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The importance of right heart failure (RHF) treatment is magnified over the

years due to the increased risk of mortality. Additionally, the multifactorial

origin and pathophysiological mechanisms of RHF render this clinical

condition and the choices for appropriate therapeutic target strategies remain

to be complex. The recent change in the United Network for Organ Sharing

(UNOS) allocation criteria of heart transplant may have impacted for the

number of left ventricular assist devices (LVADs), but LVADs still have been

widely used to treat advanced heart failure, and 4.1 to 7.4% of LVAD patients

require a right ventricular assist device (RVAD). In addition, patients admitted

with primary left ventricular failure often need right ventricular support. Thus,

there is unmet need for temporary or long-term support RVAD implantation

exists. In RHF treatment with mechanical circulatory support (MCS) devices,

the timing of the intervention and prediction of duration of the support play a

major role in successful treatment and outcomes. In this review, we attempt

to describe the prevalence and pathophysiological mechanisms of RHF origin,

and provide an overview of existing treatment options, strategy and device

choices for MCS treatment for RHF.
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Introduction

The number of heart failure (HF) patients reached more than 6 million in the

U.S. in 2018 and is expected to rise to 8 million by 2030 (1). The overall incidence

is increasing in Europe, as well (2–4). The same trend is being observed worldwide

(5). Among this population, right HF (RHF) is associated with increased mortality

(6, 7). Furthermore, the pathogenesis of RHF varies, and right ventricular (RV)

function has a close interactive relationship with left ventricular (LV) function. For

example, LV contraction generates approximately 30% of RV contraction energy,

since the ventricles share the interventricular septum and pericardium (7, 8);

on the other hand, RV dilatation may decrease the LV preload and ventricular

elastance by shifting the interventricular septum and distensions of the pericardium.
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Therefore, the RHF management has been rather cumbersome

due to absence of a standardized strategies for RHF particularly

with use of MCS devices. Additionally, the absence of the

dedicate durable RVAD device, less advanced stage RHF at

the time of LVAD, variable rates or RV deterioration post

implantation, surgical adaptation of the LVAD for RVAD use,

and early stage biventricular failure adds up when it comes to

the decision making process for optimal management strategy.

Currently, the indication for mechanical circulatory support

(MCS) treatment for RHF is for patients who are refractory

to medical or surgical therapy (8), however, the timing and

the strategies for MCS treatment differ by the pathogenesis

of the RHF and the duration of the support. Additionally, it

is important to select MCS device with a solid understanding

of the underlying mechanisms of the disease and therefore to

determine the most beneficial device performance to achieve

optimal degree of ventricular unloading.

Right heart failure pathogenesis

Isolated right ventricle injury
pathogenesis

The pathogenesis of RHF can be divided into three major

categories: isolated RV injury, pulmonary etiology, and the one

secondary to LV failure (6). Additionally, there is the “after

cardiac transplantation” condition and congenital heart disease

condition; however, due to the complexity of these conditions,

we have not included these conditions in this review.

The isolated RV injury pathogenesis, mainly associated with

the decreased RV contractility, is one of the ways RHF develops.

Some cases of acute inferior myocardial infarction (MI) are

representative of isolated RV injury. Acute inferior MI patients

with high-grade proximal occlusion of the right coronary artery

tend to show severe RV ischemic dysfunction, which may result

in higher in-hospital mortality (9). However, many patients

show clinical improvements within 3 to 10 days, global RV

performance recovers to almost normal levels within 3 to 12

months, and pure secondary unilateral RHF is rare (10, 11). A

prospective study (n= 69) documented the long-term mortality

among patients with RV MI after the first year was at an

additional 2/year to 3%/year through 10th year (12).

Pulmonary pathogenesis

Pulmonary pathogenesis, which caused by increased RV

afterload inducing RV pressure overload and hypoxia, is a

broad category. The representatives of this pathogenesis are

pulmonary hypertension (PH) and acute pulmonary embolism

(PE). Regarding PH, the world health organization (WHO)

classification for PH and the European Society of Cardiology

and European Respiratory Society guidelines for PH may help

organize the topic (6, 13). In WHO classification, PH is

classified as:

• Group 1: pulmonary arterial hypertension (PAH) (e.g.,

idiopathic, hereditary);

• Group 2: left heart disease (e.g., HF with preserved ejection

fraction, HF with reduced ejection fraction);

• Group 3: lung disease (e.g., chronic obstructive

pulmonary disease);

• Group 4: chronic thromboembolic disease (e.g., chronic

thromboembolic PH);

• Group 5: miscellaneous (e.g., sarcoidosis, chronic

hemolytic disorders).

It should be noted here that the most prevalent group is

group 2 (68%), which is the group of PH due to left heart

disease, such as systolic and diastolic dysfunction of LV (14).

Therefore, strictly speaking, group 2 PH will be classified into

left ventricular failure pathogenesis. The next prevalent group

is group 5: miscellaneous (15%), Group 3: lung disease (9%),

group 1: PAH (3%), and group 4: chronic thromboembolic

disease (CTEPH) (2%) follows. A multi-center observational,

prospective study (n = 2,635) showed a survival rate among

PAH patients, which was 85± 1%, 68± 1%, 57± 1%, and 49±

1% at 1, 3, 5, and 7 years from diagnosis, respectively (15). The

mortality among Group 2, 3, and 5 varies based on the disease

and severity. Among CTEPH patients, a surgical treatment,

pulmonary thromboendarterectomy, has shown to improve

both short-term and long-term survival. In an international

prospective study (n = 679) described that estimated survival

at 1, 2, and 3 years was 93% (95% confidence interval [CI], 90–

95), 91% (95% CI, 87–93), and 89% (95% CI, 86–92) in operated

patients (n = 404), and only 88% (95% CI, 83–91), 79% (95%

CI, 74–83), and 70% (95% CI, 64–76) in not-operated patients

(n= 275).

Left ventricular failure pathogenesis

As noted earlier, the RV function has a close interactive

relationship with the LV function. As a result, the cause of the

RHF in this pathogenesis could be decreased RV contractility

and/or RV pressure overload. Cases are equally distributed in

a wide variety of causes, such as myocarditis, LVAD support,

ischemic disease, and mitral/aortic valvular heart disease;

however, as long as this pathogenesis is secondary, the MCS for

RHF is considered after or while receiving the LV treatment.

Also noted earlier, this pathogenesis will include the patients

with group 2 PH. Particular attention should be paid to the HF

with preserved ejection fraction (HFpEF). The initial step should

be made to treat RHF due to HFpEF after or while receiving the

LV treatment; however, the treatment for HFpEF is still limited.
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FIGURE 1

The treatment mechanisms of the MCS device for RHF. The blue

color is un-oxygenated blood, and the red color is the

oxygenated blood. Left—Direct RV bypass mechanism; takes

blood from the systemic veins and pumps it to the pulmonary

artery. Middle—Indirect RV bypass mechanism; takes the blood

from systemic veins and provides systemic perfusion (red dash

line) from the femoral artery. Right—RV support mechanism;

takes blood from the RV and pumps it to the pulmonary artery.

RV, right ventricle; MCS, mechanical circulatory support; RHF,

right heart failure.

Several efforts are undergoing in both medical and device-based

treatment (16–18). Regarding the survival for HF with reduced

ejection fraction (HFrEF), despite of remarkable advance in

management of HFrEF, the 5-year survival after hospitalization

remains poor (24.7%), and it was similar to HFpEF (24.3%) (19).

Device descriptions

According to Kapur et al., the treatment mechanism of

MCS devices for acute RHF can be divided into two categories;

direct RV bypass and indirect RV bypass (20). The direct

RV bypass devices, such as percutaneous temporal RV assist

devices (RVADs), generally have the inflow in the inferior vena

cava (IVC) or the right atrium (RA) and pump the blood

to pulmonary artery (PA). On the other hand, the indirect

RV bypass device, such as the veno-arterial extracorporeal

membrane oxygenation (VA-ECMO), delivers blood from the

systemic veins and provides oxygenated blood to systemic

organs from the femoral artery access. Furthermore, we have

extended Kapur’s categories to include chronic RV support

in which off-label use of the commercially implantable left

ventricular assist device (LVAD) is used as RVAD. RVAD in

this setup pumps blood through the graft anastomosed to PA.

The difference from the previous two bypass groups is the

implantability techniques and duration of support. Thus, it may

be suitable for the long support duration in selected cases;

however, surgical intervention will be needed. In this review, this

option has been added as “chronic RV support” to explain the

devices for both acute and chronic RHF (Figure 1). Additionally,

for convenience of explanation, we included total artificial heart

(TAH) in chronic RV support category.

FIGURE 2

Percutaneous mechanical circulatory support devices for RHF.

(A) Impella RP (image from Abiomed media kit, used with

permission). (B) BiPella (image from Abiomed media kit, used

with permission). (C) LifeSpark pump with ProtekDuo cannula

(image from Livanova Investor Day 2021 presentation, used with

permission).

Direct RV bypass devices

Impella RP

The Impella RP
R©

(Abiomed, Danvers, MA, USA) is a U.S.

FDA-approved, 22 Fr micro axial pump mounted on an 11

Fr catheter (Figure 2A). The pump is designed to provide up

to 4.0 L/min at 33,000 rpm and support up to 14 days. The

system is delivered via percutaneous femoral vein access, and

the optimal pump inflow is designed to be positioned in the

inferior vena cava and the pump outflow in the distal main

PA, below the bifurcation to the right PA, which falls into the

category of a direct RV bypass device. The device may be used

in the temporary support duration with isolated RV failure

pathogenesis and also secondarily to LV failure pathogenesis as

a part of biventricular support.

The efficacy of the Impella RP was investigated in a

prospective study, the RECOVER RIGHT study, in 2015

(21–25). The study consisted of two cohorts among 15U.S.

institutions: patients with RHF within 48 h post-LVAD implant

(n = 31) and post-cardiotomy or post-MI patients with RHF (n

= 29). The primary endpoint was survival at 30 days, hospital

discharge post-device explant, or transition to the subsequent

therapy, and was achieved in 73.3% of the study population. The

total duration of device support in this study was ∼ 3 days. The

major adverse events at 30 days were major bleeding (60%) and

hemolysis (13%). PA perforation occurred in one patient, which

led to hemothorax, and was likely caused by the guidewire used

during the device positioning. No PE was reported.

Recently, for severe biventricular support with suboptimal

LV unloading using VA-ECMO, using two Impella pumps,

known as BiPella (Figure 2B), can substitute V-A ECMO if

oxygenation is not required. The BiPella therapy combines

the LV Impella
R©

systems (5.0, CP, and 2.0) and Impella RP

(26). A retrospective study among five U.S. hospitals (n = 20)
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reported that in-hospital mortality was 50% (27). In addition,

non-survivors had higher PA resistance than survivors, which

suggests that non-survivors might not be a biventricular failure

but PH following the LV failure. Therefore, there may still

be room for improvement in outcomes with attention to the

pulmonary vascular load.

LifeSPARC pump with protekduo cannula

LifeSPARC Pump
R©

(LivaNova, Houston, TX, USA),

formerly called TandemHeart, is an extracorporeal continuous-

flow (CF) centrifugal flow pump with a magnetic pivot bearing

(Figure 2C). The pump body priming volume is 16mL and is

designed to provide up to 4.5 L/min through the percutaneous

catheter. With the development of the 29/31 Fr ProtekDuo

dual-lumen cannula
R©

(LivaNova, Houston, TX, USA), the

LifeSPARC Pump is often used with the ProtekDuo cannula

percutaneously via the right internal jugular vein (25, 28). The

ProtekDuo cannula contains two lumens: one lumen works as

inflow and the other as outflow. The delivery technique is similar

to the Swan-Ganz catheter insertion. The optimal positioning is

the inflow in RA and outflow in main PA. LifeSPARC Pump and

ProtekDuo cannula gained approval for support of up to 30 days

by the European Medicines Agency and up to 6 days by the U.S.

FDA (25).

The outcome of this system is mixed. In a report of

17 patients (12 patients had a durable LVAD in place) who

went through the implantation with this system, during the

mean length of support of 10.5 ± 6.5 days, 23% of patients

were successfully weaned, 35% required conversion to either a

surgical temporary extracorporeal RVAD (sRVAD) or durable

implantable RVAD, and 41% did not survive (29). Another

study reported that 27 LVAD patients received the system

implantation, and device weaning occurred in 86% of patients,

with 15% in-hospital mortality (30). Other studies also report

similar good outcomes (31, 32).

The insertion without touching the groin region will be

one of the advantages of this system. Although the duration of

the support might have an impact, infection does not appear

to be an issue. In addition, the insertion location enables

another advantage for rehabilitation. Furthermore, this system

is able to add a membrane oxygenator to the circuit if needed

(32, 33). Interestingly, the TandemLung
R©

system (LivaNova,

Houston, TX, USA) is developed to permit extracorporeal life

support circuit to be wearable, and the system consists of

LifeSPARC pump, ProtekDuo
R©

cannula, VoyagerVest
R©
, and

TandemLung
R©
(34).

Surgical extracorporeal RVAD

In LV failure pathogenesis, nearly 41% of RVAD implant

occurred 0–2 days after LVAD implant, and 23.4% of RVAD

implant occurred within 3–14 days (35). At the same time,

successful RVAD weaning rates were reported as> 60%, with

intermediate support duration of 13–17 days. Among those

cases, sRVAD has been the standard procedure because the

patients have fresh sternotomy incisions; therefore, access to

the RA and PA may not be difficult. An outflow cannula

of sRVAD is often surgically implanted directly via PA or

anastomosed prosthetic vascular graft. The inflow cannula is

implanted directly into the RA or via the femoral vein to the RA.

The extracorporeal centrifugal pump, similar to the one used in

ECMO, is the most commonly used in sRVAD, and the system is

expected to provide the pump flow of approximately 4–5 L/min,

working as a direct RV bypass system. This configuration is also

used in post cardiotomy shock.

Indirect RV bypass device

Veno-arterial extracorporeal membrane
oxygenation (VA-ECMO)

ECMO therapy has been increasingly used, and the term

became popular in the non-medical population during the

COVID-19 pandemic. VA-ECMO is one of the widely used

configurations of ECMO, which works as an indirect RV bypass

mechanism for RHF. The system is effective at any point of the

pathogenesis, but especially in the pulmonary etiology to avoid

pressurizing the pulmonary vasculature. However, the flow from

the VA-ECMO may increase the afterload for the heart, which

can lead to pulmonary edema secondary to LV failure; therefore,

clinicians must balance the pump flow (36).

Commonly, the peripheral cannulation via the femoral

artery and femoral vein will be performed and will be connected

to the membrane oxygenator and extracorporeal centrifugal

pumps, such as CentriMag
R©

(Abbott, Abbott Park, IL,

USA), Rotaflow II
R©

(Getinge, Göteborg, Sweden), CAPIOX
R©

(Terumo Cardiovascular, Ann Arbor, MI, USA), and MERA
R©

Centrifugal Blood Pump (Senko Medical Instrument, Tokyo,

Japan) (6). Due to the incomplete full unloading of the ventricles,

LV venting options may be needed (37, 38). Anticoagulation is

recommended with an activated clotting time of 180–220 sec or

a partial thromboplastin time of 65–90 sec (24). The advantage

of this device is ease of placement, which allows it to serve as a

bridge to a decision in an emergent clinical scenario (36). The

system can provide circulatory support for up to 30 days.

The clinical outcome data of using VA-ECMO to isolate RV

failure pathogenesis is limited to small cases studies (39–41);

however, RV function seems to recover during the intermediate

support period. (The clinical data that support using VA-

ECMO is discussed in the previous section). In cases that are

secondary to LV failure, the combination therapy of VA-ECMO

and LV Impella, known as ECPELLA, has been increasing. A

meta-analysis reported that short-term mortality among the

ECPELLA cohort was 56.1%, which was better than VA-ECMO-

alone therapy (63.7%), and occurrence of the major bleeding did
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not show a significant difference; however, hemolysis and renal

replacement therapy were observed with a higher incidence of

36.8 and 51.6% than VA-ECMO alone (42). The report also

noted that the size choice of the Impella device might have an

impact on the rate of major bleeding.

Chronic RV support devices

Dual HeartMate 3 device use

Due to the lack of long-term support for MCS, the durable

implantable CF LVAD has become the off-label use for durable

RVAD. In the U.S., Medtronic Inc. (Minneapolis, MN, USA)

announced that it was withdrawing the HeartWare Ventricular

Assist Device
R©

(HVAD) from the global market in 2021;

therefore, HeartMate 3
R©

(HM3) (Abbott, Abbott Park, IL,

USA) is the only U.S. Food and Drug Administration-(FDA)

approved LVAD in 2022. HM3 is a CF centrifugal pump with full

maglev bearing, displacing volume of 80ml. For the anatomical

limitation, the placement of the right pump may be a concern

(43). In one report with 14 patients who received a dual

HM3 implant as biventricular support configuration, the HM3

was implanted into the RA using felt spacers to decrease the

intraluminal length of the inflow cannula (44). The pump pocket

was made with polytetrafluoroethylene patches, as it protrudes

into the right thoracic cavity. Moreover, due to the physiologic

limitations, the RVAD must work in a below-designed afterload

range; in other words, the pump must operate in a low pump

speed range (43). As a result, pump thrombosis occurrence has

been consistently reported at 36–37% (43, 45, 46). To avoid

pump thrombosis, a modification to the outflow graft–making

the graft diameter smaller–has beenmade to elevate the afterload

of the RVAD (47).

In the same study of 14 patients who received dual HM3

implantation (44), five patients downsized the outflow graft,

nine did not, and just one pump thrombosis was reported. The

pump thrombosis occurred in the patient in whom both pumps

were used as a TAH with excising both ventricles (unknown

about graft downsizing).

In another study with dual HM3 implantation, 12 patients

underwent surgery for the bridge to transplantation (BTT).

The RVAD was implanted to the RA using the spacer and

was wrapped with a Gore-Tex
R©

(W.L. Gore, Flagstaff, AZ)

Soft Tissue Patch and placed in the right pleural space. Graft

downsizing was done in three cases, and pump thrombosis

was observed in three patients (48). The relationship between

pump thrombosis and graft downsizing was unknown; however,

in two of the three cases, the pump thrombosis was likely

dislodgement of an intracardiac thrombus and ingestion into the

pump. Among these cases, the incidence of pump thrombosis

seems to be lower than the previous reported series.

The authors also suggested that the extremely low

thrombosis risk of the HM3 as an LVAD may explain this

FIGURE 3

Current clinically available total artificial hearts. (A) SynCardia

Total Artificial Heart 50mL and 70mL (55), used with

permission). (B) Aeson Total Artificial Heart (used with

permission by Carmat SA).

phenomenon (48). The major difference between the two pumps

is their operation range, which is the result of pump-bearing

design features. The investigation for the thrombogenicity

among two pumps working at low range speed may provide

the justification for their suggestion. The clinical outcome for

dual HM3 varied among two studies; the survival at 18 months

was 54.6–91.7%.

Dual Berlin Heart EXCOR

The Berlin Heart EXCOR
R©

(Berlin Heart, GmbH, Berlin,

Germany) is a paracorporeal pneumatic-drive pulsatile device

with a lineup of different pump sizes that cover pediatric to adult

(10, 15, 25, 30, 50, 60, and 80ml) with different valves (tri-leaflet

polyurethane or bileaflet carbon valves). For the variety of the

pump sizes, dual Excor has been used as a BVAD, especially in

the pediatric population (49–51). The cannula implantation for

the right-side pump is made via the RA for the inflow and the PA

for the outflow. The overall survival at 1 year was approximately

40–83% at 1 year and 75% at 5 years for the adult (49, 52).

Mortality among the pediatric patients ranged from 6 to 39%,

and the transplantation rate from 37 to 73% (53).

SynCardia total artificial heart

The SynCardia TAH
R©

(SynCardia Systems, LLC, Tucson,

Arizona, USA) is a pneumatically driven pulsatile TAH with

independent ventricles that are capable of providing a flow of

more than 9 L/min (54) (Figure 3A). In addition, the SynCardia

is a U.S. FDA-approved TAH indicated for use as a BTT

in biventricular HF patients. Both the 50ml and 70ml size

pumps are approved as BTT in the U.S., Europe, and Canada.

Furthermore, in 2022, a 70ml pump is undergoing an FDA

clinical trial for destination therapy approval.

The clinical data supporting the SynCardia TAH, reported

from an international registry, that the mortality on the

transplantation waitlist was 7.4% for the 433 patients who

underwent BTT therapy with TAH, and 87% of the patients
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reached heart transplant (HT) (56). Additionally, most of

the patients were INTERMACS profile 1 (43%) or profile 2

(37%), and the risk factors for RHF were observed in 82% of

patients (57).

Aeson total artificial heart

The Aeson
R©
TAH (Carmat, Vélizy-Villacoublay, France) is

a pulsatile TAH that is electro-hydraulically driven (Figure 3B).

The pump consists mainly of four biological valves and

two ventricle chambers with a membrane that separates the

chambers for the blood and actuator fluid (58). For the clinical

data, results from a pilot study are available. Between 2013

and 2015, four patients were implanted Aeson TAH (59). The

support durations were 74, 270, 254, and 20 days, and the

causes of death were: two device-related (details unknown), one

respiratory failure, and one multi-organ failure. Two patients

were able to discharge home. In 2021, a pivotal study was

ongoing in Europe, and the pumpwas approved by the U.S. FDA

for the conduction of an early feasibility study (60).

Right ventricle MCS device selection

Devices for isolated right ventricle injury
pathogenesis

Table 1 summarizes the current strategy for each HF

pathogenesis and RV support duration. The top row of the

table consist of three pathogenesis explained in previous section

and suitable treatment mechanism of MCS devices. For isolated

RV injury pathogenesis, the support duration may be short-

term as described in the previous section, therefore, temporary

use devices may fit the strategy in selected cases. Either direct

or indirect RV bypass of the treatment mechanism may be

considered suitable option, unless the pulmonary resistance

is within acceptable boundaries. The durable RV support

mechanism should involve the use of MCS device capable to

deliver full cardiac output and suitable for long term support.

Thus, VA-ECMO, Impella RP, and LifeSPARC pump with

ProtekDuo cannula system may be a choice.

In the rare case of isolated RV failure, such as the case of

severe arrhythmogenic right ventricular cardiomyopathy, which

requires RV long-term support, single report and study showed

the feasibility of off-label use of HM3 and HVAD; however, the

small number of patient remains to be insufficient to discuss the

outcomes (61, 62).

Devices for pulmonary pathogenesis

For pulmonary pathogenesis, among group 1, 3, 4, and

5 PH patients, acute RHF cases can happen at the time of

initial PH presentation or acute on chronic situation (63).

The balloon atrial septostomy (BAS) is the most commonly

performed as palliation for refractory PH and progression to

RHF (64). A meta-analysis revealed that BAS showed relatively

high postprocedural and short-term survival; however, the long-

term survival was less impressive, suggesting the bridging role

for BAS (65). There is another option to use MCS for this

bridging situation. In the MCS option, the treatment may

have to bypass the lung, therefore, a use of VA-ECMO may

be considered. The concept of MCS therapy is bridge to

recovery or bridge to transplantation. A retrospective (n =

6) study showed that three out of four PAH patients who

underwent bridge to recovery therapy successfully survived

to VA-ECMO decannulation (mean support duration, 12 ±

7 days) (66). In addition, several report demonstrated that

awake VA-ECMO therapy for bridge to transplantation concept

was feasible, even for several weeks support (67–69). Besides,

a case report described that a RHF due to PAH patient (40

years of PAH history), who received staged direct RV bypass

device (ProtekDuo cannula with CentriMag pump) and chronic

RV support (HVAD on right atrium) therapies, showed no

pulmonary hemorrhage, even patient’s systolic PA pressure was

around 100 to 120mm Hg (70); however, successful long-

term use of direct RV bypass devices for PAH has not been

reported yet.

Acute PE and some of PH may need to be treated as acute

RVF. For example, a post-operative period in CTEPH (group

4), and acute respiratory distress syndrome (ARDS) (group

3). The most suitable treatment option is indirect RV bypass

with VA-ECMO. The 2019 European Society of Cardiology

guidelines for the management of acute PE defined high-risk PE

patients as having hemodynamic instability, PE severity index

class III-V or simplified PE severity index ≥ 1, RV dysfunction

on transthoracic echocardiogram or computed tomography

pulmonary angiography, and elevated cardiac troponin levels.

Furthermore, the guidelines suggest VA-ECMO therapy as

class IIb, evidence level of C, in combination with surgical

embolectomy or catheter-directed treatment and use of rapid

short-term support (71, 72). One multicenter study in Europe

found that overall 30-day mortality with ECMO-alone therapy

was 77.7% and suggested using ECMO as a complement to

surgical embolectomy (73).

Conversely, a group from China reported in its subgroup

analysis that the earlier ECMO treatment was associated

with lower in-hospital mortality and significant overall

survival (74). In case cardiac function improves while severe

respiratory failure remains, the reconfiguration to veno-arterio-

venous ECMO is reported effective (75, 76). For chronic

thromboembolic PH post-operative ECMO is recommended as

the standard of care due to the reperfusion edema in the early

post-operative period (77, 78).

The importance of RHF to ARDS has been magnified by

the COVID-19 pandemic (79–82). A retrospective analysis (n
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TABLE 1 Classification of the current mechanical circulatory support devices for RHF based on pathogenesis and the support duration.

Isolated RV failure

Direct RV bypass

Indirect

RV bypass

Pulmonary etiology

Indirect RV bypass

Secondary to LV failure

Direct RV bypass

Indirect RV bypass

Chronic RV support

Temporary support

(≤ 14 days)

• VA-ECMO

• Impella RP

• LifeSPARC+ ProtekDuo

• VA-ECMO • VA-ECMO or ECPELLA

• Impella RP or BiPella

• HM3 (Left)

+ Impella RP

+ sRVAD

+ LifeSPARC

+ ProtekDuo

Intermediate support

(≤ 30 days)

• VA-ECMO • HM3 (Left)

+ Impella RP

+ sRVAD

+ LifeSPARC

+ ProtekDuo

Long-term support

(≥1 year)

• HM3+HM3

• EXCOR+ EXCOR

• SynCardia TAH

• Aeson TAH

RV, right ventricle; LV, left ventricle; V-A ECMO, veno-arterial extracorporeal membrane oxygenation; HM3, HeartMate 3; sRVAD, surgical right ventricular assist device; TAH, Total

artificial heart; Black dot marker defines it as an individual item, and plus marker represents the combination use with black dot item; ECPELLA, the combination use of Impella (LV

support) and VA-ECMO (RV support). BiPella, the combination of Impella 2.0/CP/5.0 (LV support) and Impella RP (RV support).

= 39) reported that patients who received percutaneous RVAD

with ECMO therapy had significantly lower in-hospital and 30-

day mortality than patients treated with invasive mechanical

ventilation only (83). Theoretically, a direct RV bypass device

for pulmonary pathogenesis may over-pressurize the pulmonary

vasculature and may cause pulmonary hemorrhage (84). In

spite of this, pulmonary hemorrhage was reported in 12.5% of

patients, and no statistic difference was achieved (83).

Devices for left ventricular failure
pathogenesis

The treatment strategy for the LV failure pathogenesis

should be made with a concern for each ventricle support

duration. Also, the treatment mechanism can be chosen from

either of direct RV bypass, indirect RV bypass, or chronic RV

support, based on RV support duration. Regarding temporary

to intermediate LV support, the representative cases may be

cardiogenic shock, the post cardiotomy shock, and acute on

chronic HF manifesting hemodynamic instability. Among those

cases, the importance of trans-femoral or trans-axillary/trans-

aortic percutaneous LVADs has been increasing (85, 86). If the

symptom of RHF remains with enough LV unloading including

LV Impella, the combination use of temporary MCS for RHF

should be considered, because of its ease of implantation and

explantation (20, 87). Therefore, Impella RP or LifeSPARC

pump with ProtekDuo system may be an option for the right

side. If patients manifest high pulmonary vascular resistance and

a need for oxygenation, VA-ECMO device may be the choice. If

only decreased RV contractility is observed, a direct RV bypass

device may be suitable; however, a strategy in which direct RV

bypass is connected to a membrane oxygenator may be suitable.

Besides, the operators must concern which access (e.g., left or

right, jugular or femoral) to cannulate the devices for building

up the treatment strategy.

Regarding the long-term LV support for representative

cases of durable LVAD implantation, RHF complicates 10%

to 40% of LVAD implants (88, 89). LVADs will increase the

incidence of RHF because they may shift the interventricular

septum to the left and may decrease the septal contribution

to RV contraction (90, 91). Furthermore, according to the

12th Interagency Registry for Mechanically Assisted Circulatory

Support (INTERMACS) Report, 26,688 patients (96%) received

isolated CF LVAD therapy, and 1,136 patients received a CF

biventricular support device (BVAD) therapy, of whom 91.3%

were supported with temporary CF RVADs (92).

In HM3 pivotal and post-pivotal trial study report, RHF was

seen in 34.2–37.4% of patients, and 4.1–7.4% of patients required

an RVAD implant (35). Notably, 40.6% of RVAD implants were

performed within 2 days, and 23.4% of implants were performed

between 3 and 14 days. Furthermore, theMechanical Circulatory

Support Academic Research Consortium divided the RHF after

LVAD implantation into three groups:
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• Early acute RHF, which is defined by the need for

implantation of a temporary or durable RVAD before the

patient leaves the operating room;

• Early post-implant RHF, which needs implantation of

RVADs within 30 days following LVAD implantation or

failure to wean from inotropic, vasopressor, or inhaled

nitric oxide within 14 days following LVAD implantation

or having to initiate these supports within 30 days;

• Lastly, late RHF, which need implantation of an RVAD

more than 30 days after an LVAD or hospitalization with

intravenous diuretics or inotropic support that occurs more

than 30 days post-implant (93).

To summarize, approximately 40% of RHF after LVAD

implantation patients may fall into early acute RHF, and 23% of

RHF patients will present early post-implant RHF. However, the

predictor for the RHF following LVAD implant still needs to be

explored. In HM3 pivotal and post-pivotal studies, intra-aortic

balloon pump use (odds ratio [OR]: 1.84), destination therapy

(OR: 1.69), INTERMACS profiles 1–2 (OR: 1.60), and estimated

glomerular filtration rate > 10 mL/min/1.73 m2 (OR: 0.9) were

all reported as predictors for the RHF requiring RVAD (35).

The RV MCS device selection during long-term LV support

may largely depend on the duration of the RV support.

Unplanned temporary RVAD use was reported with successful

RVAD weaning rates of over 60% with a median support

duration of 13–17 days (25, 94–96). Therefore, short-duration

RV MCS devices may be suitable for this strategy in selected

cases. The treatment mechanism will be either direct or indirect

RV bypass, which hasmore advantages with regard to conditions

of pulmonary function and performance; however, there has

been a single report of using a direct RV bypass device connected

to a membrane oxygenator and aiming for early extubation;

thus, pulmonary vascular resistance and removability may be the

main concern (97).

As for long-term biventricular support, as discussed, the

situation is rare, but it does exist. The options are limited

due to the lack of durable MCS devices designed explicitly for

RVAD. Currently, these options are: the off-label implantation

of CF LVAD as an RVAD (Dual HM3); a paracorporeal pulsatile

ventricular assist device as a biventricular support configuration

(Dual Berlin Heart EXCOR); and TAH (SynCardia TAH or

Aeson TAH). For the timing of RVAD intervention, severe

late RHF, which is defined by the requirement for an RVAD

at months 3–12, is very rare (98). However, recent data have

been reported from Japan suggesting that late RHF is related to

cardiac cachexia at HT, and increases the risk of infections within

6months of HT (99). Thus, the timing of the intervention for late

RVADmay change in the future with a prognosis of a specifically

designed durable implantable RVAD.

As for the predictors for RHF, several research efforts are

ongoing. The PA pulsatility index predicted the early RHF with

a cutoff value of 2.0 (area under the curve, 0.77; sensitivity,

74%; specificity, 67%) (100). The RV global longitudinal strain

FIGURE 4

Cleveland Clinic Universal Ventricular Assist Device.

predicted the early acute and post-implant RHF with a cutoff

value of −9.7% (area under the curve, 0.86; sensitivity, 89%;

specificity, 78%) (101).

Future perspectives

There seems to be major three work fields that should have

explored. First, the development of specifically designed, durable

RVAD may be required. The specifically designed ventricular

assist device that is able to operate on both sides of the

heart, such as the Cleveland Clinic Universal Ventricular Assist

Device (UVAD, Figure 4), is seen as a promising, universal

solution able to cover the hemodynamic needs of the broad

HF patient population (102, 103). The UVAD is a hybrid of

magnetically and hydrodynamically levitated centrifugal pumps,

and is an innovative apparatus with a wide operating range,

automatic regurgitant-flow shut-off, and pulse augmentation

features (104). The unique design architecture of the UVAD

permits accommodation of various hemodynamic profiles. The

flexible operating range allows the pump to be used in a broad

range of hemodynamic conditions, so it can be used on both

right and left ventricular/atrium. Additionally, the automatic

regurgitant-flow shut-off feature provides the feasibility for non-

invasive pump-off tests, which plays an important role for RVAD

weaning (105). The device is currently undergoing engineering

optimization, and the developers are also focusing on addressing

the need of dual-device operation using a single controller, for

biventricular failure application as BVAD support.

Second, mobility of percutaneous RVAD must be improved.

Currently, Impella RP is inserted from femoral vein because of

the inlet of the cannula is designed to place in IVC and 11 Fr
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sheath (15 Fr outer diameter) stays at cannulation site, therefore,

not suitable for rehabilitation. As for ProtekDuo cannula, 29

Fr cannula is inserted from right jugular vein; however, the

large-bore cannula may still limit patients’ outcome.

Third, the oxygenation support with RVAD may be

interesting field to explore. RVAD circuit connecting to

membrane oxygenator, known as Oxy-RVAD configuration, has

been reported for use in the patient waiting for lung transplant

(106). TandemLung
R©
system is applicable for this category.

Discussion

With an increasing incidence of RHF in the last decade, the

therapeutic and device options for this pathology remain unmet.

While previously underestimated, the RV has triggered interest

with the scope of better understanding of the underlying disease

pathogenesis in order to provide potential therapeutic options

and device solutions. With ongoing effort amongst multiple

engineering and clinical groups, there has been a substantial

spike in research interest and development of unique device-

based target therapies.

The device selection for the shorter support duration seemed

to have progressed to less invasive. To provide less invasive

MCS therapy for RHF, the prediction for the support duration

increases its importance. In the LV failure pathogenesis, more

than 98% of patients received their LVAD therapy with

centrifugal pumps in 2020, and more than 83% of patients were

implanted HM3 (92). This trend is expected to accelerate in 2022

because the centrifugal pump with hybrid levitation is no longer

available in the U.S. Therefore, most patients who present with

RHF with LV failure pathogenesis will have HM3 implanted and

will have a fresh sternotomy incision.

For this reason, sRVAD has been the gold standard for

temporary- and intermediate-support for RHF. However, the

effort to implant the HM3 with minimally invasive surgery has

begun (107) and will have an impact on the current strategy

because the ease of access to RA and PA will be unknown.

Also, the less invasive method may be another key for the MCS

therapy for RHF. If it is less invasive, the hurdle for making the

decision to use MCS may lower, and intervention may begin

earlier. The devices that will have the greatest advantage may

be the percutaneous RVADs (pRVADs). Regarding the survival

outcomes between the pRVAD and sRVAD groups, one study

reported that there was no significant difference in 30-day

mortality, 1-year survival, or 2-year survival, but the length of

intensive care unit stay was significantly shorter in the pRVAD

group (21 days vs. 34 days, p = 0.01) (108), however, data still

remain scarce.

Regarding percutaneous MCS, the combination of Impella

devices to support both ventricles has been increasing. The

most typical examples are ECPELLA and BiPella. The difference

between these treatment methods is whether to use Impella RP

or VA-ECMO for the RV support. A meta-analysis showed that

there was no significant difference between the ECPELLA cohort

and BiPella cohort in mortality (p = 0.93) (109). Additionally,

there was no significant difference in adverse events, major

bleeding, hemolysis, and limb ischemia; however, the authors

further prospective studies due to small sample sizes and the lack

of hemodynamic data.

For long-term RVAD support, the currently available option

is mainly limited to HM3 off-label use. The most concerning

issue with this treatment is RVAD pump thrombosis. Regarding

the necessity of outflow graft downsizing, one study operated the

HM3 RVAD with a mean RVAD speed of 4,991 rpm and mean

RVAD flow of 4.3 L/min (48). It was consistent with the pressure

head curve of HM3 (110); if 4–5 L/min flow was demanded,

4,000–5,000 rpm pump speed would create a pump pressure rise

of approximately 30–60mmHg, which is the pressure difference

that may not need the graft downsizing. As a result, pump

thrombosis was rarely reported. In addition, the HM3 has an

artificial pulse mode feature, which improves the pumpwashout,

and it will start of 4,000 rpm. Therefore, if the demanding flow

is below 4 L/min, graft downsizing may be needed to operate the

pump with increased speed.

Moreover, in this review, we discussed about one-to-

one correspondence treatment strategy for each pathogenesis;

however, in the real clinical world, the most of the patients

are expected to have multiple pathogenesis. For example,

the patient in acute exacerbation of American College of

Cardiology/American Heart Association stage C heart failure

with comorbidity of severe chronic obstructive pulmonary

disease, may not be a rare case. Therefore, there may be a

situation that LV is not bad as receiving LVAD therapy but RV

requires MCS device, to overcome the acute decompensation.

For these patients, applying the algorithm for RV MCS device

us may be helpful (20).

Lastly, we did not include the RHF after HT because of the

complexity of the mechanism and pathogenesis; however, the

importance of MCS therapy for RHF is increasing. Moreover,

since the first successful human HT was reported in 1967 in

South Africa, more than 120,000 patients have received HT

therapy (111), and the number who receive second and third

HT transplants is growing (112). For those patients, each surgery

becomes higher risk, and the risk of graft failure also increases.

The need for MCS devices, including the TAH, may increase.
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