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Introduction: Multiple trials have demonstrated broad performance ranges

for tests attempting to detect coronary artery disease. The most common

test, SPECT, requires capital-intensive equipment, the use of radionuclides,

induction of stress, and time off work and/or travel. Presented here are

the development and clinical validation of an office-based machine learned

algorithm to identify functionally significant coronary artery disease without

radiation, expensive equipment or induced patient stress.

Materials and methods: The IDENTIFY trial (NCT03864081) is a prospective,

multicenter, non-randomized, selectively blinded, repository study to collect

acquired signals paired with subject meta-data, including outcomes, from

subjects with symptoms of coronary artery disease. Time synchronized

orthogonal voltage gradient and photoplethysmographic signals were

collected for 230 seconds from recumbent subjects at rest within seven

days of either left heart catheterization or coronary computed tomography

angiography. Following machine learning on a proportion of these data

(N = 2,522), a final algorithm was selected, along with a pre-specified cut point

on the receiver operating characteristic curve for clinical validation. An unseen

set of subject signals (N = 965) was used to validate the algorithm.
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Results: At the pre-specified cut point, the sensitivity for detecting functionally

significant coronary artery disease was 0.73 (95% CI: 0.68–0.78), and the

specificity was 0.68 (0.62–0.74). There exists a point on the receiver operating

characteristic curve at which the negative predictive value is the same as

coronary computed tomographic angiography, 0.99, assuming a disease

incidence of 0.04, yielding sensitivity of 0.89 and specificity of 0.42. Selecting a

point at which the positive predictive value is maximized, 0.12, yields sensitivity

of 0.39 and specificity of 0.88.

Conclusion: The performance of the machine learned algorithm presented

here is comparable to common tertiary center testing for coronary artery

disease. Employing multiple cut points on the receiver operating characteristic

curve can yield the negative predictive value of coronary computed

tomographic angiography and a positive predictive value approaching that

of myocardial perfusion imaging. As such, a system employing this algorithm

may address the need for a non-invasive, no radiation, no stress, front line

test, and hence offer significant advantages to the patient, their physician, and

healthcare system.

KEYWORDS

coronary artery disease, artificial intelligence, front line testing, machine learning
(ML), digital health

Introduction

Functionally significant coronary artery disease (CAD) is
defined as a reduction in blood flow using fractional flow reserve
(FFR, evaluating the impact of a lesion on blood flow) of <0.80,
an instantaneous wave-free ratio (iFR, another functional flow
measure) <0.89, or when both are unavailable, the anatomical
presence of at least one lesion in the coronary arteries causing
a stenosis of >70% (1). When this definition is met, the patient
is referred to as CAD + (i.e., presence of significant CAD), and
when not met, CAD- (i.e., absence of significant CAD). Ischemic
heart disease (IHD), the manifestation of CAD, continues to
be a major public health problem with 1 in 3 adults in the
United States (approximately 81 million) experiencing some
form of cardiovascular disease, and more than 17 million having
CAD. Angina pectoris, affecting 10 million people, is the first
symptom of IHD in nearly 50% of patients (2). In recent years,
survival rates for patients with IHD have improved, but IHD
remains responsible for >350,000 deaths per year and over 1.5
million patients suffer myocardial infarction (1). Clearly, chest
pain is ubiquitous with studies showing a lifetime prevalence of
20–40% in the general population (3).

When a patient presents with chest pain, the clinician must
determine whether the probability of CAD warrants diagnostic
testing, which most commonly entails either a functional
or anatomical test. Functional testing options are typically
exercise electrocardiography (ECG), nuclear stress testing with

a single photon emission computed tomography (SPECT) or
stress echocardiography (1). Anatomical testing using coronary
computed tomography angiography (coronary CTA) has also
emerged as a viable testing modality (4). Based on the results
of diagnostic testing, in combination with the patient’s pre-
test probability, the clinician may choose to proceed further in
the CAD diagnostic pathway to invasive angiography, which
is the gold standard test for assessment of CAD. Invasive
angiography involves cardiac catheterization under fluoroscope
imaging, accompanied with a contrast agent to image the
coronary arteries.

To better understand CAD diagnostic testing modalities, the
PROMISE (4) study examined the outcomes associated with
10,003 patients referred to either functional testing using the
options previously listed, or anatomical testing with coronary
CTA. During the 2-year follow-up period, the primary endpoint
of death, myocardial infarction, hospitalization for unstable
angina, or major procedural complication occurred in 3.3% in
the functional arm and 3.0% in the anatomical arm. Despite
the similarity in outcome rates, differences emerge in invasive
angiography, where 12% of patients in the coronary CTA arm
were referred to invasive angiography, as compared to 8.1%
in the functional arm. Further, the CAD + rate was higher in
coronary CTA as compared to functional, both as a proportion
of those referred to invasive angiography (72 vs. 47%) as well
as the overall population (8 vs. 4%), indicating that coronary
CTA may be more effective at referring patients with disease
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to invasive angiography. Note that PROMISE uses a CAD
definition of a 50% lesion, rather than the 70% prescribed by
American College of Cardiology (ACC) guidelines (1), so the
rates per ACC would be lower across both coronary CTA and
functional testing. The higher CAD detection rate for coronary
CTA compared to SPECT based on invasive angiography results
shows that, in PROMISE, coronary CTA appears to have higher
sensitivity for CAD as compared to functional testing. This
observation agrees with recent meta-analysis, which also showed
a corresponding superior negative likelihood ratio for coronary
CTA (5). Therefore, coronary CTA can more reliably be used as
a rule-out test as compared to functional stress testing.

Despite the high negative predictive value of coronary
CTA, functional testing remains popular, with nearly 4
million stress tests performed annually in the United States
for new-onset, stable chest pain; all of which carry some
risks. Maximal capacity exercise testing (as assessed by the
patient’s predicted maximal heart rate) is associated with a
low but definable incidence of myocardial infarction (MI),
cardiac arrest, and death. The use of pharmacologic agents
to induce stress has a small risk of drug related adverse
events. Coronary CTA is not without its disadvantages,
with both coronary CTA and SPECT employing ionizing
radiation. With each of these tests, the patient incurs
substantial cost, experiences inconveniences, and endures
significant time loss. Neither test is universally available,
especially in low resource settings. There is a need for a
performant, point-of-care, and minimal risk first line method
for assessing CAD.

Machine learning holds the promise of delivering such an
assessment and there is extensive prior research in this area.
In a recent review of AI in the cardiovascular space, Lopez-
Jiminez et al. provide an introduction into advancements being
made in this area (6). In particular, they identify the single
most important aspect of the development of a machine learned
model as being the data set used for training and testing as
“. . .all the ‘rules’ are being created from the data.” The collection
of a dataset that accurately represents the population in which
the resultant algorithm will be used, which captures the entire
range of disease, and does not introduce bias due to geographic,
demographic, or site-specific disparities is therefore crucial to
developing and demonstrating the performance of machine
learned algorithms.

The availability of large imaging datasets has, in particular,
enabled the development of deep learning based models for
CAD assessment. One key advantage of deep learning is
that the use of multiple layers in the network allows for
the internal discovery and utilization of features, as opposed
to having to define these ahead of time. Consequently, the
features discovered and used are not limited to those that
can be conceived of by the researchers by analysis of the
problem space. Promising results have been reported in the
application of deep learning when assessing CAD based

on SPECT images (7), as well as the use of convolutional
neural networks to discover features in cardiac magnetic
resonance imaging for subsequent use in random forest
experiments (8). However, it is often difficult to collect
large volumes of high quality clinical data, especially when
new devices supply the input for machine learning. When
data availability is limited, more traditional machine learning
approaches based on manually created features extracted
from the available data can be performed. Examples of
this include the assessment of CAD using SPECT-derived
metrics with support vector machines (9), as well as the
use of similar SPECT-derived metrics along with various
demographic data used to create a boosted ensemble (Logit-
boost) algorithm (10).

Alizadehsani et al., recently published an overview of
256 papers aiming to assess for coronary artery disease
utilizing machine learning techniques (11). The various
machine learning methods were trained using a variety of
input data, including ECG, echocardiograms, demographic
data, clinical history information, and laboratory results.
As this review demonstrates, frequently the performance
of machine learned algorithms is presented based on
cross-validation rather than applying the algorithm to an
entirely new test set. Whilst cross-validation is a useful
way to compare the performance of different machine
learning methods across the same dataset, the method is
not immune to overfitting (12). Hence, testing a machine
learned model against a naïve test set, ideally strictly
controlled to not be available to the research team, is
considered the gold standard for algorithm performance
testing. A recent publication outlining guiding principles
for good machine learning practices from the U.S. Food
and Drug Administration (FDA), Health Canada, and the
United Kingdom’s Medicines and Healthcare products
Regulatory Agency (MHRA) highlights the need for such
separate, independent, training and test sets, wherein “. . .[all
potential sources of dependence, including patient, data
acquisition, and site factors, are considered and addressed to
assure independence” (13).

This paper presents the results of the clinical performance
assessment of a novel, machine-learned algorithm for the
determination of significant CAD in a patient at rest using a
naïve test set. The algorithm does not require the use of stress,
invasive testing or ionizing radiation, and can be performed at
the point of care in resource-constrained environments.

Materials and methods

Clinical data

The IDENTIFY trial (NCT03864081) is a prospective,
multicenter, non-randomized, selectively blinded, repository
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study designed to collect and store acquired signals paired with
subject meta-data, including outcomes data, from subjects with
symptoms of obstructive coronary artery disease. This data was
collected for the development, optimization, test and validation
of machine-learned algorithms. This repository study has been
conducted under study protocol CADF-CIP-001 and is ongoing.
Informed consent is required of all subjects participating in this
study. The consenting process is compliant with the U.S. Code
of Federal Regulations 21 CFR 50, 21 CFR 812, and all other
applicable national, local and institutional requirements.

The data used in the development of the CAD algorithm
was composed of acquired signals, which were comprised of
orthogonal voltage gradient (OVG) and photoplethysmogram
(PPG) signals collected simultaneously. These signals were
paired with a test result. The signal was collected from
subjects with new onset symptoms before undergoing
SPECT, coronary CTA, or invasive angiography. Signals
were also collected from asymptomatic healthy subjects
with no risk factors, which minimizes the likelihood of
undetected underlying CAD. Subjects with an unknown
or non-determinable CAD status were removed, and
signals not passing a signal quality assessment were
excluded. All subjects enrolled provided prior consent
per the study protocols. Table 1 describes the function
of each dataset.

All data used herein from IDENTIFY Group 2 (ICA) was
prior to June 10, 2019 and all from CADFEM Group 4 (CCTA)
was prior to December 31 2020. Subjects enrolled in these
two groups after these dates were blinded from the algorithm
development team and used for validation of the algorithm.
These sets are denoted as IDENTIFY Group 2V and IDENTIFY
Group 4V in the table.

Validation population groups

The validation population consists of subjects from
IDENTIFY Group 2 (ICA) and IDENTIFY Group 4
(CCTA). Subjects in this set were recruited after the dates
presented above.

The primary endpoint for validation of the algorithm tested
the validation population using two specific test groups, one
group for testing sensitivity and one group for testing specificity.
The formation of each of these groups is shown in Figure 1.

Population A: Sensitivity test group

This data set is used to test for device sensitivity in the
intended use population.

This data set is comprised of subjects who had presented
with no known prior history of CAD and with new onset
symptoms suggestive of CAD. These patients were already

scheduled for invasive coronary angiography. This data set is
built from subjects enrolled into IDENTIFY Group 2 for whom
angiography results were available. These subjects are classified
as CAD + if any of the following are present:

• A stenosis >50% in the left main coronary artery (LMA).
• A stenosis >70% or fractional flow reserve (FFR) <0.80

or instantaneous wave-free ratio (iFR) <0.89 in the left
anterior descending (LAD) artery or any of its distributions
(e.g., diagonals, septals).
• A stenosis >70% or FFR <0.80 or iFR <0.89 in the left

circumflex (LCX) artery or any of its distributions (e.g.,
obtuse marginals, acute marginals).
• A stenosis >70% or FFR <0.80 or iFR <0.89 in

the Ramus Artery.
• A stenosis >70% or FFR < 0.80 or iFR <0.89 in the

right coronary artery (RCA) or any of its distributions
(e.g., posterior descending coronary artery (PDA),
acute marginals).
• When available, the FFR or iFR assessment result

supersedes a percent stenosis result.

Population B: Specificity test group

This data set is used to test for device specificity in the
intended use population.

This data set is comprised of subjects with new onset
symptoms suggestive of flow-limiting coronary artery disease
at current presentation with no known coronary artery disease.
These subjects are determined to be CAD-.

This data set is built from subjects enrolled in the following
groups:

◦ IDENTIFY Group 2 subjects who had been referred to a
coronary angiography procedure and the results of which
were identified as CAD- by assessment of the coronary
angiography report.
◦ IDENTIFY Group 4 subjects who had been referred to

coronary CTA procedure and were determined by an
independent core lab to be negative for significant CAD
[Global Institute for Research (GIR), Midlothian, VA,
United States]. In order to be classified as negative for
significant CAD, these subjects were required to have
a CADRADs score of 0–3 and no recommendation for
further testing or follow-up.

These groups are weighted in the following proportions for
the primary objective analysis:

◦ IDENTIFY Group 2 = 6%, representing the proportion of
subjects that would have gone to catheterization (10% of
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TABLE 1 Dataset function.

Dataset Brief description of dataset Number of
subjects

Function

Dimensionality
reduction

Training Model
confirmation

Internal
validation

Blinded
validation

CADLAD Subjects with ICA 653 X* X**

IDENTIFY Group 4a Subjects with CCTA, CADRADs 0–3, not referred
for further testing

200 X

IDENTIFY Group 1 Subjects with ICA, possible pre-existing MI 123 X

IDENTIFY Group 3 Subjects with SPECT, negative results 260 X

CADHEALTH Group 1 Asymptomatic subjects with no known
cardiovascular risk factors, younger

550 X

CADHEALTH Group 2 Asymptomatic subjects with no known
cardiovascular risk factors, older

108 X

IDENTIFY Group 2a Subjects with ICA 439 X***

IDENTIFY Group 4b Subjects with CCTA, CADRADs 0–3, not referred
for further testing

247 X

IDENTIFY Group 4V Subjects with CCTA, CADRADs 0–3, not referred
for further testing

182 X

IDENTIFY Group 2V Subjects with ICA 783 X

Total 3,487

*Only CAD- subjects without any detected lesions nor luminal irregularities (N = 207), and CAD + subjects with multi-vessel CAD (N = 144), for a total of N = 351. **Only CAD + subjects, N = 475. ***CAD + subjects used for internal validation testing
(N = 144).
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FIGURE 1

Diagram showing the composition of population A: Sensitivity test group and population B: Specificity test group derived from the IDENTIFY
clinical study.

the symptomatic population) and subsequently assessed as
CAD- (60% of the catheterization group).
◦ IDENTIFY Group 4 = 94%.

Machine learning

Training
Features are mathematical transforms of the input data that

generally result in a number that represents some aspect of the
input data. For example, average heart rate over the course of
sample collection would be considered one feature. A library of
3298 features has been developed that aims to capture a wide
range of aspects of the data that may be useful in identifying
cardiac conditions. Some of these features operate on the OVG,
some on the PPG, and others on the combination of OVG
and PPG signals.

The CAD Model was developed using Elastic Net with cross-
validation. Here, the data was divided, while preserving the
proportion of diseased subjects to non-diseased subjects, into
k subsets, referred to as folds. One fold was kept for testing
and the model was trained on remaining data (i.e., k-1 folds),
and the AUC evaluated on the testing fold. The process was
repeated k times, and on each iteration, a different fold was
used for testing. Therefore, each subject was used for testing
once, and for training k-1 times. k was configured to be 5.
Cross-validation provides a robust estimate of performance
through the variation of training and test set membership, which
suppresses spurious low or high estimates of test performance
(that may be caused by biased training or test sets) and
provides an indication of model stability by averaging the test
performance across all the folds. To add further rigor by varying

how the data is divided into the fivefolds, the process was
repeated 100 times.

Elastic Net models were trained using the scikit-learn library
in Python 3 on the CAD + subset of CADLAD (N = 446) and the
CAD- subset of IDENTIFY Group 4a (N = 200).

While many machine learning algorithms have been
previously used for assessment of cardiac disease, Elastic Net has
two advantages that resulted in its selection for this work. First,
Elastic Net is particularly effective when the number of features
is large compared to the number of training subjects, which is
the case both here and in many machine learning applications in
the medical domain (14). Increasingly, deep learning methods
are being applied, but these require larger volumes of data.
Second, the coefficients assigned by Elastic Net to the features
allow the feature importance to be easily assessed (15).

To determine the optimal hyperparameters for Elastic Net,
a grid search was used with the values provided in Table 2,
which resulted in a total of 100 different combinations
of hyperparameters. For each set of hyperparameters,
stratified fivefold cross validation was performed 100
times. This resulted in a total of 500 individual models
for each set of hyperparameters, each trained on 80% of
the data (fivefold cross validation) and tested on the 20%
remaining data over 500 iterations. The mean AUC of
the 500 models on their respective test sets was used for
comparing the performance of the various hyperparameters for
model selection.

Model selection and confirmation
The set of hyperparameters with the highest mean AUC

was selected, and the entire dataset was used to train the
model (now referred to as the “CAD Model”). Retraining
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the model in such a way exposes the model to as much
training data as possible, increasing the likelihood that
it generalizes to unseen data. The training was fivefold
cross validation repeated 300 times. For robustness, the
average of the 300 model outputs constitutes the CAD
Model output. Since Elastic Net is a linear combination
of features, the average model can be thought of as
the average of the coefficients and intercept terms from
the 300 models. The model with the best mean test
AUC of 0.79 uses the hyperparameters of alpha = 0.003,
fit_intercept = True, l1_ratio = 0.01, and normalize = True. The
hyperparameter values were found to be stable, meaning
minimal sensitivity in the model performance given
perturbations to the values.

The resultant CAD Model uses 373 of the 3298 available
features. The contribution of various features for this model is
presented in Figure 2. Of these, 134 of 373 features account for
90% of the prediction.

TABLE 2 Searched values of Elastic Net hyperparameters.

Hyperparameters Values

Alpha (a) 0, 0.010, 0.100, 0.500, 0.003

l1_ratio (ρ ) 0, 0.010, 0.100, 0.500, 3.000

normalize True or False

fit_intercept True or False

Performance within the internal test set
The performance of the CAD Model was tested on 391

subjects from IDENTIFY Group 2 (sensitivity) and IDENTIFY
Group 4b (specificity). The CAD Model had an AUC of
0.75 (95% CI: 0.70, 0.80) on both genders. The AUC for
males and females were 0.71 (95% CI: 0.64, 0.78) and 0.76
(95% CI: 0.68, 0.84), respectively. Figure 3 shows the receiver
operating characteristic (ROC) curves of the model for the entire
validation set (both genders, N = 391), males (N = 193), and
females (N = 198).

The prevalence of CAD is higher in older patients (16),
which can be treated as an estimation of pre-test probability
that can be integrated into the CAD Model. Such a modification
increases bias toward age, but if the intended population is
known, then age can be used to modify the predictions. In the
present work, a simple approach is used to account for this
effect, which is the multiplication of the predictions by age and
dividing by 100 (for normalization purposes). Figure 4 shows
the ROC curves for the CAD Model including age for both
genders, males, and females, which improved the AUCs to 0.81
(95% CI: 0.77, 0.86), 0.78 (95% CI: 0.71, 0.84), and 0.85 (95%
CI: 0.78, 0.92), respectively. When modifying the average model
using age, setting the sensitivity to 0.78 using a cut point of
0.32171 resulted in a corresponding specificity of 0.69. This
threshold was selected prior to running the clinical validation
test set. When implemented for validation, this cut point was
normalized to zero.

FIGURE 2

(Left) feature coefficients normalized by feature averages and its cumulative sum, and (right) the normalized feature coefficients for the top 10
features. Visual-PPG — features derived from analyzing the PPG and its first and second derivatives in phase space. Wavelet-PPG — features
derived from wavelet analysis of PPG signal. PPG-PSD — features deviates from power spectral density analysis of the PPG signal. RCA,
repolarization conduction abnormality; analysis of the ventricular repolarization waveform in band-pass limited frequency ranges. DCA,
depolarization conduction abnormality; analysis of the ventricular depolarization waveform in band-pass limited frequency ranges.
Wavelet-OVG — features derived from wavelet analysis of OVG signal.
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FIGURE 3

Coronary artery disease (CAD) model performance on the training dataset by gender.

Null hypotheses for validation

Sensitivity
Hypothesis:

H0 = Sensitivity to confirm presence of significant CAD in
a symptomatic population (Validation Population A) is less
than or equal to 0.66 (sensitivity ≤0.66).

H1 = Sensitivity to confirm presence of significant CAD
in a symptomatic population (Validation Population A) is
greater than 0.66 (sensitivity >0.66).

Validation Population A consists entirely of those subjects
who were determined CAD positive by coronary angiogram,
following an initial symptomatic presentation. Population
A therefore directly aligns with the population required
to calculate sensitivity in this context and hence is the
appropriate population on which to test the CAD algorithm
sensitivity performance.

Furthermore, the entire spectrum of disease is present
in Validation Population A, from subjects who went to
angiography but had zero lesions, through those with one or
more lesions that did not meet the ACC definition for significant

CAD, to those with one or more lesions that do meet the
ACC definition for significant CAD. Table 3 shows the set
of subjects used for development of the algorithm, enrolled
under the same protocol as the validation population. It can be
seen that approximately one third (32%) of subjects who go to
coronary angiography have zero lesions, one third (33%) have
one or more lesions, none of which meet the ACC definition
of significant CAD, and one third (35%) of subjects have one
or more lesion that does meet the ACC definition of significant
CAD. Of those subjects with at least one lesion, 90% have a
lesion in the LAD, 59% have a lesion in the LCX and 67%
have a lesion in the RCA. Given that the same protocol was
used to recruit the Validation Population, it is expected that
the Validation Population will similarly represent the entire
spectrum of disease.

A normal approximation test (using the estimate of
sensitivity and the estimate of the variance of the estimate of
sensitivity) is used to test the null hypothesis that the true
sensitivity is less than or equal to the performance goal vs. the
alternative hypothesis that it is greater than the performance
goal using a one-sided α = 0.05. This is the statistical equivalent
to showing that the one-sided 95% lower confidence bound is
greater than the performance goal. Let n denote the sample
size for CAD positive subjects and S denote the estimates of
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FIGURE 4

Coronary artery disease (CAD) model performance on the training dataset by gender when adding the influence of age.

sensitivity. Then, the estimate of the variance of sensitivity is
calculated using the following formula:

Estimate of variance of estimate of sensitivity = (S) (1-S)/n.

Specificity
Hypothesis:

H0 = Specificity to confirm absence of significant CAD in
a symptomatic population (Validation Population B) is less
than or equal to 0.60 (Specificity ≤0.60).

H1 = Specificity to confirm absence of significant CAD
in a symptomatic population (Validation Population B) is
greater than 0.60 (Specificity >0.60).

Specificity solely requires subjects who are deemed to be
truly negative for CAD to be calculated. In current clinical
practice, a large proportion, approximately 90%, of subjects
presenting with new onset symptoms associated with CAD are
determined to not have CAD without undergoing coronary
angiography (4). Consequently, in order to mirror the use of
these testing modalities in clinical practice, 94% of Validation
Population B is comprised of subjects assessed to be CAD
negative using coronary CTA.

The remaining 6% of subjects in Validation Population B
represents the set of subjects who were referred to coronary
angiogram and assessed in that procedure to be CAD-. Although
these subjects are collected through a different arm of the
IDENTIFY study (Group 2) they are representative of the
subset of patients referred to coronary angiography through the
application of standard of care. Consequently, it is appropriate
to use this subset of subjects as representative of those subjects
that would have gone on to coronary angiogram in Group 4
and subsequently be determined to be CAD-. Mixing in this
way results in a group that is representative of the symptomatic
population determined to be negative per the current standard
of care. Validation Population B is therefore suitable for
assessment of specificity in this context.

A normal approximation test (using the estimate of
specificity and the estimate of the variance of the estimate of
specificity given below) will be used to test the null hypothesis
that the true specificity is less than or equal to the performance
goal vs. the alternative hypothesis that it is greater than the
performance goal using a one-sided α = 0.05. This is the
statistical equivalent to showing that the one-sided 95% lower
confidence bound is greater than the performance goal.

Let v2 and v4 represent the observed relative frequencies for
Groups 2 and 4, respectively, of CAD negative subjects. Let n2
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TABLE 3 Spectrum of disease observed in the population used for algorithm development.

Number of subjects Percentage

Breakdown by lesion severity (All Locations)

Total Size of IDENTIFY Group 2 used in development 487 100%

Subjects with no lesions 156 32%

Subjects with at least one lesion 331 68%

Subjects with most severe lesion not meeting ACC definition 159 33%

Subjects with at least one lesion meeting ACC definition 172 35%

Breakdown by lesion location (Any Severity)

IDENTIFY Group 2 subjects with at least one lesion 331 100%

LAD 298 90%

LCX 195 59%

RCA 222 67%

and n4 denote the sample sizes for Groups 2 and 4, respectively.
Let S2 and S4 denote the estimates of specificity for Groups 2 and
4, respectively. Then, the estimate of specificity and the estimate
of the variance of specificity are calculated using the following
formulae:

Estimate of specificity = v2(S2) + v4(S4)

Estimate of variance of estimate of specificity = (2)
2(S2)

(1− S2)/n2 + (v4)
2(S4)(1− S4)/n4

The formula for the estimate of the variance of the estimate
of specificity was derived using the formula for the estimated
variance of the sum of independent (weighted) proportions. Per
Figure 1, v2 = 0.06 and v4 = 0.94.

Results

As tabulated in Figure 5, 1,020 subjects were enrolled
into the validation set with a referral for invasive coronary
angiography. Of these, 41 subjects (4%) did not have a received
signal. Additionally, there were 24 subjects (2.3%) that either
did not have invasive coronary angiography or results were
not available at the time of testing. Thirteen subjects had a
major protocol deviation. Major deviations were subjects with
catheterization greater than 7 days from signal collection or were
enrolled and not found to meet study entrance criteria.

The remaining subjects (n = 942) enrolled in the Group
2 Population A and Population B met all inclusion and no
exclusion criteria, and had no major protocol violations. Of this
subset, 10% (n = 96) had signals received that did not have
acceptable signal quality. An additional 6.7% (n = 63) had a
passing signal quality but were deemed an outlier by the outlier
detection method. The remaining 783 subjects were used in
this validation set. Group 2, population A, consisted of 300

(78%) subjects that were positive for significant CAD and used
for sensitivity testing. Group 2, population B consisted of 483
(61.7%) subjects that were used for specificity testing.

As tabulated in Figure 6, 480 subjects were enrolled in
IDENTIFY Group 4. Of these, 184 subjects did not have
the imaging result completed at the time of the analysis.
Additionally, there were 28 subjects (6%) where they were either
CAD-RADS 4, 4A, 5 (likely positive or high risk for coronary
disease) or had images that were deemed non-diagnostic. Of
the remaining 276 that were CAD-RADS 0–3 (no significant
coronary artery disease), 29 were referred for additional testing,
additional testing was suggested or the referral status was
unknown (n = 3).

The remaining subjects (n = 239) enrolled in Group 4
Population B met all inclusion and no exclusion criteria, had
no major protocol violations and only 4 did not have a signal
received. This is typically due to connectivity issues or improper
use of the device i.e., not keeping the device charged. Of the
remaining subset, 15% (n = 35) had signals received that did not
have acceptable signal quality. There were an additional 7.5%
(n = 18) that had a passing signal quality but were deemed
an outlier by the outlier detection method. The remaining 182
subjects were used for CAD validation for specificity. Table 4
details the validation population by Group and population.

Following removal of subjects for major protocol deviations,
failing the signal quality score, and following the outlier
detection module, Population A (sensitivity) consisted of 300
subjects, and Population B (specificity) consisted of 665 subjects,
of whom 483 were assessed to be CAD negative using ICA, and
182 using coronary CTA.

Table 5 shows that the null hypothesis is rejected for
both sensitivity and specificity tests. The algorithm therefore
passes the pre-defined endpoints at the 95% confidence level.
The ROC-AUC for the algorithm across the validation set is
0.75 (0.73, 0.78).

Subgroup analyses of sensitivity and specificity
performances were performed for major subgroups, with
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FIGURE 5

Consort diagram of Group 2 (Population A and Population B) validation subjects.

the results shown in Table 6. Table 6 shows that there are
significant differences (p < 0.01) in sensitivity between
females and males, sensitivity and specificity between older
(age ≥ 65 years) and younger (age <65 years) subjects,
specificity between hypertensive and non-hypertensive
subjects, and in specificity between hyperlipidemic and
non-hyperlipidemic subjects.

The above results demonstrate that the CAD algorithm
performed as expected in the validation set. The sensitivity and
specificity at the pre-specified cut point was within the 95%
confidence bounds of the ROC curves created when assessing
the algorithm during the training phase. Furthermore, the
algorithm met the pre-specified end points for demonstrating
clinically acceptable performance in the validation set.
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FIGURE 6

Consort Diagram of Group 4 validation subjects for specificity. ∗n = 3 with unknown treatment referral.

When assessing the performance of machine-learned
algorithms, it is crucial to consider the intrinsic and
extrinsic biases that may affect the source data, and
potentially become embedded in the algorithm (17).

Common issues that may affect such algorithms include
the heterogeneity between methodologies for performing
the reference standard tests between institutions, and also
by potential differences in disease prevalence in different
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TABLE 4 Demographic breakdown of the validation populations A and B.

Variable Statistics Population A (N = 300) Population B (N = 665) Total (N = 965)

Age at time of consent (years) n 300 664* 964*

Mean 65.5 59.5 61.4

Median 66.0 60.0 63.0

SD 8.62 10.91 10.61

Minimum–Maximum 40–90 30–86 30–90

Age (years)

<65 n (%) 125 (41.7) 418 (63.0) 543 (56.3)

> = 65 n (%) 175 (58.3) 246 (37.0) 421 (43.7)

Gender

Male n (%) 202 (67.3) 307 (46.2) 509 (52.7)

Female n (%) 98 (32.7) 358 (53.8) 456 (47.3)

Ethnicity

Hispanic or Latino n (%) 5 (1.7) 6 (0.9) 11 (1.1)

Not hispanic or latino n (%) 293 (98.3) 659 (99.1) 952 (98.9)

Race

American Indian or Alaska Native n (%) 3 (1.0) 1 (0.2) 4 (0.4)

Asian n (%) 1 (0.3) 2 (0.3) 3 (0.3)

Black or African American n (%) 28 (9.3) 131 (19.7) 159 (16.5)

Native Hawaiian or Other Pacific Islander n (%) 0 (0.0) 0 (0.0) 0 (0.0)

White/Caucasian n (%) 266 (88.7) 527 (79.2) 793 (82.2)

Other n (%) 0 (0.0) 4 (0.6) 4 (0.4)

Prefer not to answer n (%) 2 (0.7) 0 (0.0) 2 (0.2)

Weight (kg) N 300 665 965

Mean 91.8 96.0 94.7

Median 91.5 94.3 92.5

SD 18.30 22.89 21.65

Minimum–Maximum 50–174 44–174 44–174

Height (cm) N 299 665 964

Mean 171.9 170.2 170.8

Median 172.7 170.2 170.2

SD 9.67 10.48 10.26

Minimum–Maximum 137–198 137–198 137–198

BMI (kg/m2) N 299 665 964

Mean 31.0 33.1 32.5

Median 30.6 32.1 31.6

SD 5.87 7.45 7.06

Minimum–Maximum 19–64 14–64 14–64

BMI Categories (kg/m2)

<30 n (%) 131 (43.8) 250 (37.6) 381 (39.5)

≥ 30 n (%) 168 (56.2) 415 (62.4) 583 (60.5)

*Age was not reported for one individual in the EDC, but the age was present in the signal data file.

geographies. The validation population presented here
is comprised of subjects that reflect trends seen in the
United States population with respect to prevalence of
cardiovascular disease by state and includes those with
higher prevalence (New York, Oklahoma, Texas, Mississippi,
Louisiana), moderate (South Carolina, Florida) and those
with lower prevalence comparatively (North Carolina,

Kansas, Georgia, Nebraska) (18). Thus, the validation
population tested is expected to be representative of the
intended use population. Furthermore, the validation
set was sourced from 16 distinct sites, including both
hospital and office settings, to further mitigate the
potential for any site-based bias to confound the
algorithm performance.
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TABLE 5 Results of the machine learned algorithm when applied to the validation population.

Predicted CAD status (CAD Add-On)

Population A Population B

Confirmed CAD status PredCADPos PredCADNeg Total PredCADPos PredCADNeg Total

CAD positive 218 82 300 0 0 0

CAD negative 0 0 0 334 331 665

Total 218 82 300 334 331 665

Co-primary endpoint: Sensitivity (Population A) Estimate 0.73

95% LCB 0.68

p-value 0.048

Co-primary endpoint: Specificity (Population B) Estimate 0.68

95% LCB 0.62

p-value 0.0056

TABLE 6 Subgroup analyses of sensitivity and specificity performances in the validation populations.

Predicted CAD status (CAD Add-On)

Population A Population B

Subgroups (N = 300) P-value (1) (N = 665) P-value (2)

Female 0.62 0.0048 0.67 0.2737

Male 0.78 0.71

BMI ≥ 30 kg/mˆ2 0.74 0.6918 0.72 0.0374

BMI < 30 kg/mˆ2 0.72 0.63

Age ≥ 65 years 0.87 <0.0001 0.22 <0.0001

Age < 65 years 0.52 0.85

Diabetic 0.73 0.9191 0.62 0.1050

Non-diabetic 0.73 0.69

Hypertensive 0.75 0.0261 0.62 0.0004

Non-hypertensive 0.61 0.77

Hyperlipidemic 0.72 0.5035 0.61 <0.0001

Non-hyperlipidemic 0.76 0.79

Smoker (Past or Present) 0.71 0.3556 0.68 0.9009

Non-smoker 0.75 0.68

(1) p-value from two-sided normal approximation test, testing the null hypothesis that the true sensitivities are equal for the two subgroups vs. the alternative hypothesis that
they are not equal. (2) p-value from two-sided normal approximation test, testing the null hypothesis that the true specificities are equal for the two subgroups vs. the alternative hypothesis
that they are not equal.

A second potential pitfall in generating machine-learned
algorithms is that of overfitting of the data used during training
(17). The results presented here are from a blinded validation set
and not training data and hence have been shown to generalize
beyond the training set.

Thirdly, it is important to consider whether there are
any demographic differences in performance. In particular,
historically, women and minority groups are under-represented
in cardiology (17). The results presented here do show a lower
performance of the algorithm in females. This is commensurate
with that observed in myocardial perfusion imaging and

may also be related to the smaller size of the left ventricle.
Further work in this area to improve this performance will
require more females to be brought into the learning set,
which is difficult given the relatively low numbers of females
presenting with significant CAD. Also, there may be specific
features that perform better, or indeed worse, on female
subjects that if identified may help to improve performance
in this group. In the validation set there were over 15% Black
or African American subjects, with no difference observed
in algorithm performance between this sub-group and the
overall performance.
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Discussion

It is difficult to directly compare performance of tests,
such as coronary CTA and SPECT, as they operate with very
different skews toward sensitivity and specificity. Similarly, it
is difficult to directly compare the results of the presented
algorithm to these tests. However, an advantage of a machine
learned algorithm such as this is that the complete ROC curve
is available, shown in Figure 7. Given the availability of the
ROC curve, it is possible to identify points on the curve
which may provide similar skew toward sensitivity or specificity
as other diagnostic tests. For example, coronary CTA may
be used to identify individuals for whom significant CAD is
unlikely, i.e., a rule-out test. Such a test would have a very
high negative predictive value: Assuming a pre-test disease
prevalence of 0.04, and the sensitivity of 0.93 (0.89–0.96) and
specificity of 0.53 (0.370.68) for functionally significant CAD
presented by Knuuti, et al. (5), the NPV for coronary CTA
would be 0.99. There is a point on the ROC curve (cut point
of −0.07) for the machine learned algorithm presented here
that has the same NPV. At this point, the sensitivity is 0.89
and the specificity is 0.42. These are within the 95% confidence
bounds for the performance of coronary CTA reported in the
Knuuti analysis.

SPECT is a functional test with a sensitivity of 0.73 (0.62–
0.82), specificity of 0.83 (0.71–0.90) (5), and hence a higher
PPV (0.15, assuming the same pre-test prevalence of 0.04),
that may be used to identify individuals to progress to more
invasive tests, such as ICA. There is a point on the ROC curve
for the CAD algorithm (cut point of 0.1) presented here that
maximizes PPV at 0.12. At this point, the sensitivity is 0.39
and specificity is 0.88. These values are below the 95% lower
confidence bound of SPECT for sensitivity and within the 95%
confidence bounds for specificity (5). However, the algorithm
could still be used in a similar manner, to rule in individuals for
further testing.

If a physician group were to interpret the algorithm
scores in this way, with a lower guide of −0.07, and an
upper guide of 0.1, across a large, hypothetical population
of 10,000 individuals, with an assumed pre-test prevalence of
0.04, the true and false calls would be as shown in Figure 8.
A limitation of this work is that the multiple cut-points used
in this analysis were not pre-specified. In future work, pre-
specification of these cut-points, and associated hypotheses
would allow for the approach to be validated against a
different test set.

The performance of the algorithm in correctly identifying
significant CAD in females (sensitivity) is significantly lower
than that for males (p = 0.0048). A similar issue exists with
current tests too. In one study, SPECT performance decreased
significantly as the volume of the left ventricle decreased
(19). This decrease in left ventricular volume was driven
by gender, with the smaller ventricles observed in females

(p < 0.0001) (19). The performance of SPECT reported in
this group was a sensitivity of 0.43 and a specificity of 0.90
(19). Furthermore, in a study of anatomically defined significant
CAD (lesion ≥ 50%) vs. functionally defined significant CAD
(FFR <0.8), females were identified as having an increased
likelihood of an anatomically derived significant CAD not
matching the functional definition (20). This could be due to
physiological differences in how lesions impact arterial blood
flow in female subjects, such as differences in the elasticity
of the arterial walls. A limitation of the current work is that
there are fewer female CAD positive subjects available than
male CAD positive subjects, at a ratio of approximately 1:2
(see Table 4). The yield of CAD positive subjects from those
undergoing ICA is also low, at around 35% (see Table 3).
Consequently, for every subject enrolled in IDENTIFY Group
2, only 1 in 10 will be female CAD positive. This impacts
training and testing of the algorithm: The algorithm would
likely be improved by exposure to larger numbers of female
CAD positive subjects. It would also be desirable to power
the clinical performance test to be gender specific. This would
require recruitment of a large number of subjects; for example,
around 175 subjects might be required to power the end
points presented here, requiring 1,750 subjects to be recruited
to the validation test population, or more than twice the
number available for the currently presented work. Also, this
would not include the transfer of larger numbers of CAD
positive females to the training set. As the IDENTIFY study is
ongoing, such numbers may eventually be available for future
work in this area.

When considering the change in probability of disease
when applying this CAD algorithm, we can see that
the likelihood ratios at the validation performance are
LR + = 2.28 and LR− = 0.41. The likelihood ratios for
coronary CTA are LR + = 1.97 and LR− = 0.13; and
for SPECT are LR + = 4.21 and LR− = 0.33 (5). As
expected from the assessment of sensitivity and specificity,
the likelihood ratios between these three tests are also
comparable, with the CAD algorithm test performance
at the pre-specified cut-point lying in between those of
coronary CTA and SPECT.

Major meta-analyses cited in the ACC guidelines expose
the difficulty in establishing the precise accuracy of different
diagnostic tests (1). For example, in a repeatedly referenced
exercise ECG meta-analysis involving 24,074 patients from
147 studies of symptomatic patients who underwent exercise
ECG and invasive coronary angiography, there was remarkable
variation in the exercise ECG sensitivity and specificity; the
mean sensitivity was 68% but ranged from 23 to 100%,
and the mean specificity was 77% but ranged from 17
to 100% (1, 21). Similarly, in a review of 13 studies
utilizing SPECT in 1,323 patients, the sensitivity was 85%
but ranged from 76 to 91%, and the mean specificity
was 66% with a range of 54–77% (22). Additionally, the
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FIGURE 7

ROC curve for the model against the validation population.

reference standard for these was anatomically, not functionally,
significant CAD.

The definition of “significant CAD” may be different in
different studies. For example, a common measure of significant
anatomical CAD would be an occlusion of greater than 50% in
a major artery. However, ACC guidelines classify a significant
lesion, for the purpose of intervention using a stent, as any
lesion greater than 70%. Increasingly fractional flow reserve
(FFR) is used as a functional measure of the impact of CAD,
whereby an FFR ≤0.8 is classed as significant (5). In the
review referred to above, (22) the sensitivity and specificity
may have been reported for an anatomic occlusion of greater
than 50%, or greater than 70%. If multiple definitions or
multiple results from different observers were reported, then the
review reported the performance associated with the greatest
sensitivity (22). Indeed, given that the specific morphology
of a lesion may have a significant impact on blood flow
beyond that of solely the percentage of the artery occluded,
it is perhaps not surprising that an anatomically significant
occlusion of greater than 50% occlusion may only be predictive

of a functionally significant occlusion (FFR ≤0.8) 68% of the
time (mean sensitivity of 68%, ranging from 60 to 75%, and
mean specificity of 73%, ranging from 55 to 86%) (5). In that
same analysis, the performance of SPECT against a functional
definition of significant CAD (FFR ≤0.8) was reported as
a sensitivity of 73% (62–82), and a specificity of 83% (71–
90) (5).

Park et al. (20) analyzed a set of 1,066 lesions in major
arteries (excluding the LMCA) for which both anatomic and
FFR assessments were performed during ICA. The concordance
between the 50% anatomic threshold and the 0.8 FFR threshold
was low, with a 57% mismatch wherein the anatomic definition
classed the lesion as significant, but the FFR was not significant.
Additionally, there was a 16% reverse mismatch wherein
the FFR measurement was significant, but the blockage was
less than 50%. Park et al. did not perform an assessment
at the 70% anatomic threshold, but an analysis of their
data, presented in Figure 1A of their paper shows that the
concordance is higher. When applying an anatomic threshold
of 70% to the data presented, there are 21 lesions that have
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FIGURE 8

Flow of subjects in a hypothetical population of 10,000 individuals with new onset symptoms of CAD, assuming a pre-test prevalence of 0.04. In
the first pass, the machine learned algorithm presented here is used to call individuals as negative for significant CAD if their score is lower than
–0.07, and likely positive for functionally significant CAD if their score is greater than 0.1. The group in the middle are secondarily assessed using
coronary CTA and SPECT to determine additional subjects that are unlikely to have significant CAD (coronary CTA), or likely to have significant
CAD (SPECT). TN, true negative; FN, false negative; TP, true positive; FP, false positive; NPV, negative predictive value; PPV, positive predictive
value.

an FFR >0.8, and 57 lesions that have an FFR <0.8. In
the terms introduced in the paper, there is a 27% mismatch,
with a 28% reverse mismatch. In terms of sensitivity and
specificity, this would imply that in this cohort, an anatomic
threshold of 70% is 73% sensitive and 68% specific in terms
of identifying CAD that is functionally significant when
determined by FFR. This happens to be the same numeric
performance as the CAD algorithm presented here in detecting
significant CAD, when an anatomic threshold of 70% or
FFR of less 0.8 is used as the reference standard. One
limitation of this current work is that CAD positive subjects
are defined either by FFR, iFR or, if neither is available, the
anatomic definition. The inherent uncertainty in the label that
this introduces may be hampering training and ultimately
impacting performance. Collecting large numbers of subjects
with FFR is difficult as many centers do not perform this as
standard on all lesions. Further research on this topic would,
however, be beneficial.

Given that multiple trials have demonstrated broad ranges
for sensitivity and specificity when attempting to detect CAD
and that this depends on the test modality used, (1, 21, 22)
it becomes relevant to assess the safety of applying any of
these tests. It is well established that when evaluating patients
presenting with new onset chest pain or other symptoms
of obstructive CAD, regardless of whether functional testing

(exercise ECG, stress echocardiography, myocardial perfusion
imaging) or coronary CTA is the first evaluation, 90% will
have negative findings (4). In this scenario, a negative test
portends an excellent long-term outcome (NPV >96%) (4).
In addition, patients with an initial positive test almost
always have further evaluation, typically with angiography.
In those individuals who ultimately have angiography, only
32–42% have significant CAD (≥70% obstruction) (4, 23).
Only 3–4% of the patients initially presenting with symptoms
of obstructive CAD are ultimately identified as having
significant CAD (4).

To the authors’ knowledge, there are no systems available at
the point of care using synchronous OVG and PPG signals as the
basis for a machine learned assessment of the likelihood of CAD.
The following two related assessments have been identified: 1)
The CAD score V3 algorithm is based on a combination of
acoustic signals and clinical risk factors (24). This algorithm
had a validation test performance of predicting the likelihood of
significant CAD (defined by FFR or anatomic lesion ≥90%) of
sensitivity = 79% (69–87) and specificity = 52% (49–56), with an
AUC of 0.7 (0.64–0.76) (24). The algorithm included gender, age
and hypertension (defined as systolic blood pressure ≥140 mm
Hg or receiving antihypertension medicine) as clinical risk
factors. Without these, the AUC of the acoustic component
alone was reported as 0.63 (0.59–0.68), with the output of the
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acoustic component being significantly higher for men than for
women (24) and thus more likely to correctly identify CAD
positive men than women. 2) A blood-based gene expression
algorithm for the assessment of anatomically significant CAD
(lesions ≥50%) has been presented with an AUC of 0.7 (0.68–
0.72) (25). When the cut-point was set to classify 20% of
the validation set as positive, the reported sensitivity was 85%
with a specificity of 43%. Performance of the algorithm was
similar in both men and women, with AUCs of 0.66 and
0.65, respectively (25). The AUC performance of the algorithm
presented here, 0.75 (0.73, 0.78), compares favorably with both
of these systems.

Accurate identification of patients with coronary artery
disease is critical in clinical medicine. From a clinical standpoint,
although the risk of significant CAD is low, it is important
to detect the group that is at higher risk. The clinical
utilization of available testing modalities is based on the
facts that the NPV of these tests is high and individuals
with a positive finding will undergo additional testing.
With this approach, risk to the patient is best mitigated.
When presented with the data on which to make such
determinations, such as the ROC curve for a diagnostic test,
or similar plots, physicians can use that information to make
informed decisions with a single test that would be difficult
with either coronary CTA or SPECT alone. For example,
the algorithm presented here could be used as a front-
line diagnostic test to rule out individuals unlikely to have
significant CAD when their score is at or below −0.07, or
to rule in individuals for further testing, when their score
is at or above 0.1. Individuals in the intermediate range
may also be considered for further testing, perhaps using
coronary CTA or SPECT. The use of a front-line test in
this manner could potentially avoid significant downstream
testing, thereby avoiding exposure to ionizing radiation and the
significant cost, time and inconvenience incurred in standard of
care assessment.

In conclusion, the performance of the machine learned
algorithm presented here is comparable to current commonly
used tertiary center testing for CAD. The use of multiple cut
points on the receiver operating characteristic curve allows
for a test which has the negative predictive value of coronary
CTA and a positive predictive value approaching that of
myocardial perfusion imaging. As the system may be used in
a standard office setting, it may address the need for a non-
invasive, no radiation, no stress, front line test, and hence
offer significant advantages to the patient, their physician, and
healthcare system.
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