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Recent advances have steadily increased the number of proteins and pathways known

to be involved in the development of cerebral cavernous malformation (CCM). Our ability

to synthesize this information into a cohesive and accurate signaling model is limited,

however, by significant gaps in our knowledge of how the core CCM proteins, whose

loss of function drives development of CCM, are regulated. Here, we review what is

known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2,

and CCM3, with an emphasis on binding interactions and subcellular location, which

frequently control scaffolding protein function. We highlight recent work that challenges

the current model of CCM complex signaling and provide recommendations for future

studies needed to address the large number of outstanding questions.
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INTRODUCTION

Cerebral cavernous malformation (CCM) is a disease characterized by the formation of
microvascular lesions primarily in the brain. These lesions derive from highly proliferative
endothelial cells with poor barrier function (1–3). A consequence of this perturbed endothelial
behavior is the formation of large vascular “caverns” lacking surroundingmural cells and astrocytes,
as well as altered extracellular matrices surrounding the endothelial cells (2, 4). CCM occurs in
the general population at a rate of ∼0.5% (5), and may be hereditary (familial CCM) or occur
sporadically. A genetic component for the development of CCM was first described in 1995 (6, 7).
Further study revealed this gene to encode the protein Krev-Interaction Trapped 1 [KRIT1, also
called CCM1; (8–10)], which had been previously identified as a binding partner of the small
GTPase Rap1 (11), making KRIT1 the first protein linked to CCM pathogenesis. In 1998 two
other genetic components were found (12), and by the mid 2000s these proteins were identified:
CCM2/malcavernin (13) and the apoptosis-related protein, CCM3/PDCD10 (14, 15). Loss of
function mutations in any of these three genes is sufficient to induce CCM lesion development,
and have also been found in some sporadic CCMs (16). Recent studies have discovered other genes
involved in CCM development, i.e., PIK3CA (17) and Cdc42 (18), but mutations in KRIT1, CCM2,
or CCM3 remain the most commonly identified genetic basis for CCM.

The three core CCM proteins (i.e., KRIT1, CCM2 and CCM3) can bind directly to each other
under normal physiological conditions (19–21) forming what is referred to as the CCM signaling
complex. All three CCM proteins are scaffolding proteins, and each member of this complex
has a unique set of binding partners that allow it to affect a wide range of cellular functions.
Based on studies in human tissues, cell culture, and animal models, the CCM complex appears
to promote endothelial quiescence by stabilizing cell-cell contact, limiting inflammatory and
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angiogenic signaling, and constraining proliferation (2, 4, 22–
25). These abilities have been strongly linked to the regulation
of mitogen activated protein kinase kinase kinase 3 (MEKK3),
which binds to CCM2 (26, 27). However, how CCM2 curbs the
activation of MEKK3 and its downstream signaling has not been
established, nor has it been shown how loss of KRIT1 or CCM3
lead to activation of MEKK3 in cells that still maintain CCM2
expression. Moreover, studies using KRIT1 or CCM2 deficient
cell or animal models have shown highly similar phenotypes
(28), but loss of CCM3 causes more severe and acute CCM
development both in animal models and human patients (29, 30),
suggesting that the pathophysiology and progression of CCM
lesion development is a complex process that is influenced by the
specific gene affected.

These questions lay bare a significant gap in our current
knowledge, that is, what mechanisms regulate the function of
the CCM proteins and the CCM complex? Scaffolding proteins,
such as the CCM proteins, are a functionally defined set of
proteins which are able to bring together (at a minimum)
two proteins in a relatively stable conformation and promote
signaling between these target proteins. Scaffolding proteins
function to organize cellular signaling, making possible the
specific and temporal regulation of the vast array of signaling
information that cells must continuously process. Regulation of
scaffolding proteins depends, to some extent, on their domain
composition and on the pathways in which they operate.
Notably, scaffolding proteins must be localized to the same
subcellular compartment as their target proteins, and relatedly,
can promote the localization of their targets to specific cellular
locations. Thus, protein expression and alternative splicing and
control of location are common features in the regulation of
scaffolding proteins. In addition, the interaction of scaffolding
proteins with their targets can be regulated by post-translational
modification (phosphorylation, ubiquitination, etc.) as well as
autoinhibitory interactions between domains of the scaffolding
protein itself. Indeed, the ERM family of scaffolding proteins,
to which KRIT1 is structurally similar, are regulated by a
well-characterized mechanism involving the interaction of the
N-terminal ERM associate domain with sequences in the C-
terminal ERM associate domain (31). In order to fully understand
CCM pathogenesis, we need to know how the CCM proteins
individually, and CCM complex formation as a whole, are
regulated. In this review, we will examine what is currently
known about how KRIT1, CCM2, and CCM3 are regulated,
with an emphasis on binding interactions and sub-cellular
localization, and discuss how that regulation may affect the
function of the CCM complex.

DOMAIN STRUCTURE AND BINDING
INTERACTIONS OF CCM PROTEINS

Krev-Interaction Trapped 1, KRIT1
KRIT1 is an 84kDa protein containing multiple protein-
interacting domains (Figure 1). At the N-terminus (residues
1–170), Liu et al. identified a Nudix-like fold by structural
homology (32). Nudix hydrolases are a superfamily of

hydrolytic enzymes capable of cleaving nucleoside diphosphates,
but the homologous domain in KRIT1 lacks catalytic activity.
The remainder of the N-terminal half of KRIT1 is relatively
unstructured, but contains three NPXY/F motifs (19, 32, 33)
which are recognition sites for phospho-tyrosine binding (PTB)
domains. The integrin regulatory protein ICAP1α binds to the
first NPXY/F motif [NPAY, residues 192–195, (32)], while CCM2
is thought to bind to the second or third NPXY motifs (19, 34).
The cytoplasmic sorting nexin adaptor protein sorting nexin
17 (SNX17) binds to the second NPXY motif (NPLF, residues
231–234). In the center of the protein are four ankyrin repeats
[residues 259–422, (11, 35)] that putatively promote association
with lipid membranes. The C-terminal half of KRIT1 is folded
into a triple-lobed Band 4.1, ezrin, radixin, moesin (FERM)
domain, which contains 3 subdomains (F1, F2, and F3) featuring
a ubiquitin-like fold, a four-helix bundle, and a phospho-tyrosine
binding domain, respectively (35–38). Co-crystallization of
KRIT1 with the small GTPase Rap1 demonstrated that Rap1
binds to KRIT1 via an interaction with both the F1 and F2
subdomains (36), whereas the transmembrane orphan receptor
Heart of Glass (HEG1) binds to an interface involving the FERM
F1 and F3 subdomains (39). The C-terminal PTB domain (F3) of
KRIT1 could theoretically interact with several NPXY-containing
proteins, however the only defined interaction of this domain
is an intermolecular interaction with a NPXY motif of KRIT1
itself. This interaction, between the C-terminal PTB domain and
the first NPXY motif (40) is highly similar to the autoinhibitory
self-interaction seen in other ERM family proteins (31). In
addition, KRIT1 contains a nuclear localization sequence [NLS,
residues 46–51, (41–44)], which may also be important for
binding of KRIT1 to microtubules. Finally, while KRIT1 contains
several predicted nuclear export sequences (43, 44), none have
been confirmed to regulate subcellular trafficking of KRIT1.

CCM2
CCM2 is a 49 kDa protein that contains a N-terminal PTB
domain (13), which binds to KRIT1 (19, 44) and the cell
death receptor TrkA (45) (Figure 1). A single point mutation
in the CCM2 PTB, F217A, blocks the interaction of KRIT1 and
CCM2 and is sufficient to cause CCM (21). CCM2 also contains
a leucine-rich aspartate (LD)-like domain (residues 223–238),
which binds to CCM3, and a C-terminal harmonin-homology
domain (HHD) (residues 283–379), which is structurally similar
to the N-terminal domain of the Usher syndrome protein
harmonin (46). Interestingly, harmonin binds directly to the
cell adhesion protein cadherin 23, expressed specifically in
neurosensory epithelial cells, via two domains: its N-terminal
domain and a PDZ domain (47). However, direct interaction of
CCM2 with cadherins has not been reported. CCM2 also binds
to the respective upstream kinases mitogen-activated protein
kinase kinase 3 (MKK3) and MEKK3 (26, 48). One of the first
studies of CCM2 identified it as an osmo-sensing scaffold for the
MAP kinase MKK3 (48), a key mediator of p38 inflammatory
signaling (49). Later studies demonstrated that CCM2 was a
regulator of MEKK3, an upstream activator of big mitogen-
activated protein kinase/extracellular signal regulated kinase 5
(BMK1/ERK5). Destabilization of the complex with MEKK3
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FIGURE 1 | Domain structure of the CCM proteins KRIT1, CCM2 and CCM3. ARD- ankyrin repeat domain; FERM- Band 4.1, ezrin, radixin, moesin domain; F1, F2,

and F3, globular subdomains of the FERM domain; PTB, protein tyrosine binding domain; LD, leucine-rich aspartate domain; HHD, harmonin homology domain; DD,

dimerization domain; FAT-H, focal adhesion targeting domain; STK, sterile kinase. Green bars indicate nuclear localization sequences/microtubule binding sites.

Residue numbers (from human proteins) are noted below the domain diagram.

through loss of any of the CCM proteins is a potent driver of
CCM through perturbations of several pathways (26).

CCM3
CCM3 (25kDa) is the most recently identified member of
the CCM complex, and binds directly to CCM2 (Figure 1).
CCM3 contains an N-terminal dimerization domain (50) which
mediates interactions with the germinal center kinase III group of
protein kinases, including sterile-kinases 24 and 25, forming part
of the striatin interacting phosphatase and kinase (STRIPAK)
signaling complex (51). CCM3 also contains a C-terminal focal
adhesion targeting-homology (FAT-H) domain (50). Sequences
within the FAT-H domain bind to the LD-like domain of CCM2
(21, 52), and also mediate interaction with the focal adhesion
protein paxillin (50, 53).

REGULATION OF CCM PROTEIN
LOCALIZATION

All three CCM proteins have been shown to localize to
the plasma membrane (particularly at cell-cell contacts), the
cytoplasm, and the nucleus (Figure 2). While several studies have
investigated the formation of the tripartite complex using co-
immunoprecipitation, few have examined complex formation at
the subcellular level. However, what evidence there is suggests
that KRIT1•CCM2 and CCM2•CCM3 interactions can occur at
or near the plasmamembrane (50, 54). Alternatively, it is possible
that some or all of the CCM proteins could function individually
in unique locations. For example, CCM3, which associates with
the STRIPAK complex at the Golgi (55) (Figure 2), also has been
found at the apical epithelial membrane during excretory canal
development in C. elegans (56), and in focal adhesions in cancer
associated fibroblasts, where it regulates integrin-dependent

adhesion and mechano-transduction (53). The relevance of
these interactions to CCM pathogenesis or, more specifically,
endothelial/epithelial barrier function is unknown. Indeed, only
the KRIT1•CCM2 association has been directly implicated in the
stabilization of endothelial barrier function, as a point mutation
of the PTB domain of CCM2 (F217A) results in a primarily
cytoplasmic distribution of both proteins and loss of barrier
function (54). Immunofluorescence imaging has also shown that
KRIT1 and CCM2 colocalize at cell peripheries in COS-7 cells
after osmotic shock (34), suggesting that the localization of this
complex could be regulated by external signals. Consequently,
subcellular localization is expected to play a key role in the
regulation of CCM proteins and the function of the CCM
complex, thus it is critical that we understand the mechanisms
involved. In the next sections, we will review what is known about
how the localization of CCM proteins are regulated and how that
relates to the function of the CCM complex.

CCM Complex Localization to Cell-Cell
Contacts
Several studies have associated the localization of the CCM
complex to sites of cell-cell contact with the ability of this
complex to stabilize endothelial barrier function, suggesting that
subcellular localization is critical to the functional consequence
of active CCM complex signaling. Indeed, several mechanisms
have been suggested to regulate localization of the CCM
complex to the plasma membrane in general, and to adherens
junctions specifically.

In vitro binding assays have shown that KRIT1, CCM2, and
CCM3 can directly interact with cellular membranes. KRIT1
can bind phosphatidylinositol (4,5) bisphosphate (PIP2) via its
FERM domain [residues 208–736, (40)], CCM2 preferentially
interacts with phosphatidylinositol monophosphates (52), and
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FIGURE 2 | Proposed localization of the CCM complex. (1) The CCM complex is known to co-localize with β-catenin at adherens junctions (AJ) and to associate with

the Heart of Glass (HEG1) orphan transmembrane receptor at the plasma membrane. (2) The CCM complex (at least KRIT1), regulates ICAP1α interactions with

integrins. CCM3 can also bind to paxillin, a focal adhesion protein. (3) CCM3 is a member of the STRIPAK signaling complex which regulates cell polarity and Golgi

assembly. (4) KRIT1 can bind to the endosomal trafficking protein sorting nexin-17 (SNX17). (5) All three CCM proteins can localize to the nucleus, but whether they

have a nuclear function is unknown. (6) The CCM complex is also distributed in the cytoplasm, where KRIT1 can bind to microtubules. Created with Biorender.com.

CCM3 binds phosphatidylinositol (3,4,5) triphosphate [PIP3,
(57)], potentially indicating that all CCM proteins can associate
directly with membranes. While these direct interactions
support the ability of the CCM complex to localize with
membranes enriched in specific phospholipids, it has not
been determined whether these interactions are sufficient for
membrane localization of the complex.

In contrast, the ability of specific protein-protein interactions
to regulate membrane localization of the CCM proteins,
particularly KRIT1, has been more extensively studied. KRIT1
was first identified as an interacting partner of the small GTPase
Rap1 in a yeast two-hybrid screen (11). Subsequent studies
validated KRIT1 as a Rap1 effector that preferentially binds active
(GTP-bound) Rap1 (24, 36, 37, 40). Binding of active Rap1
promotes the localization of KRIT1 to points of cell-cell contact
where it associates with adherens junction proteins (24, 37), while
co-expression of KRIT1 and RapGAP reduces the association
of KRIT1 with β-catenin (24) (Figure 2). Binding of Rap1 to
KRIT1 blocks the co-sedimentation of KRIT1 with microtubules,
and reduces co-localization of KRIT1 with tubulin in baby
hamster kidney (BHK) cells (40), suggesting that Rap1 activation

could promote trafficking of KRIT1 from the cytoplasm to
the plasma membrane. In vitro binding assays using KRIT1
peptide fragments initially revealed that Rap1 binds to the C-
terminal FERM domain (24, 40, 42). One such study suggested
a role for the F3 lobe of the FERM domain using yeast two-
hybrid analysis (42). However, X-ray crystallography studies have
definitively demonstrated that Rap1 binds KRIT1 at the interface
of the F1 and F2 lobes (36). This supports prior reports that
the KRIT1 FERM domain fragment could localize to adherens
junctions, but mutation or deletion of the F1 lobe ablates this
effect (24, 37). Furthermore, a charge switch mutation in this
binding interface (R452E) results in a significant reduction in
Rap1-binding affinity (37). As a result, KRIT1-R452E is unable
to localize to adherens junctions. However, we recently reported
that Rap1 binding, though a key regulator of KRIT1 junctional
localization, was not absolutely required for the ability of KRIT1
to stabilize barrier function (58). In this study, we expressed
various mutated forms of KRIT1 at replacement levels in KRIT1
shRNA expressing human pulmonary artery endothelial cells.
Compared to wildtype KRIT1, KRIT1 containing amutated Rap1
binding site (KRIT1-R452E) is unable to localize to adherens
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FIGURE 3 | Hypothetical role of the N- to C- terminal self-interaction of KRIT1 in the regulation of barrier function. (A) Rap1 or ICAP1α binding to wildtype KRIT1

inhibits the N- to C-terminal interaction, leading to enhanced junctional localization (due to Rap1 binding) and stabilization of endothelial cell-cell contacts. (B) Mutation

of the Rap1 binding interface (R452E) ablates junctional localization and barrier stabilization, likely due to a reduction in the proportion of the “open” conformation. (C)

KRIT1 containing mutations in both the Rap1 binding interface (R452E) and the first NPXY motif (APAA) stabilizes cell junctions even though it remains cytoplasmic.

Mutation of the PTB domain (*) has the same effect as mutating the NPXY motif, indicating that ICAP1α binding is not required for this effect. Created with

Biorender.com.

junctions and does not rescue barrier function of KRIT1 deficient
cells. However, when we added an additional mutation of
the first NPXY motif (APAA), which would block binding of
ICAP1α or the N- to C-terminal self-interaction, we restored
barrier function but not junctional localization. Furthermore,
mutation of the KRIT1 PTB, which blocked the self-interaction
but not ICAP1α association, also restored barrier function in
the absence of junctional localization (58) (Figure 3). These data
suggest that Rap1 binding may regulate KRIT1 in two distinct
ways, first, it promotes junctional localization through an as
yet undefined mechanism, and second, it negatively regulates
the N- to C-terminal interaction, the latter of which appears
critical for the function of KRIT1 and the CCM complex. This
novel finding, while possibly controversial, may explain why the
transmembrane protein HEG1 is not a necessary component
of the CCM complex, despite the fact that it binds to KRIT1.
HEG1 binds to KRIT1 at the interface of the F1 and F3
lobes of the KRIT1 FERM domain. Ablation of this interaction
by mutation of KRIT1 (L717A,721A) disrupts localization of
KRIT1 to endothelial junctions (39), suggesting that HEG1
may be important for anchoring KRIT1 at junctions (Figure 2).
However, knockout of HEG1 in vivo failed to lead to the
formation of CCM (59), suggesting that this binding interaction
is dispensable for normal vascular development. Clearly, much
remains to be understood about how the localization of the CCM

complex to the plasma membrane, or more specifically cell-cell
contacts, is regulated, which is critical to our ability to understand
how this localization affects the functional outcome of CCM
complex signaling.

Cytoplasmic Localization of the CCM
Complex
As mentioned above, the CCM proteins are often observed in
the cytoplasm. KRIT1 can bind to microtubules, as demonstrated
by co-sedimentation with tubulin in BHK fibroblast lysates. In
vitro binding assays indicated that this interaction is mediated
by regions in both the N- (residues 46–51) and C-termini
(residues 569–572) of KRIT1. Binding of Rap1 or ICAP1α to
KRIT1 inhibits KRIT1 binding to microtubules. Activation of
Rap1 with non-hydrolysable GTPγS reduces co-sedimentation
with tubulin. Similarly, over-expression of constitutively active
Rap1 (RapV12) prevents co-localization of YFP-KRIT1 with
fluorescently-tagged tubulin in cell culture (40). That Rap1
may regulate the interaction of KRIT1 with microtubules in
some contexts was also supported by Liu et al. who showed
that the KRIT1-R452E mutation reduces co-sedimentation
with tubulin in human osteosarcoma epithelial cells [U2OS,
(37)]. However, others have not observed co-localization of
KRIT1 with the microtubule cytoskeleton in confluent human
or bovine aortic endothelial cells (24, 58), which calls into
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question the ubiquity of this interaction. In addition, the
microtubule binding domain in the N-terminus of KRIT1
overlaps with the reported nuclear localization sequence, thus
studies to determine the relevance of the microtubule binding to
KRIT1 function would be complicated by possible alteration of
nucleocytoplasmic trafficking.

Another possible mediator of cytoplasmic localization of
the CCM complex is the protein sorting nexin 17 (SNX17,
Figure 2). Yeast two-hybrid screens as well as GST-trapping
assays previously identified KRIT1 as an interacting partner of
SNX17 and defined an interaction between the N-terminus of
KRIT1 and the SNX17 FERM domain (60). Crystallography
studies further confirmed this interaction, and pointed to the
particular importance of KRIT1’s second NPXY motif in this
interaction (33) (Figure 1). Sorting nexins are involved in a
variety of endocytic and endosomal processes, with SNX17
playing a role in endosomal recycling, particularly of integrins
(61). Thus, it is possible that the presence of SNX17 on
endosomal membranes could recruit the CCM complex away
from the plasma membrane. Furthermore, based on the fact that
both CCM2 and SNX17 bind to the second NPXY sequence
on KRIT1, SNX17 could compete with CCM2 for binding
to KRIT1, thus altering the composition of the signaling
complex in a location specific manner. The implications of the
interaction of KRIT1 with SNX17 are intriguing, and should be
investigated further.

The interaction of KRIT1 with CCM2 has also been
reported to promote cytoplasmic localization of both proteins.
Zawistowski et al. first reported that co-expression of KRIT1
and CCM2 led to the cytoplasmic localization of both proteins
in sub-confluent COS-7 cells. This paper also reported that
ICAP1α can form a tertiary complex with KRIT1 and CCM2
(34). As is discussed in depth in the next section, ICAP1α
expression promotes the nuclear localization of KRIT1. Thus
together, these data suggest that the relative binding of ICAP1α
and CCM2 to KRIT1 may control the distribution of the CCM
complex. Indeed, Francalanci et al. found that the nuclear
accumulation of ICAP1α and KRIT1 was lost in the presence
of CCM2 (42), which could suggest that CCM2 binding retains
KRIT1 in the cytoplasm or promotes nuclear export. CCM2
may also promote the cytoplasmic localization of CCM3,
as over-expressed CCM3 exhibits more nuclear localization
when the FAT domain is mutated and it no longer binds
to CCM2 (50).

The cytoplasmic localization of KRIT1 could also be regulated
by post-translational modification, such as phosphorylation.
To this point, we recently demonstrated that activation of
PKC, particularly PKCα, led to a predominantly cytoplasmic
distribution of KRIT1 and blocked localization of KRIT1 to the
nucleus in both sub-confluent and confluent endothelial cells.
Pre-treatment with the antioxidant N-acetyl-cysteine reversed
the ability of PKC activation to promote localization of KRIT1
to the cytoplasm, but did not go so far as to promote nuclear
localization (62). Work is ongoing to determine the target(s)
of PKCα which regulate KRIT1 nuclear-cytoplasmic shuttling,
but these data raise the question of why the shuttling of KRIT1
(and potentially the CCM complex) between the cytoplasm and

nucleus is so highly regulated, and what effect it might have on
complex function or CCM pathogenesis.

Nuclear Localization of the CCM Complex
Finally, the CCM proteins have been consistently observed in
the nucleus (Figure 2). While CCM2 and CCM3 lack established
nuclear localization or export sequences, KRIT1 has been
reported to have both (41). Full-length KRIT1 partially localizes
to the nucleus, as does the KRIT1 FERM domain [residues
409–736, (24)]. Truncating the FERM domain to eliminate
the F1 subdomain eliminates this nuclear localization (24), as
does mutating/deleting the F3 subdomain (42). Interestingly,
compared to full-length KRIT1, a truncated KRIT1 construct
containing the ankyrin repeats and the FERM domain (residues
207–736) is retained in the nucleus and is insensitive to PKC
activation (62). These observations have led to the conjecture that
KRIT1 contains two nuclear localization sequences, one in its N-
terminus (residues 46-KKKRKK-51); and one in the C-terminus
(residues 569-KKHK-572). Several studies have shown that
mutation of the N-terminal KRIT1 NLS is sufficient to decrease
localization of KRIT1 to the nucleus (42, 43), while mutation
of the second NLS in full-length KRIT1 is insufficient (43),
suggesting that the N-terminal NLS is functionally dominant
and that the nuclear localization of the FERM domain may be
driven by some other mechanism. Complicating matters, an N-
terminal fragment (residues 1–207), though it contains the NLS,
was shown to have a cytoplasmic distribution in transfected HeLa
cells (42).

Recently, Draheim et al. reported that KRIT1 nuclear
localization can be driven by its interaction with ICAP1α,
even in the absence of the KRIT1 NLS. Mutation of either
ICAP1α’s NLS or KRIT1’s ICAP1α binding site significantly
inhibited KRIT1 nuclear localization (43). This agrees with
early reports that demonstrated that co-expression of exogenous
KRIT1 and ICAP1α in COS-7 cells induced the complete
nuclear localization of both proteins (41). ICAP1α binding
to KRIT1’s first NPXY motif also sterically hinders KRIT1’s
association withmicrotubules, similar to what has been suggested
of the KRIT1•Rap1 interaction (40). Interestingly, the sequence
through which KRIT1 likely binds to microtubules is the same
stretch of lysines that form the KRIT1 NLS. Thus, changes
in the accessibility of this sequence, whether through ICAP1α
binding or through Rap1 binding, could cause dissociation from
microtubules and also allow for nuclear localization.

While the mechanism(s) governing trafficking of KRIT1 into
the nucleus appear clear, the shuttling of KRIT1 out of the
nucleus is much less well understood. Sequence prediction has
led to several papers proposing that KRIT1 has a nuclear export
sequence in the C-terminal FERM domain [residues 551–559,
(42, 44)]. However, when this sequence was mutated in a recent
study, it failed to lead to enrichment of KRIT1 in the nucleus
(43), suggesting that it is not a functional NES. Our recent
study suggests that export could be regulated by PKC activity
(62), but additional work will be necessary to fully characterize
the mechanism. Intriguingly, Zhang et al. reported in 2007 that
treatment with leptomycin B, an inhibitor of exportin 1, led to
accumulation of KRIT1 and CCM2 in the nucleus (44), leaving
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the possibility open that, if KRIT1 does not contain a functional
NES, perhaps CCM2 does.

In sum, it is clear that localization of the CCM proteins
is dynamically regulated by several potential mechanisms. The
current models of CCM signaling in the literature alternatively
obfuscate where in the cell the CCM complex is active (though
they restrict the possibilities to cytoplasm or membrane) or point
to membrane localization as being important- and imply that
cytoplasmic localization of the CCM complex acts to sequester
the complex away from the plasma membrane. The available
evidence supports both models, as we lack the direct evidence
needed to resolve these possibilities. However, in order to fully
understand the link between loss of function mutations in the
CCM proteins and CCM pathogenesis, future work will need
to address this gap in knowledge and illuminate how these key
binding interactions are segregated in time and place, and how
they collectively determine the location and function of the
CCM complex.

ROLE OF SUBCELLULAR LOCALIZATION
IN REGULATING THE SIGNALING
DOWNSTREAM OF THE CCM COMPLEX

At the Membrane: Adherens Junctions,
Tight Junctions, and Integrins
The early finding that KRIT1 localizes to points of cell-cell
contact (24) led to the development of a broadly accepted
working model in which junctional localization of the CCM
signaling complex is required to maintain endothelial and
vascular homeostasis. Conversely, loss of junctional localization
of KRIT1, such as after treatment with thrombin, correlated with
down-regulation of VE-cadherin adhesion and loss of barrier
function (24). Conspicuously, most of the studies supporting this
concept have focused on KRIT1, though CCM2 and CCM3 are
assumed to co-localize with KRIT1 in order to form a functional
signaling complex. In confluent endothelial cells, KRIT1 co-
immunoprecipitates with the integral adherens junction proteins
β-catenin and p120-catenin (24), and stabilizes the interaction
of β-catenin with VE-cadherin (63), a classical indication of
mature adherens junctions (64). Additionally, CCM lesions from
both human patients and mouse models exhibit a reduction in
TJ protein expression (4, 65, 66). In particular, claudin-5, the
major claudin isoform in endothelial cells, is downregulated after
loss of KRIT1 (65, 66). While the mechanism by which loss
of CCM protein expression leads to reduced barrier function
remains undefined, KRIT1 appears to affect cell-cell contacts
by stabilizing β-catenin association with adherens junction
complexes. Accordingly, loss of KRIT1 expression induces
phosphorylation of β-catenin at Y654, a key residue regulating
the cadherin•β-catenin interaction (67), leading to translocation
of β-catenin to the nucleus and changes in β-catenin mediated
TCF/LEF transcriptional activity, including increased expression
of cyclinD1 and Vegf-a (63). Claudin-5 transcription is
also under the control of a β-catenin•FoxO1•Tcf4 repressor
complex, thus increased β-catenin signaling in the nucleus
negatively regulates claudin-5 gene transcription (68). Though

the total effect of increased β-catenin transcriptional activity
on CCM pathogenesis has not been examined, Distefano et al.
demonstrated that increased expression of VEGF in KRIT1
deficient endothelial cells formed a feed-forward mechanism that
promoted several CCM-related changes in endothelial phenotype
(63). Furthermore, blocking the activation of the VEGF receptor
VEGFR2 limited lesion formation and bleeding in a mouse
model of CCM (69), suggesting that down-regulation of the
β-catenin•VE-cadherin complex may be a critical signal in
CCM pathogenesis.

Another potential mechanism reliant on the localization of
CCM proteins to cell-cell contacts lies downstream of HEG.
Mutating the binding sites for HEG1 or Rap1 on KRIT1
inhibits KRIT1 localization to endothelial junctions and disrupts
junctional VE-cadherin (39). Additionally, in vitro binding and
immunofluorescence data indicate that the Rap1 effector Rasip1
also appears to be anchored at cell-cell contacts by HEG1 (70),
suggesting that HEG1 is an important focus for Rap1 signaling.
The Rap1•Rasip1 interaction appears to inhibit Rho signaling
through activation of the RhoGAP ArhGAP29 (71). Though
HEG1 does not regulate the Rap1•Rasip1 or Rasip1•ArhGAP29
interactions, because KRIT1 and Rasip1 both bind HEG1 at
cell-cell contacts (70), HEG1 may be an important center point
for regulation of a balance between Rap1 and RhoA signaling
necessary for junctional homeostasis. Interestingly, Castro et al.
reported that postnatal deletion of Cdc42, a downstream target
of Rap1 signaling, also leads to formation of CCM-like lesions
(18). This further suggests that CCM pathogenesis may be
linked to activation/inactivation of specific signals downstream
of Rap1 signaling.

KRIT1 also plays a role in regulating β1-integrin activity
through its interaction with ICAP1α (Figure 2). KRIT1 competes
with the β1-integrin cytoplasmic domain to bind ICAP1α, and
can promote β1-integrin activation (32, 43). However, recent
examination of these signaling mechanisms by Lisowska et al.
suggests that KRIT1 or CCM2 depletion triggers enhanced
development of centrally localized β1-integrin-dependent focal
adhesions (72), which runs contrary to expectations based
on a competitive mechanism. This study also found that
activation of β1-integrin correlated with increased RhoA
signaling and remodeling of fibronectin ECM structure after
loss of either KRIT1 or CCM2 (72). The finding that loss of
KRIT1 or CCM2 upregulates β1 integrin activity corroborates
previous work by Faurobert and colleagues, who proposed
that KRIT1 depletion in HUVEC destabilized the ICAP1α
protein leading to ICAP1α degradation and subsequent increased
β1-integrin activation (73). The contradictory results may be
explained by the observation that the EA.hy926 cell line
used in the studies which demonstrated competitive inhibition
of the ICAP1α•integrin interaction by KRIT1 express more
ICAP1α and KRIT1, but significantly less β1-integrin compared
to HUVECs (32, 73).

Another potential explanation for increased β1-integrin
activation after KRIT1 depletion may lie in changes in
Rap1 signaling. Studies have established that Rap1 is major
regulator of integrin activation, particularly β1-integrin (74),
likely via interaction with the integrin-activating protein talin
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(75–77). Following this line of thought, it is possible that
depletion of KRIT1 would free Rap1 to bind to other
effectors. Excess free Rap1 could then promote talin-mediated
activation of β1-integrin, leading to the development of focal
adhesions, stress fibers, and other phenotypes associated with
β1-integrin activation.

As described earlier in this review, our recent study challenges
the idea that the physical localization of KRIT1 at the plasma
membrane is required for cell contact stability. Mutant KRIT1
in which the Rap1 binding domain is disrupted and in which
the N- to C-terminal interaction is blocked by mutation of
the first NPXY motif or the PTB domain rescues β-catenin
localization and restores barrier function of KRIT1-depleted
endothelial cells. Notably, these mutants have a predominantly
cytoplasmic localization, and are not present at cell-cell contacts
nor at the basal membrane. Thus, membrane localization appears
dispensable for the ability of KRIT1 to stabilize endothelial cell-
cell contacts (Figure 3). Interestingly, we found that stabilization
of cell-cell contacts does correlate with the capacity of KRIT1 to
regulate integrin signaling, and specifically to limit β1 integrin
activation. As previously reported, we observed that loss of
KRIT1 increased β1 integrin activity. This increase could be
rescued by expression of wildtype KRIT1 or KRIT1 in which
the N- to C-terminal self-interaction was ablated by mutation
of either the first NPXY motif or the PTB domain. However,
KRIT1 containing the R452E mutation failed to reverse the
activation of β1 integrin and cells expressing this construct
exhibited large centralized β1-dependent focal adhesions similar
to KRIT1 shRNA alone (58). Thus, these data suggest a
potential connection between the regulation of cell-cell contact
and cell-matrix contact by the CCM complex that should be
explored further.

In the Cytoplasm: Kinase Cascades
The effect of cytoplasmic localization on the function of the
CCM complex has not yet been extensively tested. However, the
CCM proteins, particularly CCM2 and CCM3, bind to several
protein partners with a presumed cytoplasmic distribution.
CCM2 binds to MKK3 and MEKK3, which regulate activation
of p38 MAPK in response to stress and inhibit BMK1/ERK5
activation respectively (26, 48). CCM3 binds to the STRIPAK
complex, which is found in the cytoplasm and at the membrane
and has several functions, including regulation of cell polarity
and Golgi assembly (51) (Figure 2). While the interaction of
CCM2 and CCM3 with these larger complexes has been well
documented, it is unknown whether the organization or function
of these complexes is affected by specific subcellular localization
of the CCM proteins. Precedent for such regulation exists,
as there are many examples of scaffolding proteins regulating
MAPK signaling cascades, including the classic scaffolds Ste5 and
KSR which control MAPK pathway localization (i.e., membrane
anchoring) and signaling efficiency (78). In this manner, the
CCM complex could target or anchor these signaling complexes
to the appropriate cellular location to receive incoming signals,
and/or control the flow of signaling information to specific
downstream processes.

In the Nucleus: A Blank Page
Lastly, despite the widespread presence of KRIT1, CCM2 and
CCM3 in the nucleus, only one publication has investigated a
possible function for the CCM proteins in the nucleus. Using
ultrastructural immunocytochemistry, Marzo et al. showed that
KRIT1 localized to perichromatin fibrils, which are markers of
transcriptional activity (79), as well as to the dense fibrillar
component of the nucleolus which contains pre-ribosomal RNA
(80), which hints at a possible role in transcriptional regulation.
This, combined with the presence of a Nudix domain in KRIT1,
makes it tempting to hypothesize that KRIT1 could bind directly
to nucleic acids and regulate transcription or RNA stability, as
do several of members of the Nudix protein superfamily (81).
This could provide another mechanistic link between expression
of the CCM proteins and changes in gene expression, which have
been widely reported (22, 82). In addition, it has been proposed
that KRIT1 and ICAP1α regulate each other by sequestering the
other partner inside the nucleus, thus preventing interaction with
cytoplasmic or membrane proteins. This idea is supported by the
positive influence that the KRIT1 NLS exerts on ICAP1α nuclear
localization (43), which would theoretically diminish the ability
of ICAP1α to suppress β1 integrin activation. Accordingly, one
could propose several mechanisms by which the localization of
the CCM proteins in the nucleus could regulate CCM complex
function, however it is still unclear whether, and how, this
would occur.

DISCUSSION

Loss of function mutations in KRIT1, CCM2 or CCM3 lead
to the development of CCM, a process that has been shown
to involve major changes in endothelial function and behavior.
The CCM proteins suppress cell division and inflammatory
signaling by regulating the p38-MEKK3-KLF2/4 signaling axis
(26, 83–85) while also regulating oxidative stress responses (22,
86–89), autophagy (23), apoptosis (87) and cell contractility
(54, 72) (in addition to stabilizing cell-cell contacts). However,
most of these disease-mediating mechanisms have only been
tied to the expression of the CCM proteins, not to their
localization or function. Thus, how CCM protein localization
fits in the context of CCM pathology is unclear. What’s more,
many, if not the majority, of the CCM-causing mutations
described in the literature are nonsense mutations which lead
to premature termination of translation (90, 91). CCM may
develop as the result of nonsense-mediated mRNA decay of
CCM protein transcripts (91–93) or due to degradation of the
truncated protein products via the unfolded protein response.
This implies that CCM develops due to the complete lack of
expression of one CCM protein, rather than the presence of
non-functional, truncated proteins. However, as the three CCM
proteins form a tripartite complex (52, 94), loss of one CCM
protein could result in perturbation of the localization and
function of the remaining complex members, which is indeed
the case. This could eventually explain why, for example, patients
with CCM3 mutations display earlier and more severe disease
(30). By continuing to advance our knowledge of themechanisms
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regulating the individual CCM proteins and the CCM signaling
complex, we can not only discover more about the mechanisms
that underlie CCM pathogenesis, but potentially identify new
therapeutic targets and perhaps expand our understanding of
other endothelial pathologies.

At the risk of sounding like a broken record, it is clear that
much work remains to be done in order to fully understand
how the CCM complex is regulated, whether by binding
interactions, subcellular localization, or other mechanisms.
Current knowledge is not only incomplete, but complicated
by differences in cell type, cell density, and expression level
between studies, making it difficult to form solid conclusions.
This is a critical need, as only by being able to fully understand
and manipulate the components and interactions of the CCM
complex will we be able to answer such questions as: what is the
function of the CCM complex in the nucleus, does the CCM
complex generate differential downstream signals depending
on its location, and how does loss of just one CCM complex
protein lead to the development of CCM? This will require
both a fuller understanding of the CCM interactome as well as
cutting-edge approaches to track protein location and binding
(potentially in real time). To make these future studies the
most effective, it will be important to consider effects of the
level of protein expression (i.e., over-expression vs. replacement

studies), as well as issues caused by differences in cell type (i.e.,
epithelial vs. endothelial) and cell culture conditions (i.e., sub-
confluent vs. confluent). The recent interest in structure-function
relationships, particularly in regard to KRIT1, is encouraging,
but we still know relatively little about these relationships in
CCM2 and CCM3. These gaps in knowledge will need to be filled
if we are to someday understand how disrupting the balance of
protein-protein interactions in the greater CCM complex (either
by mutation, manipulating expression, or post-translational
modification) contribute to endothelial dysfunction and
CCM pathology.
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