly regulated by the
mitochondrial Na+/Ca2+/Li+ exchanger (56). Mitochondria
can sense the change of cytosol free Ca2+ and maintain
intracellular Ca2+ homeostasis by regulating the opening and
closing of MCU and Na+/Ca2+/Li+ exchanger, so as to
prevent cytosolic Ca2+ overload and cell damage (56). However,
excessive mitochondrial Ca2+ uptake causes mitochondrial
Ca2+ overload, which impairs mitochondrial function, leading
to decreased ATP generation and increased mitochondrial
ROS (mtROS) production, and is a key determinant in heart

failure (55). MCU is also a mitochondrial redox sensor
and MCU oxidation enhances its channel activity leading to
mitochondrial Ca2+ overload, increased mtROS, and even cell
death (59). In addition, increased intracellular Ca2+ leads to the
activation of calpain, which mediates mitochondrial damage in
diseased hearts (60). Recent studies revealed that the activation
of calpain results in mitochondrial damage and subsequent
cardiac dysfunction by impairing mitophagy and promoting
mitochondrial fission and apoptosis (13, 61).

On the other hand, if the level of mitochondrial Ca2+ falls
below a critical threshold level, Ca2+-dependent activation
of tricarboxylic acid (TCA) cycle enzymes is disrupted,
and consequently ATP generation is impaired whereas
NADH oxidation is increased. This pathological change
was demonstrated in both myocytes isolated from failing
heart (62) and in an animal model of heart failure (63).
Therefore, mitochondrial Ca2+ homeostasis is critical for
normal heart function.

Accumulation of mitochondrial
reactive oxygen species in heart
failure

Mitochondria are one of the main sources of ROS
production within the cell. TCA cycle-dependent electron
transfer complexes are distributed in the inner membrane
of mitochondria. Most electron transfer process is coupled
with the generation of ATP, and only 1–2% of the electrons
are transferred to produce superoxide anion, which can be
scavenged by superoxide dismutase (64). The mtROS is mainly
generated from the complex I and complex III in the electron
transport chain (65). The basal level of mtROS can fulfill
essential physiological functions by acting as signaling molecule.
It plays an important physiological role in mediating gene
expression, regulating cell cycle and cell differentiation, and
is of great significance for stress response, cell survival, cell
proliferation, etc. (1).

However, excessive accumulation of mtROS plays an
important role in pathological process of heart failure. Dai
et al. demonstrated that mtROS contributes to angiotensin II-
induced cardiac hypertrophy and heart failure (66). Chouchani
et al. showed that mtROS generation during the early stages
of reperfusion promotes myocardial ischemia/reperfusion
injury (67). It is recognized that mtROS drives acute
cardiovascular events such as electrical instability and chronic
proteome remodeling in heart failure (68). Dysfunction of the
mitochondrial respiratory chain is accompanied by increased
generation of mtROS, leading to oxidative stress and resulting
in mitochondrial protein and DNA damage, membrane lipid
peroxidation, and the opening of the mPTP. The opening of the
mPTP causes the release of cytochrome C and cell apoptosis,
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consequently promotes the progression of heart failure (69).
It is well believed that apoptosis is mainly responsible for
the cumulative loss of cardiomyocyte in failing heart, and
causally contributes to myocardial dysfunction progression (70).
Recent study also demonstrated that mtROS induced NLRP3
inflammasome activation and cardiomyocyte pyroptosis in
DCM, uncovering a novel event in the initiation and progression
of heart failure (71).

Nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX) is one of the predominant sources of ROS in
the heart. Accumulating data indicate that complex crosstalk
and interaction exist between NOX and mtROS (72, 73). Under
conditions of oxidative stress, NOX-derived ROS can cause
lipid peroxidation of mitochondrial membrane and the opening
of redox-sensitive mitochondrial ATP-sensitive K+ channel
(mitoKATP), leading to mtROS generation from the electron
transport chain (73).

Dysregulation of mitochondrial
proteostasis in heart failure

Mitochondria have their own genome encoding
mitochondrial specific proteins. The mitochondrial proteome
is composed of 1,000∼1,500 proteins, encoded by both
mitochondrial and nuclear genomes (74, 75). Mitochondrial
proteostasis is essential for the function of cell. Normal
mitochondrial function requires coordinated gene expression
in the nucleus and in mitochondria (19). The UPS controls
protein transport across the mitochondrial outer membrane,
and primarily degrades outer membrane proteins that
are improperly imported or damaged/mislocalized (19).
Furthermore, mitochondrial chaperones and proteases
govern protein folding and degrade damaged proteins inside
mitochondria. Dysregulation of mitochondrial proteostasis
leads to proteotoxic insults and eventually cell death (19).

Under cellular stress conditions, both mitochondrial-
encoded and nuclear-encoded proteins are misfolded and
dysfunctional. The generation of mtROS compromises
protein integrity and folding. The proteotoxic stress within
mitochondria activates mitochondrial unfolded protein
response (UPRmt), which induces the transcription of
mitochondrial chaperones (e.g., heat shock protein 60),
antioxidants (e.g., thioredoxin 2) and proteases (e.g.,
caseinolytic mitochondrial matrix peptidase proteolytic
subunit, CLPP; YME1 like 1 ATPase, YME1L; OMA1
zinc metallopeptidase, OMA1) (76). UPRmt re-establish
mitochondrial proteostasis by facilitating protein folding or
repairing misfolded proteins, and degrading unrepairable
proteins (75).

UPRmt is of great benefit to the preservation of ATP
production, reduction of mtROS accumulation, and inhibition
of mitochondria-mediated cell death, and showed a protective

effect in chronic and acute cardiac injury (77). Activating
transcription factor associated with stress-1 (ATFS-1), an
UPRmt-inducing transcription factor, was showed to preserve
ATP production by promoting the assembly and function of
oxidative phosphorylation components during mitochondrial
stress (78). Upregulation of mitochondrial Lon protease
(LONP1), a component of UPRmt, protected the myocardium
from cardiac stress and limited ischemia/reperfusion injury
(79). Recent study found that intensive sympatho-excitation
leads to pathological cardiac hypertrophy and fibrosis, which
is coupled with decreased UPRmt and increased mitochondrial
proteotoxic stress (80). These myocardial morphological
alterations is closely associated with heart failure with preserved
ejection fraction (HFpEF) (81). Smyrnias et al. demonstrated
that UPRmt is activated during chronic pressure overload
and pharmacological enhancement of the UPRmt alleviates
mitochondrial and contractile dysfunction in the stressed heart
(82). Xu et al. also found that choline attenuated the mito-
nuclear protein imbalance and activated UPRmt to preserve
the ultrastructure and function of mitochondria in hypertrophic
heart (83). Further studies confirmed that pharmacological
UPRmt activation exerts cardioprotective effect in an ATF5-
dependent manner in mouse models of ischemia-reperfusion
injury and transverse aortic constriction-induced cardiac
hypertrophy (84, 85). All these indicate that UPRmt may play an
important protective role in stressed heart and may be potential
therapeutic target for heart failure.

Reciprocal regulation between mitochondrial proteases
YME1L and OMA1 is critical in UPRmt. They antagonistically
regulate mitochondrial proteostasis by ATP-dependent network.
When mitochondrial depolarization with preserved ATP levels,
YME1L is further activated and OMA1 is degraded through
a mechanism involving YME1L. Whereas in the absence
of ATP, OMA1 is activated and stabilized by membrane
depolarization, and subsequently promotes YME1L degradation
(86, 87). It was reported that pressure overload decreases
YME1L expression and cardiac-specific overexpression of
YME1L improves cardiac function in pressure overload-induced
heart failure (88). Acin-Perez demonstrated that OMA1 ablation
averts cardiomyocyte death in three different mouse models of
heart failure: tachycardiomyopathy, heart failure with preserved
left ventricular ejection fraction, and left ventricular myocardial
ischemia and hypertrophy (89). All these suggested that the
regulation of YME1L and OMA1 is potential target for
preventing the progression of heart failure associated with
distinct types of etiologies.

However, there is contradictory evidence that UPRmt may
be associated with adverse events within the heart. The release
of mitochondrial chaperone molecule heat shock protein 60
was observed to promote proinflammatory tumor necrosis
factor-α, which correlated with increased myocyte apoptosis
in heart failure (90). The mitochondrial matrix protease
CLPP plays a central role in the activation of the UPRmt,
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deletion of CLPP in heart increased the synthesis of oxidative
phosphorylation subunits and attenuated the mitochondrial
cardiomyopathy (91). Cao et al. showed that parvostatin
improved left ventricular function and slowed the progression
of heart failure in mice by blocking UPRmt activator c-Jun
(92). The contradictory effects of UPRmt on heart may due
to its intensive degree. A moderate activation of UPRmt
may maintain normal mitochondrial and cardiac function by
removing/repairing damaged mitochondrial proteins, while an
excessive UPRmt may exacerbate mitochondrial dysfunction
and cardiac dysfunction due to a massive cleavage of
mitochondrial proteins (77).

Moreover, hyperacetylation of mitochondrial proteins has
been found in the myocardium of patients and animal model
with heart failure (93). The hyperacetylation of TCA cycle
enzymes and electron transfer enzymes results in decreased
activity of these enzymes, leading to disruption of mitochondrial
bioenergetics and redox homeostasis (93, 94). Reduced fatty
acid beta-oxidation is associated with increased short-chain
acyl-CoA in the failing heart, indicating an imbalance in the
utilization and supply of acetyl-CoA may lead to increased
acetylation of mitochondrial proteins (17). Sirtuin 3 (SIRT3),
a key deacetylase in mitochondria, has been demonstrated to
be downregulated in the failing heart, and SIRT3 knockout
mice are susceptible to develop transverse aortic constriction-
induced heart failure (95). This result suggests that reduced
protein deacetylation may be also responsible for protein
hyperacetylation in mitochondria of the failing heart.

Imbalance of mitochondrial
dynamics in heart failure

Mitochondrial dynamics including fusion and fission
determines the number, morphology and distribution of
mitochondria, and modulates mitochondrial functions
to respond properly to body demands (20). Imbalance
of mitochondrial dynamics disturbs energy and mtROS
generation, Ca2+ homeostasis and proteostasis, even induces
cell death in the heart (96). Mitofusin 1 (MFN1) and MFN2 are
the core components of the mitochondrial fusion machinery and
coordinately regulate mitochondrial fusion (97). Mitochondrial
fission requires fission protein dynamin-related protein 1
(Drp1) (98).

The balance between fusion and fission ensures the
number and morphology of mitochondria in cardiomyocytes.
In addition, mitochondria are tightly packed between the
sarcomere myofibrils or closely localized to the SR in order
to provide crosstalk between sarcomeres and efficient SR-
mitochondria during excitation–contraction coupling (99).
Downregulation of mitochondrial dynamics regulator MFN2
has been found resulting in mitochondrial fragmentation
and contributing to the development of heart failure in

rats and in patients with pulmonary arterial hypertension
(PAH) (100). Decreased MFN2 expression and excessive
mitochondrial fission were also observed in diabetic mice
and promoted the development of diabetic cardiomyopathy,
indicating mitochondrial dynamics is therapeutic target for
intervention in diabetic cardiomyopathy (101).

Activation of fission protein Drp1 and aberrant
mitochondrial fission were observed in PAH, and the Drp1
inhibitor Mdivi-1 attenuated mitochondrial fragmentation
and improved exercise capacity, right ventricular function,
and hemodynamics in experimental PAH (102). Recent
study showed that lipid overload induced Drp1 acetylation
and eventually resulted in cardiomyocyte death and heart
dysfunction (103). Phosphorylated activation of Drp1 and
mitochondrial fission contributed to cardiomyocyte pyroptosis
in non-ischemic DCM mice, and culminating in end-stage heart
failure (71).

Impairment of mitophagy in heart
failure

Mitophagy is a selective autophagic process that eliminates
dysfunctional mitochondria. It is essential for mitochondrial
quality control and cell function (21). Mitophagic deficiency
results in the accumulation of dysfunctional/damaged
mitochondria, which reduces the capacity of ATP production
and increases the generation of mtROS (21). Continuous
constitutive autophagy has a crucial role in maintaining cardiac
structure and function. The phosphatase and tensin homolog
(PTEN)-induced putative kinase 1 (PINK1)/Parkin pathway
is an important pathway in regulating mitophagy (104).
Mitophagy is impaired in aged and doxorubicin-treated hearts,
and inhibition of Parkin-mediated mitophagy subsequently
promotes cardiac dysfunction and overexpression of Parkin
attenuates the functional decline in mouse hearts (105).
Overexpression of Parkin also protects cardiac myocytes against
hypoxia-mediated cell death and Parkin protein deficiency
aggravates myocardial damage and reduces survival following
myocardial infarction (106). In addition, AMP-activated protein
kinase α2 (AMPKα2) prevents the progression of heart failure
by promoting mitophagy via PINK1 phosphorylation (107).

FUN14 domain-containing protein 1 (FUNDC1) is an
outer mitochondrial membrane protein and serves as a receptor
to mediate mitophagy (104). It was reported that hypoxic
preconditioning induces FUNDC1-dependent mitophagy,
regulates mitochondrial homeostasis, and protects the heart
from ischemia/reperfusion injury (108). Autophagy protein 5
(Atg5) deficiency decreases mitophagy, leading to increased
ROS production and NF-κB activity, thereby contributing
to cardiac inflammation and injury (109, 110). Wang et al.
found that mitophagy coordinates the UPRmt to attenuate
sepsis-mediated myocardial injury, and endogenous UPRmt is

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.945142
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-945142 August 18, 2022 Time: 21:1 # 6

Liu et al. 10.3389/fcvm.2022.945142

FIGURE 1

Mitochondrial quality control and mitochondrial dysfunction in the pathophysiology of heart failure. Mitochondrial quality control mainly
includes UPS/UPRmt, mitochondrial fusion and fission, and mitophagy to ensure the number, morphology and function of mitochondria.
Mitochondrial dysfunction leads to energy metabolism disturbance, Ca2+ dysregulation, oxidative stress, proteotoxic insults, and cardiomyocyte
death in the heart, and contributes to the progression of heart failure. mtROS, mitochondrial reactive oxygen species; UPS,
ubiquitin-proteasome system; UPRmt, mitochondrial unfolded protein response.

a downstream signal of mitophagy to maintain mitochondrial
homeostasis in the case of mitophagy inhibition (111).
Insufficient mitophagy has been associated with multiple forms
of cardiomyopathy, including age-related cardiomyopathy
(112), obesity-associated cardiomyopathy (113) and diabetic
cardiomyopathy (114). Moreover, pharmacological or genetic
inhibition of mitophagy often exacerbates the progression
of heart failure in multiple animal models of cardiovascular
diseases (104, 115).

Targeting mitochondrial
dysfunction as a therapeutic
strategy

Classic treatments recommended in patients with heart
failure include diuresis to reduce cardiac preload, vasodilation
to reduce the pressure load, inhibition of angiotensin II to
block the pathological remodeling, Digoxin or inotropes to
enhance myocardial contractility, and so on (116). Although
recent evidence showed cardiac myosin activator Omecamtiv
Mecarbil (117) and the soluble guanylate cyclase stimulator

Vericiguat (118) can benefit patients with heart failure, the
outcome of heart failure especially HFpEF is still difficult to
change fundamentally.

Mitochondrial dysfunction results in energy metabolism
disturbance, Ca2+ dysregulation, oxidative stress and
proteotoxic insults, and leads to a final outcome-cardiomyocyte
death in the heart (Figure 1). The loss of cardiomyocyte
contributes to reduced ventricular systolic dysfunction,
and is of central importance in the development of heart
failure (71, 119, 120). Mitochondrial dysfunction-related
cell death may be potential therapeutic targets for heart
failure. Several of microRNAs have been shown to inhibit
mitochondrion-mediated apoptosis and improve cardiac
function by regulating mitochondrial fission and fusion (121–
123). Targeting mitochondrial dysfunction-related pyroptosis
is also showed to improve cardiac function in DCM mice
(71). However, these preliminary findings mainly derived
from in vitro and preclinical animal models, and lots of
work need to be done to further evaluate their potential of
cardioprotection in human.

It was reported that the overexpression of catalase targeted
to mitochondria but not wild type catalase in peroxisomes
ameliorates cardiac hypertrophy and diastolic dysfunction

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.945142
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-945142 August 18, 2022 Time: 21:1 # 7

Liu et al. 10.3389/fcvm.2022.945142

in mice (66). Mitochondria-targeted antioxidant MitoQ
was found to decrease heart dysfunction after myocardial
ischemia-reperfusion (124), and attenuate hypertension-
induced cardiac hypertrophy (125). Recent study also showed
that mitoTEMPOL, an mtROS scavenger, attenuates nicotine-
induced myocardial remodeling and cardiac dysfunction
(126). Coenzyme Q10, an electron carrier in mitochondria, is
thought to reduce oxidative stress because of its antioxidant
activity. Al Saadi et al. included 11 studies to review the efficacy

of coenzyme Q10 in heart failure, and concluded that the
included studies provide moderate-quality evidence for the
benefit of coenzyme Q10 in reducing all-cause mortality and
hospitalization related to heart failure. However, there was
low-quality evidence to conclude whether coenzyme Q10
improves either left ventricular ejection or exercise capacity
(127). Large-scale and high quality clinical trials are needed
to further evaluate the efficacy of coenzyme Q10. Due to the
essential role of mtROS in cell function and survival, a precise

TABLE 1 Therapeutic strategies targeting mitochondria for treatment of heart failure.

Principal
targets

Drugs/strategies Diseases/models Effects References

Energetics SGLT2 inhibitor Heart failure in patients
regardless of the presence or

absence of diabetes
NCT03057977*

Reduce the risk of cardiovascular
death or hospitalization for heart

failure

(128)

Energetics Perhexiline
(inhibiting CPT-1)

Hypertrophic cardiomyopathy
patients

NCT00500552*

Corrects energy deficiency and
improves exercise capacity

(133)

Energetics Perhexiline
(inhibiting CPT-1)

DCM
CT00841139*

Improves cardiac energetics and
symptom status

(134)

Energetics Overexpression of MPC Transverse aortic
constriction-induced heart failure

Increased TCA cycle intermediates,
and Protects against cardiac

hypertrophy and failure

(44)

Energetics Overexpression of MPC Drug-induced hypertrophy Attenuates cardiac hypertrophy (45)

NAD+/NADH ratio Elevation of NAD+ levels
by stimulating the

NAD+ salvage pathway

Transverse aortic
constriction-induced heart failure

Improve myocardial energetics and
cardiac function

(131)

NAD+/NADH ratio Nicotinamide
mononucleotide (NAD+

precursor)

Friedreich’s ataxia
cardiomyopathy mouse model

Improves diastolic and normalizes
systolic function

(132)

mtROS Overexpression of
catalase targeted to

mitochondria

Angiotensin II-induced cardiac
hypertrophy and Galphaq

overexpression- induced heart
failure

Ameliorates cardiac hypertrophy and
diastolic dysfunction

(66)

mtROS mitoTEMPOL Nicotine-induced myocardial
remodeling and cardiac

dysfunction

Attenuates nicotine-induced cardiac
remodeling and dysfunction

(126)

mtROS MitoQ Hypertension-induced cardiac
hypertrophy

Attenuates cardiac hypertrophy (125)

mtROS MitoQ Myocardial ischemia-reperfusion
injury

Decreases heart dysfunction, cell
death, and mitochondrial damage

(124)

mtROS and
Energetics

Coenzyme Q10 People with heart failure Reduce all-cause mortality and
hospitalization related to heart failure

(127)

Mitochondrial Ca2+

homeostasis
CGP-37157 Aortic constriction combined

with daily β-adrenergic receptor
stimulation

Ameliorate myocardial remodeling,
left ventricular dysfunction and

arrhythmias

(63)

Mitochondrial
fission

miR-484, miR-361,
miR-499

Myocardial infarction Reduces apoptosis and myocardial
infarction

(121–123)

Mitochondrial
fission and mtROS

NOX1 and NOX4
inhibitor

DCM Attenuates pyroptosis and myocardial
dysfunction

(71)

Mitophagy Overexpression of Parkin Aged heart Attenuates heart functional decline (105)

Mitophagy Urolithin A (an inducer
of mitophagy)

Sepsis-mediated myocardial
injury

Attenuates sepsis-related myocardial
injury

(111)

*Indicated ClinicalTrials.gov number.
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control between ROS production and detoxification is a decisive
issue need to be solved.

Recent study showed that the administration of sodium-
glucose co-transporter 2 (SGLT2) inhibitor Empagliflozin
significantly reduced cardiovascular death and hospitalization
for heart failure in patients regardless of the presence or absence
of diabetes (128). It is speculated that SGLT2 inhibitor might
improve mitochondrial energetics in the heart by offering β-
hydroxybutyrate as an attractive substrate for oxidation and
protect against heart failure (129). Empagliflozin was also
proved to reduce cytosolic Na+ and increase mitochondrial
Ca2+ in cardiomyocytes independent of SGLT inhibition,
probably by inhibition of Na+/H+ exchanger (130). Further
evaluation is needed to elucidate whether this effect contributes
to the beneficial effect of Empagliflozin on heart failure.

CGP-37157, a selective inhibitor of the mitochondrial
Na+/Ca2+ exchanger, was shown to maintain mitochondrial
Ca2+ and ameliorate pathological myocardial remodeling, left
ventricular dysfunction and arrhythmias (63). By targeting
mitochondrial electron transfer chain, a novel strategy
normalizing NAD+/NADH redox balance was showed to
improve myocardial energetics and cardiac function in failing
mouse heart (131). NAD+ precursors may have the potential
and worth to evaluate their effect on heart failure (132).
Moreover, Perhexiline has been reported to improve cardiac
energetics and symptom status in heart failure patients (133,
134). It is speculated that the modification of myocardial
energy substrate by inhibiting CPT is the primary mechanism
underlying the benefit of Perhexiline. However, this hypothesis
is not supported by all available evidence. Pleiotropic or
unanticipated mechanisms may be relevant to the action of
Perhexiline in heart failure (135, 136).

Accumulating evidence identified that MPC abundance
mediated pathological cardiac hypertrophy and overexpression
of MPC protected against cardiac hypertrophy and dysfunction
(44, 45), highlighting the potential of MPC in preventing cardiac
remodeling and heart failure.

Conclusion

Mitochondrial dysfunction is a well-known hallmark
of heart diseases, and strongly linked to the pathological

development of cardiac dysfunction (17). The complicated
signaling of mitochondrial quality control and related cell death
offers diverse targets for inhibiting mitochondrial dysfunction.
Design of therapeutic strategies targeting the signal molecules
in mitochondrial dysfunction holds promise for the prevention
and treatment of heart failure (Table 1).
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