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Cardiovascular disease (CVD) is the principal cause of mortality and morbidity

globally. With the pressures for improved care and translation of the latest

medical advances and knowledge to an actionable plan, clinical decision-

making for cardiologists is challenging. Artificial Intelligence (AI) is a field in

computer science that studies the design of intelligent agents which take the

best feasible action in a situation. It incorporates the use of computational

algorithms which simulate and perform tasks that traditionally require human

intelligence such as problem solving and learning. Whilst medicine is arguably

the last to apply AI in its everyday routine, cardiology is at the forefront

of AI revolution in the medical field. The development of AI methods for

accurate prediction of CVD outcomes, non-invasive diagnosis of coronary

artery disease (CAD), detection of malignant arrythmias through wearables,

and diagnosis, treatment strategies and prediction of outcomes for heart

failure (HF) patients, demonstrates the potential of AI in future cardiology.

With the advancements of AI, Internet of Things (IoT) and the promotion of

precision medicine, the future of cardiology will be heavily based on these

innovative digital technologies. Despite this, ethical dilemmas regarding the

implementation of AI technologies in real-world are still unaddressed.

KEYWORDS

artificial intelligence, cardiology, machine learning, cardiac imaging, cardiac MR
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Highlights

- Artificial intelligence is a computer science field that studies the problem of building
agents which take the best possible course of action in a specific situation.

- Cardiology is at the forefront of artificial intelligence revolution in medicine.
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- AI allows accurate prediction of cardiovascular outcomes,
non-invasive diagnosis of coronary artery disease, detection
of malignant arrhythmias and diagnosis, treatment, and
prediction of outcomes for heart failure patients.

- The advancements of artificial intelligence, Internet of Things,
and precision medicine will lead to future innovations in the
field of cardiovascular research.

- Artificial intelligence in cardiology is limited by ethical and
data privacy concerns, which are still to be addressed.

- Regulations are required to be implemented for the safe use of
artificial intelligence in cardiology and medicine in the future.

Introduction

Cardiovascular disease (CVD) is the principal cause of
mortality and morbidity globally. The diagnosis and treatment
of CVD relies on data in several forms, such as patient
history, physical examination, laboratory data, invasive and
non-invasive imaging techniques. With the pressures for
improved care and translation of the latest medical advances
and knowledge to an actionable plan, clinical decision-making
for cardiologists is challenging (1). On the other hand, emerging
new technologies and the growth of artificial intelligence (AI)
and machine learning (ML) in the last few decades have offered
physicians opportunities to conduct more efficient and data-
driven research. The availability of large-volume data from
electronic health records (EHRs), mobile health devices and
imaging data enables the rapid development of AI algorithms in
medicine. Cardiology has been one of the few medical specialties
in which AI technologies have been examined systematically (2).

Artificial intelligence

It is difficult to determine the exact year that AI was born.
The English mathematician Alan Turing, named by some as
the father of AI, developed the famous code breaking machine
The Bombe for the British government, which broke the Enigma
code, used by the German army in the Second World War.
The Bombe was considered the first working electro-mechanical
computer (3). In 1950, inspired by his achievement, Turing
published his article “Computing Machinery and Intelligence,”
where he proposed the famous question “Can machines think?”
and recommended definitions for the terms machine and think
(4). He also outlined the world known Turing Test–which is
considered today as the standard method to identify intelligence
of an artificial system. According to the Turing Test, if a
human is interacting with another human and a machine and
cannot distinguish the machine from the human, then the
machine is considered to be intelligent (3). In 1955, during the
Dartmouth Research Project, AI was defined as the problem
of “making a machine behave in ways that would be called

intelligent if a human were so behaving” (5). In 1968, the
cognitive scientist Marvin Minsky outlined AI as the “science
of making machines do things that would require intelligence if
one by men” (6). More recently, in his published paper “What
is Artificial Intelligence,” John McCarthy gives the following
explanation regarding AI: “It is the science and engineering
of making intelligent machines, especially intelligent computer
programs. It is related to the similar task of using computers to
understand human intelligence, but AI does not have to confine
itself to methods that are biologically observable” (7). Kaplan
and Haenlein in 2019 summarised AI as “a system’s ability
to interpret data correctly, to learn from such data, and to
use those learnings to achieve specific goals and tasks through
flexible learning” (3). Stuart Russell and Peter Norvig, authors
of “Artificial Intelligence: A Modern Approach,” have defined
AI by dividing it into four goal-based categories (Table 1; 8).
The definitions are laid out in two scopes. One dimension is
whether the goal of AI is to match human performance or ideal
rationality. The other aspect is whether the goal is to build
systems that think or systems that act (9).

Traditionally, statistics has been the standard method used
in medical research to show the benefit of new treatments,
identify risk factors for a disease and predict prognosis.
Traditional medical research proposes a hypothesis, which
is then tested with statistical analysis. Statistics analyses a
given dataset using mathematical equations and discovers
relationships between data points and outcomes. It is focused
on validation of the hypothesis and understating of the causality
and the mechanisms (10). AI is data driven and does not require
the formulation of a hypothesis. It makes predictions with high
accuracy, without needing to interpret the data given (1). Its goal
is to identify hidden patterns in the data and predict new data.
AI is able to use very complex nonparametric models from a
vast amount of data in comparison to simple parametric models
requiring a suitable-sized data set used in statistics (10).

Machine learning

Machine learning (ML) is a subfield of AI (Figure 1).
ML allows a system to learn from data rather than through
explicit programming. It uses algorithms that learn from
data, identify specific patterns, and make decisions/predict
outcomes based on the learned model (10). Once the ML
algorithm is trained with data, the ML model will be provided
with an input. The output will be a predictive model,
based on the data that trained the model (11). In ML,
the machine learns from the data through three different
methods: supervised, unsupervised, and reinforcement learning
(Figure 2).

Supervised learning is the most widely used technique today.
The model is provided both the inputs and the outputs at the
time of training. It then goes on to produce a prediction model
through categorising future events or finding which variables
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TABLE 1 Definitions of Artificial Intelligence (AI) by four goal based categories (8).

Acting humanly Acting rationally

“The art of creating machines that perform functions that require intelligence
when performed by people.” (107)

“Computational intelligence is the study of the design of intelligent agents.” (108)

Thinking humanly Thinking rationally

“The exciting new effort to make computers think. . . machines with minds, in
the full and literal sense.” (109)

“The study of mental faculties through the use of computational models.” (110)

are most applicable to the outcome (1). Most commonly used
supervised learning tasks include classification (identification
of the group a new measurement belongs to) and regression
(prediction of a continuous value of a new observation) (10).

In unsupervised learning the model learns patterns from the
input, without feedback provided from humans (8). Therefore,
the algorithm needs to explore the data and find hidden patterns.
The most common tasks in unsupervised learning are clustering
(dividing objects in groups with similar characteristics) and
dimensionality reduction (reducing the number of variables of
data through keeping initial variables that explain the data),
which can also be applied in supervised learning (10).

Reinforcement learning involves receiving an output
variable to be amplified and a sequence of choices that can be
taken in order to influence the output (3). The model is not told
which actions to take, but it needs to discover which actions
will lead to the highest level of reward, by trying them. Trial-
and-error-search and delayed-reward are the two features that
distinguish reinforcement learning (12).

Machine learning operates via a variety of algorithms,
which serve different tasks. Understanding the different types
of ML algorithms aids the researcher to choose the best type of
algorithm for their project. One of the most known examples is
the Bayesian algorithm. It allows the scientist to encode previous
beliefs of what a model should look like, irrespectively of what

FIGURE 1

Relationship between Artificial Intelligence (AI), Machine
Learning (ML), and Deep Learning (DL).

the data states. This is used in cases where the amount of data
available is small for the purpose of training a model. Decision
tree algorithms use a branching like structure to map possible
outcomes of a decision, with a percentage assigned to each
node, depending on the chance of the outcome occurring (11).
A random forest algorithm consists of the output of multiple
decision trees, to reach a single result. Support vector machine
algorithms draw a boundary line which increases the margins
from each class and new observations are classified based on
this line (10). Ensemble learning is another ML method, in
which multiple weak algorithms are combined to obtain a
good prediction. Bagging, boosting, and stacking are the three
approaches of ensemble learning. In bagging, multiple weak
learners (algorithms) are trained in parallel, and the results of
each learner are combined to produce a final output. In boosting,
multiple weak learners are combined in series and trained
consequently, considering errors from previous algorithms, in
order to reduce bias. In stacking, the results of weak learners are
used as input for another ML algorithm (10).

Deep learning

Deep learning (DL) is a subfield of ML (Figure 1).
It is inspired by the complexity of the human brain in
handling data and generating patterns, used for decision
making (1). DL is comprised of deep neural networks.
A neural network has three or more layers: an input
layer, one or many hidden layers, and an output layer.
Data is consumed via the input layer. Then the hidden
layers extract the salient features from the input data to
produce an output that closely approximates the ground-
truth. A neural network may comprise of millions of simple
processing nodes which are firmly unified (11). In DL there
are multiple hidden tiers of artificial neural networks that can
create automated forecasts from training datasets. DL requires
complex data for training but is not required to extract features
from the input data. Once implemented it is self-directed,
thus eliminating manual human interaction. It can extract
important results from vast amount of data through iterative
processing (10).

Neural networks can be used for various tasks such
as classification, clustering, dimensionality reduction, pattern
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FIGURE 2

Overview of the role of AI in cardiovascular medicine. Abbreviations: EHRs, electronic health records; CMR, cardiac magnetic resonance; CT,
computed tomography; IoT, internet of things; SPECT, single photon-emission computerised tomography.

recognition, natural language processing, computer vision, and
predictive analysis (13). Neural networks consist of multiple
layers of interconnected artificial neurons. A neuron receives
inputs multiplied with random weights, to which a bias
value is then added. An activation function is then applied
and defines the final value to be given out of the neuron.
There are different types of activation functions, depending
on the input values (14). Neural networks are classified
depending on their structure, data flow, neurons used and
their density. The most important types of neural networks
involve:

1. Feed Forward Neural Network
2. Multilayer Perceptron
3. Radial Basis Function Neural Network
4. Recurrent Neural Network
5. Modular Neural Network
6. Convolutional Neural Network

Feed Forward Neural Networks (FFNNs) are the simplest
form of neural networks, as data travels in just one direction,
passing from input and exiting through output nodes (hidden
layers may or may not be present). They can be either
single-layered or multi-layered FFNNs and the number of
layers depend on how complex the function is. FFNNs are
usually applied in face recognition or simple classification.

In Multiplayer Perceptron (MLP), input data travels through
various layers of artificial neurons. It is a fully connected neural
network, as all nodes are connected to all the neurons in the next
layer. Input and output layers and multiple hidden layers (three
or more) are present, and propagation is bi-directional (forward
and backward). MLP is used in speech recognition, machine
translation and complex classification. In a Recurrent Neural
Network (RNN), the output of a layer becomes the input to the
next layer—which is the only layer in the network. Therefore, the
output of a layer becomes an input to itself and forms a feedback
loop. This means then network has internal memory, which
influences the current output. RNNs are used in tasks such as
text processing and text to speech processing. An example of
this is when typing in Google, it automatically completes the
sentence for us! The Radial Basis Function Network (RBFN) is
based on the radial basis function (activation function), which
is included in the hidden layer. The input is designated to
a centre and the output combines the outputs of the radial
basis function and weight parameters to perform classification
or inference. It is used for prediction analysis and function
approximation. A Modular Neural Network (MNN) is consisted
of multiple different networks which work independently and
perform different tasks, towards achieving the output. It is
usually used in stock market prediction systems and in cases of
compression of high level input data (13).
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FIGURE 3

Demonstration of a Convolutional Neural Network (CNN) architecture. A CNN is composed of several blocks which include convolutional
layers, pooling layers, and fully connected layers.

Convolutional neural networks

Convolutional Neural Networks (CNNs) are a group of
deep neural networks, used in various fields including face
recognition, speech processing and computer vision. They are
a powerful tool in DL, as they necessitate minimal amount
of pre-processing information (15). The CNN’s architecture is
inspired by neurons in human and animal brains. It consists
of multiple stacks (blocks) of convolution layers and pooling
layers, followed by a fully connected layer and a normalising
layer (Figure 3). The convolutional layer is the most important
component of the CNN architecture. Its convolutional topology
allows CNNs to perform dimensionality reduction, effective
automated feature extraction (in contrast to traditional
algorithms’ labour hand-crafted feature extraction) and perform
operations from 2D and 3D images. Its most important
characteristics, weight sharing (all neurons of neighbouring
layers share the same weight) and local connectivity [neurons
in one layer are connected to neurons in the next layer that are
spatially close to them, thus keeping the ones that carry the most
important information (memory-effective)], make the CNN’s
training process more simplified and efficient, as a small number
of parameters is utilised with minimal human effort (16).

A collection of filters (kernels), which are part of the
convolutional layer, perform convolution (a sliding window
across an input, creating one averaged output for each stride
the window takes) of the input image to generate output feature
maps. The outputs are passed to an activation function. The
most common non-linear activation function currently used for
CNNs is ReLU. The large feature maps created by convolutional
operations, are then sub-sampled by the pooling layers. The
basic idea of down-sampling is that only the most important
information of the feature map is maintained. In the fully
connected layer, each neuron is connected to all neurons of the
previous layer, thus forming a fully connected neural network.

When the features extracted by the convolution layers and sub-
sampled by the pooling layers are created, they are mapped
by fully connected layers to the final outputs of the network,
same as the probability for each class in classification tasks. An
activation function is also applied to the last fully connected
layer, depending on the task. For multiclass classification task,
the softmax function converts the output real values from the
last fully connected layer to aim class probabilities, ranging
from 0 to 1 and with a sum of 1 (17). Multiple different CNN
architectures have been created over the last few years. Model
architecture is vital in performance improvement of different
applications (Table 2).

The aim of a CNN’s training is to find kernels (filters)
in convolution layers and weights in fully connected layers
which will reduce the difference between output predictions and
ground truth labels on a training dataset. The data available
is split into a training set, a validation set and a test set. The
training set is used to train the network, in two phases. In
forward propagation, the input is passed completely through the
network, where loss values are calculated. In backpropagation,
each layer will receive the gradient of loss with respect to
its outputs and return the gradient of loss with respect to
its inputs, leading to update of the learnable parameters. The
validation set evaluates the model during the training process
and performs model selection. The test set is used at the end
to evaluate the performance of the final model selected in the
previous steps (17). The CNN’s architecture and function, makes
it attractive for the purpose of solving classification problems
in a high dimensional space. The reason for this is that CNNs
are universal, meaning they can be used to approximate any
continuous function to an arbitrary accuracy when the depth of
the neural network is large enough. CNNs and DL in general,
work well in exceptionally large networks with a vast number of
parameters, as they are surprisingly good at extrapolating when
fed data similar to what they were trained on (18).
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TABLE 2 Most used Convolutional Neural Network (CNN) architectures.

Model Main task Dataset Error rate Input size Year

AlexNet Uses Dropout and ReLu ImageNet 16.4 227 × 227 × 3 2012

VGG Small filter size, increased depth ImageNet 7.3 224 × 224 × 3 2014

GoogleNet Different filter size, increased depth, block concept, concatenation concept ImageNet 6.7 224 × 224 × 3 2015

ResNet Robust against overfitting due to symmetry mapping-based skip links ImageNet 3.57 224 × 224 × 3 2016

DenseNet Blocks of layers—layers connected to each other CIFAR-10, CIFAR100,
ImageNet

3.46, 17.18, 5.54 224 × 224 × 3 2017

Generative adversarial networks

Generative adversarial networks (GANs) were introduced
by Goodfellow et al. in, as a new framework for the creation
of synthetic data, which aim to mimic the real dataset (19).
GANs are an unsupervised learning algorithm and consist of
two neural networks. The generator network generates new
examples, and the discriminator network evaluates whether the
generated examples belong to the real training dataset (classifies
them as real or fake). The two models are trained at the
same time, until the generator is generating realistic examples.
GANs have been mainly used to generate images and healthcare
records data in the medical field (20). For example, Amirrajab
et al. used a heart stimulator and combined it with a GAN to
generate synthetic short-axis cine CMR images at multiple slice
locations (21). In a different study, a GAN was used to convert
CMR images to computed tomography, for better visualisation
of calcified structures, which are difficult to detect on CMR (22).
GANs have shown to improve the performance of predictive
models by filling the missing data. Che et al., added GAN-
generated synthetic data to real patient data, leading to an
improved CNN-based risk prediction model (23).

Limitations of artificial intelligence
models

Machine learning models are best trained and have higher
accuracy when using big data. Big data is any kind of data
source that has the following characteristics: exceptionally large
amount of data, the capability to transfer that data at a great
velocity of speed, a mounting range of data sources and validity
so that data sources reflect the truth (11). A large dataset
allows for subsampling of the data for bootstrapping approaches
(thus providing measures of robustness of an approach) and
computational reasons (a model structure can be developed
on a subset of a large dataset). In the case of a small DL
dataset, techniques such as data augmentation (modification of
training data through random transformations so the model
does not see the same inputs during the training iterations)
and transfer learning (features learned on a large dataset can be
shared in a similar target dataset) can be applied, to train the
model efficiently.

Overfitting is one of the most important issues that need to
be addressed when building an AI model. Effectively overfitting
violates the principle of parsimony, a well-known law in
statistical analysis. Parsimony highlights that a problem should
be stated in the simplest possible terms and explained with
the fewest assumptions possible. With overfitting, the model
tries to fit the training data entirely and ends up memorising
irrelevant data patterns, noise and random fluctuations and
performs less well in a subsequent unseen dataset. This
can be recognised in cases where the model performs well
on the training set but not on the validation set. Cross-
validation can detect overfitting by identifying how well the
model can generalise to other datasets. Regular monitoring
of the loss and accuracy on the training and validation
sets, can lead to early recognition of overfitting. Obtaining a
larger training dataset, data augmentation and reduction of
architectural complexity are some of the ways overfitting can be
mitigated (17).

Outliers are another important issue in AI applications.
These are values that look different (are in the extremes) from
other values in the data, may carry undue weight on their
final classification and therefore mislead the training process
and produce less accurate models. The ML algorithm should
be able to deal with outliers and similar technical problems
if challenged. Detection of outliers through visualisation
techniques (i.e., box plot) and mathematical functions and
prevention of them via larger datasets, can solve this
problem (24).

When dealing with large datasets, it is important to be
aware of the risks when calculating the effect size and the
statistical significance. Effect size is essentially the quantification
of the size of difference between two groups. Statistical
significance provides the likelihood that the difference between
two groups could be an accident of sampling and is calculated
with the p-value. The main issue of statistical significance
is that the p-value depends on the size of the effect and
the size of the sample. With larger datasets, everything
becomes statistically significant, even if practically is not
significant. Less emphasis should be given on p-values and more
importance should be attributed to the effect size calculation
along with a margin error/confidence interval when involving
big data, as larger datasets produce more accurate effect
size (25).
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The widespread use of Big Data in the field of AI, does
not come without challenges. As a dataset grows larger, it
can lead to class imbalance. The ML model’s performance
decreases, as datasets include data from classes with various
probabilities of occurrence (26). Different methods have been
applied to solve this issue, including down-sampling large
classes or up-sampling small classes, and constructing models
for every hierarchical level (17). As the volume of data
increases, variance and bias also increases. Variance involves
the consistency of a learner’s ability to predict random things,
whilst bias is the learner’s ability to learn the wrong thing.
If bias is introduced in the data, generalisation of the data
is compromised. Regularisation techniques are well-established
methods in ML which improve generalisation (26).

Adversarial attacks compromise the reliability and
robustness of DL methods and their safe application in
medicine. They encompass mildly altered images, which
resemble original images, but they are maliciously designed
to confuse pre-trained models. This can lead to a completely
different prediction for the image the neural network analyses.
Various methods are being proposed for defence against
such attacks, but none has been proven safe enough yet
(27). Lastly, what a neural network considers meaningful
information for extraction from the data presented to it,
remains an unaddressed question. Attention mapping is a
scalar matrix, which aims to augment the significant image
regions and suppress the irrelevant information in other
regions, with respect to the target task. It amplifies the
importance of input variables in terms of their impact on
outcomes (28). Whilst attention mechanisms are potentially
able to boost the performance of a neural network, they
are not without limitations. They require vast amount of
data for training, are not robust when generalised in other
tasks other than the one they were trained for, cannot
control spurious correlations in the data and no research
has been undertaken to compare different attention models’
performances (29, 30).

Applications of artificial
intelligence in cardiology

Artificial intelligence applications in cardiovascular
research are increasingly becoming more popular over the
last decade (Figure 2). AI algorithms have been broadly
used for diagnosis from an image, image segmentation and
reconstruction, image quality control, patient prognostication,
phenogrouping, and gaining of scientific insight. Patient
meta-data (demographics, co-morbidity) has been used to
improve the performance of ML algorithms. AI based software
devices and risk assessment tools have also been adapted in
the field of Cardiology. Table 3 demonstrates examples of such
achievements.

Electrocardiography

The electrocardiogram (ECG) is considered the first-
line non-invasive diagnostic investigation for the evaluation
of cardiovascular pathology. However, its interpretation can
be time-consuming and challenging at times. Automated
ECG interpretation, via digital ECG machines nowadays is
almost universal. Despite the significant progress made in
the development of computerised interpretation of the ECG,
various limitations are still present, with systematic over-reading
of the ECG deemed necessary (31). AI methods are increasingly
used with aim to improve the accuracy of automated ECG
interpretation and aid patient stratification and prognostication.
Modern ML models identify the P and T waves and the QRS
complexes and calculate parameters such as the heart rate (HR),
the cardiac axis, different interval lengths of a patient’s ECG,
ST-changes and common rhythm abnormalities such as atrial
fibrillation (AF) (32). In a recent study, a 34-layer DNN (33
convolutional layers followed by a linear output layer into a
softmax) has been developed, which detects various arrythmias
and outperforms a board-certified cardiologist in recall and
precision (33). In another study, three neural networks—back
propagation, self-organising map and radial basis function—
were used to categorise ECG indicators of cardiac patients into
three states (normal, abnormal, and life-threatening) and were
found to be accurate in 99% of test cases (34). Zhao et al., used
a support vector machine (SVM) and identified five common
arrythmias from ECG tracings of a large dataset. Sinus rhythm
(SR), left bundle branch block (LBBB), right bundle branch
block (RBBB), premature ventricular contraction (PVC), and
premature atrial contraction (PAC) were classified with accuracy
of 100, 98.66, 100, 99.66, and 100, respectively (35).

Atrial fibrillation is one of the most common arrythmias.
Subclinical AF can cause strokes, which can lead to disability
and premature death. Efforts to diagnose asymptomatic AF are
increasingly gaining momentum. Recently, a risk prediction
model (baseline and time-varying neural networks) was used
for AF diagnosis from a cohort of 604,135 patients in a
retrospective study. At the end of the follow up period
(8 years), 3% of subjects had been diagnosed with AF, with
the algorithm achieving an area under the curve (AUC) [the
integral of the ROC (receiver operator characteristic) curve,
thus the proportion of correctly classified outcomes] of 0.87
in differentiating between patients with AF and those without
AF (36). In a different study, CNNs were used to screen 12-
lead ECGs for features not noticeable by the physician and
detected subclinical paroxysmal AF from ECGs with normal
rhythm (SR). 454,789 ECGs from 126,526 individuals were
included in the training dataset, 64,340 ECGs were included
in the internal validation set and 130,802 ECGs in the
testing set (37).

The decision to start antithrombotic therapy for patients
with newly diagnosed AF relies on the balance between two risk
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TABLE 3 Overview of the use of AI in cardiology.

Application/Task Model Data Training set Testing set Accuracy/specificity/
sensitivity

References

Identification of arrythmia (SR,
LBBB, RBBB, PVC, PAC)

SVM ECG - - 100% (SR), 98.66%
(LBBB), 100% (RBBB),

99.66% (PVC), and 100%
(PAC) accuracy

(15)

Discrimination of HCM from
ATH

Ensemble ML (SVM,
RF, ANNs)

Clinical,
echocardiography

- - 87% sensitivity and 82%
specificity

(32)

Prediction of ACM in patients
with suspected CAD undergoing
CTA

Boosted ensemble
algorithm

Clinical, CTA - 10,030 subjects AUC 0.79 (40)

Arrythmia detection (prediction
of 12 types of arrythmia
compared to cardiologist)

DNN ECG - - 99% accuracy (13)

Detection of subclinical AF CNN ECG 454,789 images 130,801 images AUC 0.90, sensitivity
82.3%, specificity 83.4%,

accuracy 83.3%

(17)

Identification of ventricular
dysfunction (EF 35%)

CNN ECG,
echocardiography

44,959 subjects 52,870 subjects AUC 0.93, sensitivity
86.3%, specificity 85.7%,

and accuracy 85.7%

(52)

Phenogroup HF patients and
identification of responders to
CRT implantation

Unsupervised ML
(Multiple Kernel

Learning and
K-means clustering)

Clinical,
echocardiography

- 1,106 subjects - (60)

Automated analysis of cardiac
structure and function (left
ventricular chamber volumes,
mass and EF)

CNN CMR 599 subjects 110 subjects - (47)

Prediction of CAD on CTA Boosted ensemble
algorithm

Clinical, CTA
(CACS)

- 13,054 subjects AUC 0.881 (38)

Prediction of ACM for 1, 2-, 3-,
4-, and 5-years post CRT
implantation

RF Clinical, ECG,
echocardiography

2,282 subjects 1,510 subjects AUC 0.768 (1 year), 0.793
(2 years), 0.785 (3 years),

0.776 (4 years), 0.803
(5 years)

(59)

Prediction of early coronary
revascularisation within 90 days
after SPECT MPI

Ensemble LogitBoost
algorithm

Clinical, SPECT - 1,980 subjects AUC 0.81 (44)

Identification of patients with
PAH

Tensor based ML
algorithm

(multilinear
subspace learning)

CMR 200 subjects 1,122 subjects AUC 0.92 (48)

ACM, all-cause mortality; AF, atrial fibrillation; ANNs, artificial neural networks, ATH, athlete’s heart; AUC, area under the curve [integral of the ROC (receiver operator characteristic)
curve]; CACS, coronary artery calcium score; CAD, coronary artery disease; CMR, cardiovascular magnetic resonance imaging; CNN, convolutional neural network; CRT, cardiac
resynchronisation therapy; CTA, Cardiac Computed Tomography Angiography; DNN, deep neural network; ECG, electrocardiogram; EF, ejection fraction; HCM, hypertrophic
cardiomyopathy; HF, heart failure; LBBB, left bundle branch block; ML, machine learning; MPI, myocardial perfusion imaging; PAC, premature atrial contraction; PAH, pulmonary
arterial hypertension; PVC, premature ventricular contraction; RBBB, right bundle branch block; RF, random forest; SPECT, single-proton emission computerised tomography; SR, sinus
rhythm; SVM, support vector machine.

stratification methods. The CHA2DS2-VASc score measures
the possibility of a future ischemic stroke and the HAS-
BLED score predicts a patient’s bleeding risk. They both
aid in the decision-making process of AF treatment on an
individual basis. In a recent retrospective cohort study of
9,670 patients, diagnosed with non-valvular AF and followed
up for up to 1 year, multilabel ML methods were compared
to the currently used risk scores for prediction of outcomes
in AF patients. SVM, gradient boosting machine (GBM) and
multi-layer neural networks (MLNN) were the ML algorithms

used to predict a patient’s risk of ischemic stroke, major
bleeding and death, and were compared to clinical risk
scores by the AUC. GBM, the best performing ML algorithm
of all, showed modest performance improvement for stroke
compared to CHA2DS2-VASc (AUC = 0.685 vs. AUC = 0.652),
but significant improvement in predicting major bleeding in
comparison to HAS-BLED (AUC = 0.709 vs. AUC = 0.522)
and death in comparison to CHA2DS2-VASc (AUC = 0.765 vs.
AUC = 0.606) (38).
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Artificial intelligence and machine
learning medical devices

Atrial fibrillation detection can be a difficult task as the
current diagnostic methods (pulse palpation, ECG, ambulatory
Holter monitoring) all have limitations. Today various mobile
devices can be used for detection of AF. These include
smartphones, smart bands or smartwatches, earlobe sensors,
and handheld electrocardiogram devices. These devices
are characterised by their non-invasive nature, safety, and
instantaneous access to patients (39).

Wearable devices are user friendly and allow uninterrupted
monitoring and instantaneous individual analysis of ECG
signals. The Apple Watch and AliveCor are the most
distinguished examples of wearable. The KardiaBand from
AliverCor is an example of a smartphone application, based on
ML for the recognition of AF from an ECG (40). In a RCT of AF
screening, the AliveCor Kardia monitor connected to a WiFi-
enabled iPod attained iECGs from 1,001 ambulatory patients.
The study showed that screening with a twice weekly single
lead iECG and remote analysis in ambulant patients aged 65
and above at high risk of stroke, was considerably more likely
to detect AF in comparison to routine monitoring over a 12-
month period (41). In another RCT the occurrence of recurrent
AF or atrial flutter via daily ECG self-recordings and the time
to treatment of the recurring arrythmia in patients undertaking
catheter radiofrequency ablation or direct current cardioversion
for AF or atrial flutter, were evaluated. The chance of recurrence
identification was higher in the group which used the AliveCor
KardiaMobile ECG monitor (intervention group). The time
from detection to treatment was also shorter for that group (42).

The Apple Heart Study showed that the utilisation
of smartphones was effective in identifying patients with
subclinical paroxysmal AF. It included data from 420,000
participants, with a median follow up time of 117 days.
It detected 0.5% of patients with possibly irregular pulse,
34% of which were diagnosed with AF confirmed by ECG.
The notification group (set informed of irregular pulse) had
higher possibility of commencing anticoagulant or antiplatelet
treatment. Also, from the patients diagnosed with AF, 24%
underwent cardioversion, 3% received an implantable loop
recorder, 20% started anti-arrhythmic medication, and 18%
undertook ablation (43).

Voice technology has been increasingly utilised for
mainstream use via voice assistants, such as Amazon’s Alexa
or Google Assistant. These advanced software architectures
are based on neural network techniques undertaking the task
of speech recognition. They interpret a complex conversation
and generate human like responses. They are available either
on smart speakers or on smartphones. Voice assistants are
emerging tools for remote monitoring and undertaking of
medical services. For example, they can be used for educational
purposes, such as in the case of the Mayo Clinic First Aid

skill, a voice application which can provide various medical
guidelines including on cardio-pulmonary resuscitation. The
CardioCube voice application enhances paperless medical
history taking, in an outpatient cardiology clinic in Los Angeles.
Patients answer verbally a set of pre-prepared questions and
produce high accuracy reports in the her system. Another
application by CardioCube (FCNcare), was implemented at a
family care network in Belligham (USA) and allowed HF and
diabetic patients to update their medical status observations
from home. Telemedicine nurses obtained instant reports
from the produced EHRs and were able to triage the patients
accordingly. Voice applications can therefore be used as digital
screening tools and red-flagging systems for patients with
chronic diseases (44).

Artificial intelligence and ML based medical devices
undergo a premarket review by the Food and Drug
Administration (FDA), before their widespread commercial
use. The FDA has three levels of clearance for AI/ML based
algorithms. 510(k) clearance is granted when the algorithm has
been shown to be at least as effective as another similar legally
marketed algorithm. Premarket approval is granted for Class III
medical devices, which may have a vast impact in human health
and require more thorough evaluation, to define their safety. De
novo pathway approval involves those novel medical devices
for which there is no similar legally marketed product but
have shown to be safe and effective for use. Table 4 illustrates
examples of FDA approved medical devices used in the field of
cardiovascular medicine (45).

Transthoracic echocardiography

Echocardiogram is characterised by its easy application and
widespread availability. It is an imaging modality that provides
a real-time imaging of the heart and instant identification
of any structural defects. AI enables the enhancement of
imaging measurements’ accuracy, via the decrease in inter-
and intra-operator inconsistency and by offering further
information, subtle to be detected by the human eye (46). ML
algorithms have been broadly used in the field of transthoracic
echocardiography, with aim of diagnosis from an image, image
segmentation and patient prognostication.

An innovative 2-dimensional echocardiographic image
analysis system used AI-learned pattern recognition and
automatically calculated left ventricular EF (LVEF) (measure
of contractile function). The results of the study were similar
to the results from the standard manual estimation (biplane
Simpson’s method) and had less variability than visual EF
(47). A multicentre study investigated the possibility of a
fully automated computer vision software (AutoLV) using ML-
enabled image analysis, for measurements of left ventricular
volumes and EF, and average biplane longitudinal strain (LS) (a
technique for evaluation of the left ventricular function). The

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.945726
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-945726 October 12, 2022 Time: 10:34 # 10

Karatzia et al. 10.3389/fcvm.2022.945726

TABLE 4 FDA approved AI/ML based medical technologies/software.

Device name Parent company
name

Description FDA approval
number

Type of FDA
approval

Date

Atrial fibrillation history
feature

Apple Inc. Detection of atrial fibrillation K213971 510(k) premarket
notification

03/06/2022

LINQ II Insertable Cardiac
Monitor, Zelda AI ECG
Classification System

Medtronic, Inc. Arrhythmia detector and alarm (including
ST-segment measurement and alarm)

K210484 510(k) premarket
notification

11/06/2021

Gili Pro Biosensor (Also
Known as Gili Biosensor
System)

Continuse Biometrics
Ltd.

Hardware and software for optical
camera-based measurement of pulse rate,

heart rate, breathing rate, and/or
respiratory rat

DEN200038 De novo pathway 01/04/2021

Analytic for Hemodynamic
Instability (AHI)

Fifth Eye Inc. Adjunctive hemodynamic indicator with
decision point

DEN200022 De novo pathway 01/03/2021

ECG 2.0 App Apple Inc. Ambulatory ECG rhythm assessment K201525 510(k) premarket
notification

08/10/2020

Bodyguard Remote
Monitoring System

Preventice Technologies,
Inc.

Arrhythmia detector and alarm (Including
ST-segment measurement and alarm)

K192732 510(k) premarket
notification

26/03/2020

AI-ECG Tracker Shenzhen Carewell
Electronics Co., Ltd

Assessment of arrhythmias using ECG
data acquired from adults without

pacemakers

K200036 510(k) premarket
notification

20/03/2020

Eko Analysis Software Eko Devices Inc. Support in the evaluation of patients’ heart
sounds and ECG’s

K192004 510(k) premarket
notification

15/01/2020

FFRangio CathWorks Ltd. Analysis of previously acquired
angiography DICOM data for patients

with coronary artery disease

K192442 510(k) premarket
notification

09/12/2019

EchoGo Core Ultromics Ltd. Quantification and reporting of results of
cardiovascular function

K191171 510(k) premarket
notification

13/11/2019

AI-Rad Companion
(Cardiovascular)

Siemens Medical
Solutions USA, Inc.

Image processing software for analysis
from CT images to support physicians in

evaluation and assessment of
cardiovascular diseases

K183268 510(k) premarket
notification

10/09/2019

EMurmur ID CSD Labs GmbH Detection and identification of heart
murmurs

K181988 510(Kk) premarket
notification

17/04/2019

KardiaAI AliveCor, Inc. Ambulatory ECG rhythm assessment K181823 510(k) premarket
notification

11/03/2019

EchoMD Automated Ejection
Fraction Software

Bay Labs, Inc. Provides automated estimation of left
ventricular ejection faction based on

acquired transthoracic cardiac ultrasound
images

K173780 510(k) premarket
notification

14/06/2018

Acumen Hypotension
Prediction Index (HPI)
Feature Software

Edwards Lifesciences
LLC

Detection support for future hypotensive
events

DEN160044 De novo 16/03/2018

Arterys Cardio DL Arterys Inc. Analysis of cardiovascular images
acquired from MR scanners

K163253 510(k) premarket
notification

05/01/2017

Steth IO Stratoscientific, Inc. Detection and amplification of sounds
from the heart and lungs

K160016 15/07/2016

ECG, electrocardiogram; CT, computed tomography; MR, magnetic resonance.

automated measurements were achievable in 98% of the studies,
with an average analysis time of 8± s per patient. The study
demonstrated a rapid and efficient way of assessment LVEF
and LS (48).

Another ground-breaking publication concerns the
fully automated echocardiogram interpretation in clinical
practice, via ML methods. 14,035 echocardiograms with 70,000
pre-processed images were used to train and evaluate a CNN

and achieve detection of 23 viewpoints and segmentation of the
cardiac chambers across 5 common views. The CNN was a VGG
network which took a fixed-sized input of grayscale images,
passed it through 10 convolution layers, five max-pool layers,
and three fully connected layers. The output was fed into a 23-
way softmax layer, to represent 23 different echocardiography
views. Training data comprised of 10 random frames from
each manually labelled echocardiographic video. The study
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found that the automated measurements were comparable
or superior to the manual measurements across 11 internal
consistency metrics (49). In another study, a CNN (consisting
of six convolutional layers, two fully connected layers, and a
softmax classifier) was trained and validated on 200,000 images,
and was able to classify 15 standard echocardiography views,
based on labelled still images and videos. The model classified
among 12 video views with a 97.8% overall test accuracy. It also
exceeded board-certified echocardiographers’ accuracy among
15 views on single low-resolution images (91.7 vs. 70.2–84,
respectively) (50).

From a cardiomyopathy point of view, ML algorithms
were trained from clinical, conventional echocardiography data
and speckle tracking echocardiography variables, to distinguish
constrictive pericarditis from restrictive cardiomyopathy. The
associative memory classifier (AMC) was found to be the
best performing algorithm with AUC of 89.2%. This method
was found to be superior to the use of commonly used
echocardiography variables, for the differentiation between
these two diseases which carry many similarities (51).

Similarly, an ensemble ML algorithm model encompassed
by three algorithms (SVM, RF, and MLP with back propagation),
incorporated speckle-tracking echocardiographic data,
to automatically distinguish the condition of inherited
hypertrophic cardiomyopathy (HCM) from hypertrophy
physiologically seen in athletes. The model demonstrated
increased sensitivity and specificity in comparison to standard
diagnostic variables (52). Valvular disease can also be
assessed using AI methodology. SVM classifiers were used
for classification and determination of the severity of mitral
regurgitation (MR), a common valve disease. The method
achieved sensitivity of 99.38% and specificity of 99.63% for the
identification of the severity of MR in normal subjects (53).

The most recent advancement of AI in echocardiography
concerns a video-based DL algorithm, which exceeded human
experts’ performance in tasks such as EF estimation, assessment
of cardiomyopathies and left ventricle segmentation. The
variance in predictions from this algorithm is equivalent to or
less than measurements of cardiac function by human experts.
EchoNet-Dynamic is an end-to-end deep learning approach.
It uses the standard apical four-chamber view echocardiogram
videos as input. Spatiotemporal convolutions with residual
connections are used for prediction of EF of each cardiac cycle.
Weak supervision from expert human tracing is used to generate
frame-level semantic segmentations of the left ventricle. The
outputs are combined to create beat-to-beat predictions of
the EF and the presence of HF with reduced EF (via AUC).
EchoNet-Dynamic was created by using 10.030 apical four-
chamber echocardiogram videos during training of the model.
It is the first video-based DL model for echocardiogram and
its performance in measuring EF is better than previous DL
models. It can rapidly identify subtle changes in EF and aid the
precise diagnosis of CVD in real time (54).

Cardiac computed tomography
angiography

Coronary artery disease (CAD) risk assessment is
fundamental in the efforts to reduce future cardiovascular
events. Traditional prediction models have limitations,
including variations among the validation cohorts, a small
number of predictors, and the absence of important variables.
The need for robust prediction tools for accurate prediction
of CAD burden and the recent advancements in AI, led to the
development of ML-based risk prediction models (55). Cardiac
computed tomography angiography (CTA) is a non-invasive
imaging investigation that permits a direct evaluation of the
patency of coronary arteries and has been vital in ascertaining
the incidence of coronary artery disease (CAD) and consequent
prognostication (56). Coronary artery calcium scoring (CACS)
with or without CTA can provide qualitative and quantitative
details on atherosclerosis, whilst CTA can determine the
stenosis of an atherosclerotic lesion (32). ML methods are
applied in CTAs, to maximise information extraction via image
acquisition, and improve diagnostic accuracy and prognostic
outcomes via precision risk stratification.

Data from 8,844 patients from a multi-centre registry
were used to compare the AUC for conventional CTA risk
scores in comparison to a score created using a boosted
ensemble algorithm for risk stratification. With a mean follow-
up time of 4.6±1.5 years, the AUC was considerably better
for the ML based approach, indicating that ML can improve
risk stratification, compared to the current CTA risk scores
(57). In another multicentre study, 13,054 participants with
suspected or previously established CAD, underwent CACS
measurements. The CACS was used in a gradient boosting ML
algorithm (XGBoost) (boosting tree-based ensemble algorithm),
in combination with clinical risk factors, for assessment of
potential improvement of risk stratification. The study showed
around a 9% increase in the ability to approximate pre-test
probability of obstructive CAD, when adding CACS in the
baseline model. In the subgroup of younger patients (less
than 65 years old) this was increased to around 17% (58).
Another study investigated ML based risk stratification in
an asymptomatic healthy population. 85,945 asymptomatic
participants underwent a CTA scan with CACS, with 66
available parameters. A ML algorithm was used to predict
moderate (CACS > 100) and high-risk (CACS > 400) CAD
patients and was compared a conventional risk prediction score.
8.4 and 2.4% of the population had indication for moderate and
high-risk CAD, respectively.

The study showed that the ML algorithm was superior to
the conventional risk prediction score, in both the moderate
and high risk for CAD groups (59). From a clinical perspective,
the use of ML for prediction of CAD for all patient subgroups
leads to effective precision risk stratification (exploration of all
available information for calculation of each individual’s risk),
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less exposure radiation (as CTA with CACS has not been found
to be superior of ML with CACS alone) and a more automated
and accurate selection process for further diagnostic evaluation
of the appropriate candidates with better clinical outcomes. The
use of ML for CAD prediction aims to create risk stratification
models that are more accurate and cost and time efficient in
clinical practice, compared to conventional models (58).

Motwani et al., studied 10,030 patients with suspected CAD
during a 5-year follow-up from an international multicentre
study. All patients underwent clinically indicated CTA. 25
clinical and 44 CTA parameters were measured. The ML
approach concerned automated feature selection by information
ranking, model building with a boosted ensemble algorithm
(LogitBoost) and 10-fold stratified cross-validation, through the
whole process. The primary outcome of the study was all-cause
mortality (ACM). 745 patients died during the 5-year follow
up. The ML approach was identified as a significantly better
predictor of a 5-year ACM, in comparison to the clinical or
CTA measures alone, as indicated by the higher AUC in all
comparisons (60).

Most cases of acute coronary syndrome (ACS) are caused
by unstable but non-obstructive atherosclerotic plaques. The
current available non-invasive diagnostic tests which detect
coronary artery stenosis or stress-induced myocardial ischemia,
are unable to detect these unstable non-obstructive plaques. It
is established that vascular inflammation causes atherosclerotic
plaque formation and rupture, leading to ACS. The perivascular
fat attenuation index (FAI) is an AI-derived imaging biomarker,
which captures the alterations in perivascular fat attenuation,
caused by vascular inflammation. Two independent cohorts
including 1,872 patients undergoing CTA, investigated the
prognostic value of perivascular fat attenuation mapping for
all-cause and cardiac modality. Perivascular fat attenuation
mapping was performed around the three major coronary
arteries. In both the derivation and validation cohorts, high
perivascular FAI values around the proximal right coronary
artery and left anterior descending artery, were projecting
of all cause and cardiac mortality. A cut-off of −70 for
the perivascular FAI was determined, above which sharp
rise in cardiac mortality was observed. This ground-breaking
study showed that perivascular FAI, an AI-derived biomarker,
provides a quantitative measure of coronary inflammation
and increases cardiac risk prediction and reclassification
over current-state-of-the-art valuation via CTA. Non-invasive
detection of coronary inflammation via FAI can lead to timely
and aggressive initiation of primary prevention for patients with
no visible CAD but unstable atherosclerotic plaques that can
potentially lead to myocardial infarction if untreated. Prompt
prevention will lead to reduced incidence of clinically diagnosed
CAD and requirement for further intervention. FAI can also
guide future trials in assessing novel but affordable therapeutic
agents that target inflammation (61).

Single-photon emission computed
tomography

Assessment of myocardial perfusion correlates to the
existence of obstructive CAD. This can be implemented with
single-photon emission computed tomography (SPECT) stress
testing (32). AI methodology has been applied in this modality,
aiming to improve tasks such as image acquisition, image
reconstruction and automated quantitation. An ensemble-
boosting ML algorithm, LogiBoost, incorporated from clinical
data and quantitative image features, compared the diagnostic
accuracy of the model for estimation of obstructive CAD to
the standard quantification [total perfusion deficit (TPD)] and
visual analysis by two experienced readers. The accuracy of the
ML algorithm was similar to Expert 1 and superior to combined
supine/prone TPD and expert 2, showing an improvement in
the diagnostic performance of myocardial perfusion imaging
(MPI), by integration of ML (62). The automatic prediction of
obstructive CAD from myocardial perfusion imaging (MPI) by
DL, compared to TPD, was assessed in a more recent multicentre
study. 1,638 patients without known CAD underwent stress MPI
and invasive coronary angiography (ICA) within 6 months of
MPI. AUC for disease prediction (obstructive disease defined
as > 70% of narrowing of coronary arteries) by DL was
higher than TPD, showing the potential for improvement
of automatic interpretation of MPI, by AI methods (63). In
another multicentre study, 1,980 patients with suspected CAD,
underwent stress MPI with novel SPECT scanners. All patients
had subsequent ICA within 6 months. LogiBoost, was also
utilised in this study to forecast early coronary revascularisation
within 90 days after the SPECT MPI and was compared to
standard quantitative analysis (TPD) and expert interpretation.
The ML outperformed both TPD and expert analysis, with an
AUC of 0.79 (64).

Cardiac magnetic resonance imaging

Cardiac MR is an imaging modality utilised for non-invasive
assessment of CVD. It evaluates the cardiac morphology,
function, perfusion, and quantitative myocardial tissue
measurement (65). It is considered the gold standard for
non-invasive evaluation of EF and left ventricular volume (66).
CMR is broadly used for the diagnosis of cardiomyopathies,
congenital heart disease, valvular heart disease, IHD, pericardial
lesions, and cardiac tumours. However, it requires acquiring
images characterised by high temporal and spatial resolution,
different contrasts and/or whole-heart coverage, leading to a
lengthy scanning time. ML incorporation to CMR, can lead to
a more efficient scanning and accurate interpretation process.
DL based MRI reconstruction is based on a model which learns
the factors of the reconstruction procedure beforehand, so
that it can be applied to all new data as a simple operation.
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Most important tasks utilised with DL are image construction,
image segmentation and image quality control in the field
of CMR (65).

Whilst CMR is executed at high resolution, analysis of the
scan by the clinician remains variable, time consuming and
prone to errors. Deep learning methodology has been used to
overcome the challenge of automated derivation of information
from CMR images (67). An automated 2-dimensional CNN
(adapted from the VGG-16 network) was used to take CMR
image as input, learn image features from fine to coarse
scales through a series of convolutions, concatenate multi-
scale features and predict a pixelwise image segmentation (67).
The CNN was trained on 599 independent multicentre disease
cases and subsequently was compared to an expert cardiologist
and a trained junior cardiologist for the identification of left
ventricular chamber volumes, mass, and EF, from 110 patients
who underwent scan: rescan CMR within a week. The study
showed that clinicians can detect a 9% change in LVEF with
the greatest source of human error being attributed to the
observer. The precision of the CNN was similar to human
analysis, but its performance was 186 times faster (68). In
another study, a ML approach was used for the identification
of diagnostic features in pulmonary arterial hypertension
(PAH) using CMR. A multilinear principal component analysis
(MPCA) algorithm was utilised to extract low-dimensional
features from high dimensional input to tensor representations
of data. The algorithm distinguished patients with and without
PAH with higher accuracy in comparison to manually drawn
CMR measurements with an AUC of 0.92. Additionally, the
diagnosis that used the ML approach was less time consuming
(within 10 s) and had less variability (69).

Bai et al., trained a 16-layer CNN (adapted from the VGG-
16 network) on a 4,875-subject dataset from the UK biobank,
to automatically analyse CMR images. Its performance was
assessed using technical [dice coefficient (metric of the similarity
of the two segmentations)] and clinical [left ventricle (LV) end-
diastolic volume (LVEDV) and end-systolic volume (LVESV),
LV mass (LVM); right ventricle (RV) end-diastolic volume
(RVEDV) and end-systolic volume (RVESV)] parameters. The
automated method achieved great performance in segmentation
of the LV and RV on short-axis CMR images (dice metric
of 0.94 and 0.90 accordingly) and the left atrium (LA) and
right atrium (RA) on long-axis images (dice metric of 0.93
and 0.96 accordingly), from an intra-domain UK biobank test
set of 600 subjects. The automated method using the CNN
was comparable to human inter-observer variability (67). CNNs
perform segmentation tasks with great precision if the training
and test images originate from the same scanner or site.
However, their performance decreases when the test images
come from different scanners or sites. Chen et al., trained a
2D CNN (U-net) on 3,975 subjects from the UK biobank. The
U-net architecture has been the most widely used architecture
for biomedical segmentation. In Chen’s paper, the network was
identical to the original except of two differences, application

of batch normalisation after each hidden convolutional layer
to stabilise the training and the use of dropout regularisation
after each concatenating operation to avoid over-fitting. The
U-net was tested on 600 subjects from the UK biobank for the
purpose of intra-domain testing and on 699 subjects from two
other sets (ACDC dataset and BSCMR-AS dataset) for cross-
domain testing. Chen’s proposed method was compared to Bai’s
automated methodology. Despite both achieving comparable
dice scores on the intra-domain UK biobank test set with high
accuracy, Chen’s method achieved superior mean dice scores
for all of the three structures (LV, RV myocardium) on the two
cross-domain datasets. The proposed method achieved better
overall segmentation accuracy with lower variance on the three
datasets, improving CNN-based model generalisability for the
CMR image segmentation task across different scanners and
sites (70).

Late gadolinium enhancement (LGE) CMR imaging is the
cornerstone of non-invasive myocardial tissue characterisation.
An important example consists of the relationship between the
presence and extend of LGE and adverse outcomes, in patients
with HCM. However, LGE necessitates the administration of
an intravenous gadolinium-based contrast agent, which should
be used cautiously in patients with severe renal failure or
allergy to gadolinium-based contrast. In a recent RCT of
1,348 patients with HCM, a new DL driven CMR technology
named virtual native enhancement (VNE), was used to generate
images identical to the standard LGE, without the need of a
gadolinium-based contrast agent. The DL algorithm consisted
of three parallel CNNs streams which processed and enhanced
signals in native T1 maps (pixel-wise maps of tissue T1
relaxation times) and cine imaging (sequence of images at
different cardiac phases) of cardiac structure and function.
Each stream had an encoder-decoder U-net architecture. The
encoder computed image features from fine to coarse and
produced a multiscale feature representation, which the decoder
combined to produce final feature maps. The feature maps
from U-nets were concatenated and input into a further
neural network, to produce a final VGE image. The neural
networks were trained with the use of a modified conditional
GAN approach. When compared, the VNE imaging achieved
better image quality than LGE and was in high agreement
with it in visuospatial distribution and myocardial lesion
quantification. Overall, VNE resembles conventional LGE,
but does not require intravenous access or administration of
contrast, can be repeated if required to confirm the imaging
findings without the consequences of giving contrast, and can be
completed within 15 min as uses native imaging. Its advantages
make it an attractive technology which can potentially be
extended for diagnosis of other myocardial pathologies in the
future (71).

In addition to image construction and segmentation, DL
methodology has recently been utilised for image quality control
purposes in the field of CMR. In a retrospective study of 3,827
subjects (including healthy and pathological hearts), a set of
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algorithms including CNNs were used for the development of
a framework for the automatic detection and quality-controlled
selection of cine images, used for cardiac function analysis from
routine clinical CMR exams. The framework encompassed three
steps. The first pre-processing step excluded still images. In
the second step, one CNN classified images in standard cine
views and a second CNN classified images depending on the
image quality and orientation. The final algorithm selected one
good image of each class, which was then used for analysis
of cardiac function. The classification CNN achieved accuracy
between 0.989 and 0.998, whilst the quality control CNN
achieved accuracies of 0.861 for 2-chamber, 0.806 for 3-chamber,
and 0.859 for 4-chamber views. The complete framework also
achieved accuracies of 89.7, 93.2, and 93.9% for 2-, 3-, and 4-
chamber acquisition from each study, respectively. This study
demonstrates the future potential for high quality automated
cine CMR analysis from the scanner to report (72).

Heart failure

Heart failure (HF) affects 1–2% of the adult population in
developed countries and more than 10% of patients > 70 years
of age (73). Early diagnosis or prediction of HF has a high impact
on successful treatment and prolongation of life expectancy for
patients. ML applications have been used for the early detection
of HF, classification, severity estimation, and prediction of
adverse events (e.g., 30-day re-hospitalisation) (32).

A multi-level risk assessment for developing HF, with
prediction of five risk levels (no risk, low, moderate, high, and
extremely high risk), via the use of a decision tree classifier, was
established in a study by Aljaaf et al. They also added three
new risk factors (obesity, physical activity, and smoking) in a
previously used dataset and enhanced the accuracy of predicting
HF. This was the first study with a multi-level prediction of
HF, in contrast to the binary outcomes from previous studies.
The predictive model showed an improvement from existing
studies with a sensitivity of 86.5% and specificity of 95.5% (74)
A SVM was trained on clinical parameters from 289 patients
and triaged patients into three categories (HF, HF-prone, and
healthy). The overall classification accuracy was 74.4%, with
precisions of 78.79, 87.5, and 65.85% for ascertaining the healthy
group, HF-prone group and HF group, respectively. The scoring
model showed improved accuracy in classification of HF, in
comparison to clinical practice criteria (25–50% accuracy) (75).

More recently, a DL approach was used to screen
individuals for asymptomatic left ventricular dysfunction
(ALVD). ALVD is prevalent in 1.4–2.2% of the population and
if left undiagnosed, it can lead to increased morbidity and
mortality. Early identification of ALVD and commencement
of treatment, can prevent its progression to symptomatic HF
and reduce mortality. A CNN was trained on 12-lead-ECG and
echocardiography information, including LVEF, from 44.959
individuals to identify patients with ventricular dysfunction

(EF 35%). The CNN was composed of three parts. Six
convolutional blocks (convolution, batch normalisation, Relu,
max pooling) extracted temporal features, one convolutional
block (convolution, batch normalisation, Relu) extracted spatial
features and two fully connected layers (fully connected, batch
normalisation, Relu, dropout) regressed the features to a
softmax activated output. The DL algorithm was tested on a
set of 52.870 patients and showed AUC, sensitivity, specificity
and accuracy of 0.93, 86.3, 85.7, and 85.7%, respectively.
Patients without ventricular dysfunction with a positive AI
screen were four times more probable to develop future
ventricular dysfunction, in comparison to patients with a
negative screen. An inexpensive, non-invasive test such as AI
screening from ECG data, can be a powerful future tool for
screening asymptomatic individuals (76).

Readmission rates after hospitalisation with HF remain high
and lead to increased disease burden and costs for healthcare
systems. The performance of current predictive methods for
the likelihood of HF readmissions is modest. Accumulating
publications show positive results from ML-driven methods for
predicting readmission of patients with HF (77–79). In one
of the studies, EHRs were used to enrol 1,653 patients within
30 days of their discharge after an index admission for HF.
ML algorithms were compared to the traditional method of
logistic regression (LR), for effectiveness in predicting 30 and
180 days all cause readmissions and readmissions due to HF.
For the 30-day all-cause readmission prediction, random forest
(RF) showed a 17.8% improvement over LR. For readmissions
because of HF, boosting showed a 24.9% improvement over
LR. Lastly, the ML models stipulated enhanced recognition of
groups at low and high risk for readmission, by increasing the
predictive range compared with LR (80). A retrospective study
applied DL methodology [deep unified networks (DUNs)] to
data from EHRs of 11,510 patients, in order to generate a risk
prediction model to forecast 30-day readmissions in patients
with HF. DUNs consist of a mesh-like network structure which
avoid overfitting. The DUNs’ AUC (0.705) had the best result
of 10-fold cross-validation, compared to LR (0.664), gradient
boosting (0.650) and maxout networks (activation function used
in neural networks) (0.695). The DUNs model also showed an
accuracy of 76.4% at the classification threshold with greatest net
savings for the hospital (81).

Cardiac resynchronisation therapy (CRT) is fundamental
to the management of symptomatic HF with left ventricular
systolic dysfunction and intraventricular conduction delay
(reduced EF and wide QRS complex). Conventionally, patients
eligible for CRT implantation, should have an ECG morphology
with LBBB and QRS duration ≥ 150 ms. Patients with these ECG
characteristics have greater benefit on reduction of mortality
and readmissions after receiving CRT. However, around 30%
of patients meeting these criteria and receiving an implant, do
not experience clinical benefit from CRT. Therefore, predicting
a patient’s outcome after CRT is an essential step in the decision-
making procedure pre-implantation. In a retrospective study,
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ML models were developed for prediction of ACM or HF
hospitalisation at 12 months post-CRT. Clinical characteristics
and ECG features were used in model development. A RF
algorithm was found to be the best performing model, when
compared to other ML models and the traditional ECG
prediction methodology (LBBB and QRS ≥ 150 ms). Whilst the
ECG morphology did not reach significance for differentiation
of survival difference across subgroups (p = 0.08), the RF model
formed quartiles of patients with an 8-fold change in survival
between those with the maximum and minimum predicted
probability for events (p < 0.0001). Furthermore, the RF model
achieved better discrimination of the risk of the composite end
point of ACM and HF readmission, than the ECG morphology-
based subgroup analysis (82).

Another retrospective study concerned data from 1,510
patients who underwent CRT implantation. ML models were
trained from 33 pre-implant clinical features, to predict 1–5-
year ACM. The best performing ML model (highest AUC for
the prediction of all-cause mortality at 1, 2, 3, 4, and 5 year
follow up), a RF model, was chosen for further assessment
and it was referred as the SEMMELWEIS-CRT score. This
was compared to pre-existing scores and showed significantly
better response prediction and improved discrimination of
mortality. An online calculator was developed, which will enable
a personalised calculation of predicted mortality in patients
undergoing CRT implantation (83). Similarly, in another study
a ML-based approach was used to phenogroup a HF cohort and
identify responders to CRT. 1,106 patients from a multicentre
trial, were randomised into two groups [CRT with a defibrillator
(CRT-D) or an implantable cardioverter defibrillator (ICD)].
An unsupervised ML algorithm, via dimensionality reduction
and clustering, classified patients into groups, based on clinical
parameters, left ventricular volume, and deformation traces
at baseline. The treatment effect of CRT-D on the primary
outcome (all cause death/HF event and on volume response)
was compared among the different groups. From the four
phenogroups identified, two had a greater proportion of known
clinical characteristics prognostic of CRT response and were
linked to an improved treatment effect of CRT-D on the primary
outcome (84).

Machine learning has enabled physicians to use data from
ECGs and draw specific echocardiography results, without the
use of the echocardiogram. A randomised controlled trial (RCT)
aimed to identify patients with low ejection fraction (EF), via AI-
enabled ECGs. Low EF is an important marker of heart failure
which can be effectively treated to improve survival if recognised
early. The study showed that the use of an AI algorithm
(using neural networks) based on ECGs, led to the diagnosis of
patients with low EF at an early stage in the setting of routine
primary care (85). Other studies enabled the calculation of other
parameters such as left ventricular hypertrophy (LVH) and left
ventricular diastolic function (LVDF) based on ECG features
and ML methods (86, 87).

Machine learning application in the field of HF, has
enabled the accurate prediction of HF, ALVD, and low EF in
asymptomatic individuals. Early identification of patients at risk
of developing HF or at an early onset of the condition, can
lead to prompt and aggressive primary prevention/initiation of
treatment and more rigorous follow up of these patients, with
improved clinical outcomes. Prompt detection of patients who
might require re-admission after hospitalisation with HF, can
initiate a well-structured outpatient pathway for this cohort,
which will aim to keep these patients in the community and
reduce re-admissions and subsequent morbidity and mortality
and hospital costs. This could be achieved, through liaison
of the secondary care team with the community heart failure
team and the patients’ GP and maximisation of their treatment
in the community, via more regular reviews at home, at the
GP practice or in an outpatient clinic or ambulatory setting.
Moreover, accurate and personalised prediction of the cohort of
patients which would have a good outcome if having a CRT-D
inserted, can lead to the reduction of unnecessary procedures
(and subsequently reduced hospital costs and resources) and
the associate medical risks for those patients who would not
have the same outcome. Overall, the incorporation of ML
methodology into the field of HF aims the early detection of
those patients most at risk of developing the disease, correct
classification of patients based on their personalised risk and
prompt intervention which can be beneficial for both the
patients (improved morbidity and mortality via early initiation
of treatment) and secondary care (via shifting treatment and
follow up in the community and reducing hospital admissions).
Lastly, an important aspect of ML models and their application
in clinical practice is the myriad of signals they can highlight
within the data, which can potentially aid in the better
understanding of a particular aspect of the disease (which would
not be noticeable either way) and lead to further scientific
discoveries in the future.

Other applications

An algorithm for heart murmur detection was developed
in a virtual clinical trial, with aim to enhance the precision of
screening for valvular and congenital heart diseases. 3,180 heart
sounds recordings (pathologic murmur, innocent murmur, no
murmur), from 603 outpatient visits were chosen from a large
database. Algorithm assessment of heart rate (HR) showed great
similarity to the gold standard. Pathologic cases were identified
with sensitivity of 93%, specificity of 81%, and accuracy of
88%. This trial was the first to objectively evaluate an AI-based
murmur detection algorithm, making it a potentially useful
screening tool for heart disease (88).

Various studies have been carried out to demonstrate
effectiveness of AI-driven phenogrouping, in all fields of
cardiology. Such landmark study concerns the development
of a phenomapping-derived tool, for selection of anatomical
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or functional testing in patients with stable chest pain.
The decision support tool named ASSIST (Anatomical vs.
Stress testing decision Support Tool), was developed using
data from the PROMISE (PROspective Multicentre Imaging
Study for Evaluation of Chest pain) trial. Data from 9,572
patients undergoing anatomical (4,734) or functional (4,838)
imaging were used to create a topological presentation of the
study populations, based on 57 pre-randomisation variables.
Individual patient-centred hazard ratios for MACE were
calculated with Cox regression models, within each patient’s
5% topological neighbourhood, leading to heterogeneity in the
map and distinction of phenotypic neighbourhoods favouring
either anatomical or functional imaging. A gradient boosting
algorithm was used in 80% of the PROMISE population, in
order to predict a personalised outcome if using anatomical
or functional testing and create the ASSIST tool. The ASSIST
tool was tested in the rest 20% of the PROMISE population
and in an external validation cohort (from the SCOT-HEART
trial), undergoing anatomical or functional testing as first
assessment. The testing stagey recommended by ASSIST showed
a significantly lower incidence of each study’s endpoint and
of ACM or non-fatal AMI. The personalised novel tool can
support physicians in the decision to proceed with anatomical
or functional testing when evaluating patients with stable chest
pain (89).

An interesting example of the use of AI methodology, is a
recent study by a Chinese group of scientists who developed a
CNN (50-layer ResNet classification network) which detected
CAD (stenosis > 50% documented by angiography), via
analysing the patient’s facial photo. 5,796 patients were divided
to a training (5,216) and validation sets (580) for the algorithm
development. The AI algorithm’s AUC was 0.730 and was found
to be higher than the standard prediction scores. Sensitivity
was 80% and specificity was 54%. Further studies would need
to be conducted, as the study had several limitations including
the geographical characteristic of the cohort (only Chinese
population). Significant CAD was defined based on coronary
angiogram or CTA data, which led to small selection bias,
which could have potentially altered the algorithm outcome.
Lastly, in the visualisation tests, the cheek, forehead, and nose
contributed more to the algorithm than other areas of the face.
This could be the result of the extraction of features by the DL
algorithm that are associated with CAD but are not obvious to
human observers. Despite its limitations, this example shows the
vast advancements and the future potential of AI applications
in cardiology, with the generation of results from a simple
intervention such as taking a selfie (90)!

In a recent prospective, single-centre study, contactless
facial video recording was used to train a 12-layer DNN for
the detection of asymptomatic AF. A camera based remote
photoplethysmography (rPPG) was used during a 10-min facial
video recording of 453 study participants. Its signals were
extracted and segmented into 30 s clips, which were used to

train a CNN. If more than 50% of the subject’s rPPG segments
were identified as AF rhythm by the model, the participant
would be classified as AF. The accuracy of the DL model for
discrimination of AF from NSR and other ECG abnormalities,
was compared to the standard 12 lead ECG. The DL model
achieved a 90 and 97.1% accuracy in detecting AF in 30 s and
10-min recordings, respectively (91).

Internet of things

Internet of Things (IoT) is described as “a network of devices
interacting with each other via machine to machine (M2M)
communications, enabling collection and exchange of data” (92).
IoT can be applied in medicine in fields such as remote
health monitoring, chronic diseases management, obedience to
treatment and medication at home and elderly care (93). When
it comes to cardiology applications, IoT can be applied for the
identification of cardiac emergencies remotely. Wolgast et al.,
designed a body area network for measurement of an ECG signal
and its transmission via Bluetooth to a smartphone for data
analysis. The user’s own smartphone would process the data
and built-in communications could be used to raise an alarm
if a heart attack was identified (94). In another study, subjects
were observed for a period of 3 months, using a wearable sensor
which documented physiological data. Data were uploaded
constantly via a smartphone to a cloud analytics platform. A ML
model was used to design a prognostic algorithm which detected
HF exacerbation and predicted rehospitalisation after a HF
admission (95).

Ethical dilemmas

Despite its huge potential, AI is still something new,
unfamiliar, and sometimes difficult to comprehend. It therefore
carries various ethical dilemmas and limitations that need to
be addressed. Firstly, the design of studies based in AI and
the training and validation process of the new technology,
can be flawed. Most of the studies reporting AI applications
have retrospective design and small sample size, which can
potentially lead to bias. More importantly, AI-driven studies
can have selection bias, which includes sampling and observer
selection bias (32). From another perspective, since AI-driven
technologies achieve their results from existing features and
dynamics of the populations they analyse, this can lead to
reproduction, amplification of patterns of marginalisation,
inequalities and discrimination that exists in these populations.
Again, the features of the data chosen to train the algorithms are
chosen by the investigators and the AI-driven application can
replicate the investigator’s preconceptions and biases (96).

Foundation models are AI systems that are trained on
broad data and can be adapted to a variety of downstream
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tasks (33). An example of such model is AlphaFold, which
is an AI system developed by DeepMind and can predict a
protein’s 3D structure from its amino acid sequence. These
predictions are easily available to the scientific community and
can provide individual downloads for the human proteome
and the proteomes of 47 other key organisms in research
(97). Such systems require vast amount of data for training
and large amount of computing resources to effectively use
that data. Consequently, the ownership of the data and their
models is often centralised, giving power and decision rights
to organisations with the most resources (big tech companies)
and reducing opportunities for others, leading to inequalities, or
one can say anti-democratic situations. Despite efforts to build
models through distributed training, it is highly likely that this
large gap will remain between the two (98).

Since ML models learn on high dimensional correlations
which exceed the interpretive abilities of humans, the rationale
behind algorithmically produced outcomes which affect
decision making for patients, can remain unjustifiable. The
absence of a familiar logic behind its output, might lead the
clinician who is interpreting it to pause. Also, when decisions,
predictions or classifications are made based on AI systems,
individuals are unable to hold direct accountability for these
outcomes. In the case of harm of the patients, this accountability
gap can affect their autonomy and violate their rights (96).
The question of trusting a system, which might not even be
understood by the decision maker, is raised. In the end, could
such systems beat a clinician’s judgement, if there is a conflict
in management plans? For example, would the automated
diagnosis of an ECG-reading algorithm saying that a patient
has a STEMI (ST elevation myocardial infarction) surpass a
clinician’s view who is aware that the ECG changes are due to
long-standing LBBB? The answer is no. Recently, it was found
that DL models made incorrect decisions by using cautiously
engineered inputs, raising concerns that such systems are
not yet ready for mainstream use (99). The same concern is
raised with non-robust CNNs and ML models under various
circumstances, such as in the previously discussed case of
adversarial attacks. Physicians should have the last and most
important say when AI is applied for decision-making in
the medical field.

Another recent development, which aims to mitigate the
famous issue of “black-box” AI methodologies, is explainable
AI (XAI). As AI becomes more advanced, it is less understood
by humans. Whilst lower performance systems such as ML
learning are more understandable, higher performance models
such as DL techniques are difficult to comprehend even from
the engineers or data scientists who created the algorithms, since
they are directly created from data. In safety critical situations,
such as in medicine, the non-transparency of these techniques
can lead to wrong decision making and pose serious danger
to human lives (100). The aim of XAI is to allow humans to
comprehend how the algorithm works, trust its results and the
output it produces, unmask potential biases, and characterise

the model’s accuracy and transparency. XAI ensures AI systems
meet regulatory standards and adopt good practice towards
accountability, making them easier and faster to deploy in
businesses and high risk environments such as the medical
field (101).

The rapidly increasing use of smart medical devices and
digital health applications through IoT and AI, imposes a danger
of dehumanisation of medicine. More and more intelligent
applications replace the work of physicians in various sectors.
For example, the detection of new AF via a wearable device,
aids the diagnosis of a potential arrythmia, but takes away
the clinician’s opportunity to demonstrate their knowledge and
practice their skills (e.g., detect the arrythmia from a real time
ECG for the first time). On the other hand, the potential of AI in
reducing admin burden for physicians (e.g., analysing EHRs),
can create the opportunity for having more interaction and
quality time with their patients. Balance is what is required, in
order to maintain healthy physician to patient relationship, with
integration of AI technologies when needed to relieve admin
burden (102).

Introduction of IoT and AI-driven tools for medical
monitoring of various parameters in individuals has generated
ethical concerns (102). AI technologies can utilise such personal
data, without obtaining the proper consent of the data subject
or handle it in a manner personal information is revealed.
One can say that the ability to lead a private life, could be
jeopardised (96). The concern of personal data privacy is raised,
as most data protection laws are based on principles established
in 1980, which might not be reflecting the current reality.
As per current laws, personal data should be collected and
used for a specific purpose. Also, data should be sufficient,
relevant, and restricted to what is required in the context of the
purpose of its use. However, when AI is concerned, neither of
the above can be guaranteed. The AI algorithms are complex,
not always understood by their programmer, can generate
surprisingly different results from what was expected and can
lead to a change in the purpose, through the learning and
development process. Data can neither be restricted or deleted
after its original use, as keeping data is vital for the models’
optimal performance. It is now more essential than ever that the
data protection laws are re-visited and adjusted to work better
towards data privacy issues arising from the vastly growing fields
of AI, big data and IoT (103).

Translation of artificial intelligence
to future clinical practice

Despite the landmark studies exhibiting the potential of AI
in transforming medicine, the ethical dilemmas concerning its
real-life implementation are still unaddressed. AI systems can be
flawed and their generalisability to new populations and settings,
may produce bad outcomes and lead to poor decision-making.
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Going forwards, education of scientists, physicians but
also of the public regarding AI and the logic behind its
applications is vital. This can lead to better understanding
and improved engagement in commercialisation of AI
applications. Medical engineering has been incorporated in
several universities’ curriculum. Subjects such as computational
sciences, coding, and algorithmics, should also be incorporated
in the curriculum. Universities have also started providing short
courses and postgraduate level degrees on AI in healthcare.
Educated physicians in AI, could aid adoption of innovative
applications, but also raise awareness when ethical and privacy
issues are risen.

Another important aspect is the achievement of robust
regulation and quality control of AI systems. As AI is a new
and rapidly evolving innovative field, it carries significant risks
if underperforming and unregulated. As previously mentioned,
the FDA has recently released a regulatory framework with
aim to establish safe and effective AI- based medical devices,
which can progress for patient use (104). The European Union
has also proposed a regulatory framework on the use of AI,
with plan to come into force in the second half of 2022, in a
transitional period (105). Regulations should also be established
for upgrades of AI products, throughout the lifespan of the
product. Some AI systems have been built with continuous
updates, but this could potentially result to drift with time.
Periodical updates after a complete evaluation of the clinical
significance of the AI product are preferred. Guidelines should
also be developed for the purpose of evaluation of the product’s
performance and the detection of deficits over time (106).

Due to the various limitations and ethical dilemmas AI
carries and its potential harm to the public, it is necessary to
incorporate AI ethics and safety, during the development of AI
systems. AI ethics “is a set of values, principles, and techniques
that employ widely accepted standards of right and wrong to guide
moral conduct in the development and use of AI technologies.”
An ethical platform is required for the responsible delivery of
an AI project. This necessitates cooperation from all the team
members of the multidisciplinary team, in order to maintain a
culture of responsibility and execute a governance architecture
that will adopt ethically practices at every point in the innovation
and implementation lifecycle. Overall, the AI project needs to be
ethically acceptable, fair and non-discriminatory, justifiable and
worthy of public trust (96).

Conclusion

In our fast-paced world, time is precious and limited.
Healthcare is facing a crisis of understaffed departments and
more informed patients who demand the best treatment. There
is an unmet need for the effective triage of patients, efficient
clinical evaluation and incorporation of clinical expertise
with evidence-based medicine and the latest technologies and
accurate decision making for the right diagnostics and treatment

plans. AI will be a part of every cardiologist’s daily routine to
provide the opportunity for effective phenotyping of patients
and design of predictive models for different diseases. It will
enhance the use of non-invasive diagnostics and reduce the need
for costly and complicated invasive tests, for the diagnosis of
CAD. Future cardiologists will be able to tell an asymptomatic
patient, whether they will develop a lethal arrythmia or an MI
and what needs to be done to avoid this. Cardiologists should
educate themselves in the development of AI and take part in AI
innovations and utilise them in their practice. However, they will
need to take into consideration the ethical dilemmas generated
in areas where AI is replacing human and aim to integrate
their knowledge and AI-derived suggestions, for a mature and
accurate decision making in every step in the decision process.
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Glossary

ACM, all-cause mortality; ACS, acute coronary syndrome; AI, artificial intelligence; AF, atrial fibrillation; AHA, American
heart association; ALVD, asymptomatic left ventricular dysfunction; AMI, acute myocardial infarction; AUC, area under the
curve; CACS, coronary artery calcium scoring; CAD, coronary artery disease; CNN, convolutional neural network; CRT, cardiac
resynchronisation therapy; CT, computerised tomography; CTA, cardiac computed tomography angiography; CTP, computed
tomography myocardial perfusion; CVD, cardiovascular disease; DD, diastolic dysfunction; DL, deep learning; DUN, deep unified
network; ECG, electrocardiogram; ECR, early coronary revascularisation; EF, ejection fraction; EHR, electronic health record; ESC,
European society cardiology; FAI, fat attenuation index; FDA, food and drug administration; FNNN, feed forward neural network;
HCM, hypertrophic cardiomyopathy; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HR, heart rate; ICA,
invasive coronary angiography; IoT, internet of things; LBBB, left bundle branch block; LR, logistic regression; LS, longitudinal
strain; LV, left ventricle; LVDF, Left ventricular diastolic function; LVEDV, left ventricle end diastolic volume; LVEF, left ventricular
ejection fraction; LVESV, left ventricle end systolic volume; LVH, left ventricular hypertrophy; LVM, left ventricle mass; MACE, major
adverse cardiac event; ML, machine learning; MLP, multiplayer perceptron; MNN, modular neural network; MPI, myocardial perfusion
imaging; MR, mitral regurgitation; PAH, pulmonary arterial hypertension; PCI, percutaneous coronary intervention; PVC, premature
ventricular contraction; RBBB, right bundle branch block; RBFN, radial basis function network; RCT, randomised controlled trial;
RF, random forests; RNN, recurrent neural network; ROC, receiver operator characteristic; RV, right ventricle; RVEDV, right ventricle
end diastolic volume; RVESV, right ventricle end systolic volume; SPECT, single-photon emission computed tomography; SR, sinus
rhythm; SVM, support vector machine; TPD, total perfusion deficit.
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