Check for updates

OPEN ACCESS

EDITED BY Aamir Ahmad, University of Alabama at Birmingham, United States

REVIEWED BY

Bihuan Cheng, Wenzhou Medical University, China Sultan Kadasah, University of Bisha, Saudi Arabia Jinhui Liu, Nanjing Medical University, China

*CORRESPONDENCE Xianbo Zuo zuoxianbo@qq.com Zhenguo Zhai zhaizhenguo2011@126.com

[†]These authors have contributed equally to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Cardiovascular Genetics and Systems Medicine, a section of the journal Frontiers in Cardiovascular Medicine

RECEIVED 02 June 2022 ACCEPTED 29 June 2022 PUBLISHED 04 August 2022

CITATION

Li H, Zhang Z, Weng H, Qiu Y, Zubiaur P, Zhang Y, Fan G, Yang P, Vuorinen A-L, Zuo X, Zhai Z and Wang C (2022) Association between *CES1* rs2244613 and the pharmacokinetics and safety of dabigatran: Meta-analysis and quantitative trait loci analysis. *Front. Cardiovasc. Med.* 9:959916. doi: 10.3389/fcvm.2022.959916

COPYRIGHT

© 2022 Li, Zhang, Weng, Qiu, Zubiaur, Zhang, Fan, Yang, Vuorinen, Zuo, Zhai and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Association between *CES1* rs2244613 and the pharmacokinetics and safety of dabigatran: Meta-analysis and quantitative trait loci analysis

Haobo Li^{1,2,3,4,5†}, Zhu Zhang^{1,2,3,4†}, Haoyi Weng^{6,7,8†}, Yuting Qiu^{9†}, Pablo Zubiaur^{10†}, Yu Zhang^{1,2,3,4,9}, Guohui Fan^{2,3,4,11}, Peiran Yang¹², Anna-Leena Vuorinen¹³, Xianbo Zuo^{14,15*}, Zhenguo Zhai^{1,2,3,4*} and Chen Wang^{1,2,3,4,5}

¹Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China, ²National Center for Respiratory Medicine, Beijing, China, ³Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China, ⁴National Clinical Research Center for Respiratory Diseases, Beijing, China, ⁵Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China, ⁶Shenzhen WeGene Clinical Laboratory, Shenzhen, China, ⁷WeGene, Shenzhen Zaozhidao Technology Co., Ltd., Shenzhen, China, ⁸Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China, ⁹Graduate School of Capital Medical University, Beijing, China, ¹⁰Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria, Universidad Autónoma de Madrid, Madrid, Spain, ¹¹Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China, ¹²Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China, ¹³VTT Technical Research Centre of Finland Ltd., Espoo, Finland, ¹⁴Department of Dermatology, China-Japan Friendship Hospital, Beijing, China, ¹⁵Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China,

Objective: To date, the influence of the carboxylesterase 1 (*CES1*) rs2244613 genotype on the pharmacokinetics (PKs) and safety of dabigatran remains controversial. Hence, a systematic review was performed to study the association between *CES1* rs2244613 genotype and the PKs and safety of dabigatran and *CES1* relative expression.

Methods: In addition to the three English databases (Web of Science, PubMed, and Embase), two Chinese databases (CNKI and Wanfang) were thoroughly revised. The mean differences (MD) and corresponding 95% confidence intervals (CI) were applied to evaluate the differences in PKs between the *CES1* rs2244613 genotype. Odds ratio (OR) was used to study the risk for bleeding events between the *CES1* rs2244613 genotypes. Subsequent expression quantitative trait loci (eQTL) analyses were performed to evaluate genotype-specific expressions in human tissues.

Results: Ten studies (n = 2,777) were included. *CES1* rs2244613 G allele carriers exhibited significantly lower dabigatran trough concentrations compared to T allele carriers (MD: -8.00 ng/mL; 95% CI: -15.08 to -0.92; p = 0.03). The risk for bleeding events was significantly lower in carriers of the G allele compared to T allele carriers (OR: 0.65; 95% CI: 0.44–0.96; p = 0.03). Subsequent eQTL analysis showed significant genome-wide expressions in two human tissues, whole blood ($p = 5.1 \times 10^{-10}$) and liver ($p = 6.2 \times 10^{-43}$).

Conclusion: Our meta-analysis indicated a definite relation between the *CES1* rs2244613 genotype and tolerability variations or pharmacokinetic fluctuations. The carriers of T allele showed higher dabigatran concentrations; therefore, they would benefit from a dose reduction.

Systematic review registration: [https://inplasy.com/inplasy-2022-6-0027/], identifier [NPLASY202260027].

KEYWORDS

CES1, rs2244613, polymorphism, dabigatran, pharmacokinetics, safety, QTL

Introduction

Direct oral anticoagulants (DOACs) are the first alternative to vitamin K antagonists (VKAs) (1). They specifically target a single coagulation protein, including thrombin or coagulation factor Xa. Compared with traditional anticoagulants, the convenience and safety of DOACs is well documented (2). Dabigatran is a representative drug of DOACs widely used to treat atrial fibrillation and pulmonary embolism (3). It is administered as a prodrug–dabigatran etexilate–which is rapidly hydrolyzed into dabigatran, the active moiety, by means of esterases, such as carboxylesterase 1 (*CES1*) and *CES2*. Hepatic *CES1* mainly catalyzes the conversion of the prodrug dabigatran etexilate to dabigatran, while the intestinal *CES2* enzyme plays a compensatory role when *CES1* is inhibited (4). This is the reason why we chose *CES1* as the subject of this study.

CES1 is a crucial liver enzyme that conduces to the metabolism of drugs containing ester moieties, including dabigatran etexilate or the M1 metabolite (5, 6). As to treatment for atrial fibrillation, CES1 polymorphism may also affect clopidogrel pharmacological metabolism in the body. Up to 85% of the clopidogrel prodrug entering the body is rapidly hydrolyzed into inactive metabolites under the catalysis of CES1, and only 15% of the clopidogrel can exert drug effects. What's more, CES1 is related to the development of many other thrombotic diseases like venous thromboembolism through regulating the pharmacokinetics of multiple anticoagulants (7, 8).

Single nucleotide polymorphisms (SNPs) in the *CES1* gene may lead to interindividual differences in dabigatran pharmacokinetics (PKs), which may affect the metabolism and bioavailability of this drug. In addition, although the tolerability of dabigatran is better than that of VKAs, some serious adverse clinical events such as bleeding or thrombosis may occur.

Due to interindividual variability in PKs, bleeding or thrombotic events may occur in patients taking dabigatran. However, the conclusions of the existing studies on the association between the *CES1* SNPs and drug concentration and bleeding risk are controversial due to their small sample sizes (4, 9–11). For instance, *CES1* rs2244613 G allele was related to a reduction in the trough concentration of dabigatran in patients compared to the T allele, and with a reduced risk of bleeding (12, 13). However, Shi et al. (14) observed that this gene locus was unrelated to dabigatran concentration and clinical outcome.

Thence, a systematic review and meta-analysis were conducted with existing studies on the application of dabigatran in atrial fibrillation, cardioembolic stroke, knee arthroplasty, and other diseases. This study explores the relationship between the *CES1* rs2244613 variant and patient's plasma concentration and bleeding risk and determines its clinical relevance to guide individualized dabigatran prescription further.

Materials and methods

We performed this study in the light of the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines (**Supplementary Table 1**) (15). We have registered our detailed protocol for this systematic review on INPLASY (registration number: INPLASY202260027), and it is available in full on inplasy.com¹.

Literature search

A structured search of three English databases (Web of Science, PubMed, and Embase) and two Chinese databases (CNKI and Wanfang) was performed on 16 April 2022. The search terms we applied are as follows: ('novel oral anticoagulant' or 'new oral anticoagulant' or 'direct oral anticoagulant' or 'target-specific oral anticoagulant' or NOAC or DOAC or TSOAC or dabigatran) and (*CES1* or 'carboxylesterase 1' or carboxylesterase-1) and ('dabigatran concentration' or bleeding) and (polymorph* or variant* or mutation* or genotyp* or phenotyp* or sNP or rs2244613).

¹ https://inplasy.com/inplasy-2022-6-0027/

Data selection and collection

With duplicate studies removed, two researchers (Li and Qiu) excluded irrelevant studies independently, according to the titles and abstracts and assessed the full-text articles for further inclusion. When inconsistencies occur, a team meeting was held with extra researchers, and a consensus would be finally reached.

In the step of data extraction, a predesigned form to obtain information from the included studies was used, which mainly comprised of basic data (including title, author, date, and sample size) and outcome variables (including means and standard bias for dabigatran plasma levels and the number of bleeding events). Then the means and standard deviations was estimated according to Wan's method and presented the continuous outcomes in the form of medians and interquartile ranges (16).

Quality assessment

The Newcastle–Ottawa scale (NOS) tool, which is based on three domains including the selection of exposed and unexposed subjects (0–4 points), comparability of study groups (0–2 points), and outcome assessment (0–3 points), was used to evaluate the quality of the research (17).

Statistical analysis

The Review Manager software (version 5.3) and STATA software (version 12.0) were used. The MD, OR and 95% CI were used to evaluate the strength of the association. A total of five genetic models were implemented to make an assessment on the association between *CES1* rs2244613 and dabigatran PKs and safety, including: homozygote model (GG

vs. TT), heterozygote model (GT vs. TT), dominant model (GG + GT vs. TT), recessive model (GG vs. GT + TT), and allele comparison (G vs. T). The Q and I² statistics were used to evaluate the heterogeneity degree (18). The selection of fixed-effects or random-effects model was based on the degree of heterogeneity (19). $I^2 < 50\%$ was considered to low heterogeneity, $50 \le I^2 < 75\%$ was considered to moderate heterogeneity and $I^2 \ge 75\%$ was considered to significant heterogeneity. If $I^2 < 50\%$ and p value > 0.1, the fixedeffects model would be used. If $I^2 \ge 50\%$ or $P \le 0.1$, the random-effects model would be used. Multiple populations were enrolled in the present meta-analysis. Therefore, we performed subgroup analysis and evaluated the impact of CES1 rs2244613 on the dabigatran pharmacokinetics and safety based on diverse ethnicities. To validate the credibility of outcomes in this meta-analysis, a sensitivity analysis was performed to identify potentially influential studies. Furthermore, funnel plot and Egger's test were applied to detect publication bias (20). The funnel plot depends on whether the points on both sides are symmetric, which indicates a possible publication bias. And Egger's test depends on the Student's *t*-test (p < 0.05 suggests a publication bias).

Genotype quantitative trait loci analysis for rs2244613 in human tissues

We assessed the genotype-specific expression of *CES1* in 49 human tissues by *cis*-expression quantitative trait loci (*cis*eQTL) and splicing quantitative trait loci (sQTL) analysis through the Genotype-Tissue Expression (GTEx) portal²

² https://gtexportal.org/home/

(21). Violin plots of the genotype-specific expression were constructed to visualize normalized gene expressions between three variant genotypes (GG, GT, and TT).

Results

Search results and patient characteristics

Fifty four studies were included after the preliminary search, 35 of which remained after removing duplicates. Of 25 removed after full text revision, three were reviews, seven were case reports, six for evaluating other clinical outcomes, and nine for not providing extractable data (Supplementary Figure 1). Finally, ten studies (8, 12, 13, 22-28) involving 2,777 subjects were included: Table 1 summarizes the characteristics of them. The earliest year of included literature is 2013, and the latest year is 2021.

Seven of the included works analyzed the trough plasma concentration of dabigatran in patients with different genotypes, and nine analyzed the bleeding risk. Six of them were conducted with a Caucasian population and four with Asian populations. All publications were evaluated by NOS and scored above seven points.

Association between CES1 rs2244613 and the trough plasma concentration of dabigatran

Meta-analysis showed a statistically significant difference between trough plasma concentrations of dabigatran and rs2244613 genotype. In summary, the CES1 rs2244613 G allele was related to a lower trough plasma concentration of dabigatran when compared with T allele. The following MDs were observed for each model: GG vs. TT, MD = -58.29 ng/mL, 95% CI: -98.64 to -17.94, P = 0.005, $I^2 = 98\%$; GT vs. TT: MD = -10.14 ng/mL, 95% CI: -13.21 to -7.07, P < 0.00001, $I^2 = 0\%$; GG + GT vs. TT: MD = -12.56 ng/mL, 95% CI: -15.59 to -9.52, P < 0.00001, $I^2 = 0\%$; GG vs. GT + TT: MD = -44.86 ng/mL, 95% CI: -79.84 to -9.87, P = 0.01, $I^2 = 98\%$; G vs. T: MD = -8.00 ng/mL, 95% CI: -15.08 to -0.92, $P = 0.03, I^2 = 68\%$ (Figure 1).

Significant heterogeneity was found for the homozygote model ($I^2 = 98\%$, Figure 1), for the recessive model ($I^2 = 98\%$, Figure 1), and for the allele contrast model $(I^2 = 68\%)$, Figure 1). The heterogeneity was lower in Asian population in the homozygote model ($I^2 = 58\%$, Figure 2), recessive model $(I^2 = 67\%,$ Figure 2), and allele contrast model $(I^2 = 53\%,$ Figure 2).

References	Country	Ethnicity	Country Ethnicity Sample size	Mean age (Years) Men/Women	Men/Women	BMI (Kg/m ²)	BMI (Kg/m ²) Dosage regimen	Treatment Indication	SON
Paré et al. (13)	Canada	Caucasian	1694	71.8	1163/531	29.1	110 mg Bid 150 mg Bid	AF	7
Sychev et al. (8)	Russia	Caucasian	60	62	2/58	35.3	220 mg	Knee replacement	7
Meshcherykov et al. (<mark>22</mark>)	Russia	Caucasian	72	64.89	35/37	NA	150 mg Bid	AF	7
Xu (23)	China	Asian	113	60.81	68/45	NA	110 mg Bid 150 mg Bid	AF	7
Tomek et al. (24)	Czechia	Caucasian	110	70.2	54/56	NA	NA	Cardioembolic stroke	7
Sychev et al. (12)	Russia	Caucasian	96	75	39/57	29.7	110 mg Bid 150 mg Bid	AF	7
Ji et al. (25)	China	Asian	198	63.3	120/78	23.9	110 mg Bid	AF	7
Lähteenmäki et al. (26)	Finland	Caucasian	340	69.8	178/162	NA	110 mg Bid 150 mg Bid	Multiple diseases	6
Zheng et al. (27)	China	Asian	80	64.5	43/37	23.8	NA	AF	7
Xiang (28)	China	Asian	14	61.5	10/4	24	NA	AF	7
BMI, body mass index; NOS,]	Newcastle-Ottawa	a scale; NA, not avai	ilable; AF, atrial fibrilla	tion; Bid, twice daily; Multiple c	diseases include vascular o	lisease, stroke/cerebral in	farction or atherosclerosis in (p	BMI, body mass index; NOS, Newcastle-Ottawa scale; NA, not available; AF, atrial fibrillation; Bid, twice daily; Multiple diseases include vascular disease, stroke/cerebral infarction or atherosclerosis in (pre-)cerebral arteries, atrial Fibrillation, pulmonary	n, pulmonary

ABLE 1 Characteristics of studies included in the systematic review and meta-analysis

	udy or Subgroup GG vs TT	Mean	SD		Mean			Weight	Mean Difference , 95%		Mean Difference , 95% Cl
			17.12		34.56	2.28	6	19.0%	-11.78 [-17.90, -5.66]		
		110.2	90.1		100.7	77	18	15.5%	9.50 [-34.75, 53.75]	-	
	omek 2018	95.6	88.1 25.94		132.8	98.7	68	10.8%	-37.20 [-117.91, 43.51]		
					393.89	72.89	62	17.3%	-268.92 [-298.01, -239.83]		
	i 2021 Iheng2021	76.1 15.92	43.1 9.02	76 10	87.2 41.59	33.1 8.82	24 34	18.5%	-11.10 [-27.51, 5.31] -25.67 [-32.00, -19.34]		
			9.02		41.59	0.02	34	19.070	Not estimable		
	tal (95% CI)	01.30	103.55	183	111.51	0	213	100.0%	-58.29 [-98.64, -17.94]	-	
He	terogeneity: Tau ² = 22: st for overall effect: Z =			2.37, df	= 5 (P <	0.00001					
		2.00 (F	- 0.005	,							
В	GT vs TT Sychev 2018	22.91	12.03	21	34.56	2.28	6	31.6%	-11.65 [-17.11, -6.19]		
	(u 2018	97.2	49.8		100.7	2.20	18	0.6%	-3.50 [-41.66, 34.66]		
		112.2	80		132.8	98.7	68	0.8%	-20.60 [-55.45, 14.25]		
		61.06	148.6		393.89	72.89	62	0.3%	-32.83 [-89.88, 24.22]	_	
	i 2021	80.7	35.7	98	87.2	33.1	24	4.2%	-6.50 [-21.51, 8.51]		
		32.14	7.56		41.59	8.82	34	62.5%	-9.45 [-13.33, -5.57]		
	liang 2021		51.72		177.97	0	1		Not estimable		
	tal (95% CI)		• • • •	274			213	100.0%	-10.14 [-13.21, -7.07]		•
He	terogeneity: Tau ² = 0.0 st for overall effect: Z =				9 = 0.89)	; I² = 0%	; fixed	effect mo			
c	GG + GT vs TT	0.40 (i	- 0.000	01)							
		22.83	15.22	54	34.56	2.28	6	46.6%	-11.73 [-16.18, -7.28]		
		22.03 103.3	71.7		100.7	2.20	18	46.6%	2.60 [-35.78, 40.98]		
		110.2	80		132.8	98.7	68	0.8%	-22.60 [-56.30, 11.10]		
			161.31		393.89	72.89	62	0.3%	-67.55 [-124.73, -10.37]	•	
	i 2021	78.7	391	174	87.2	33.1	24	0.3%	-8.50 [-68.09, 51.09]		
			10.36		41.59	8.82	34	51.4%	-13.05 [-17.29, -8.81]		~~
			89.57		177.97	0	1		Not estimable		
	tal (95% CI)			457		-	213	100.0%	-12.56 [-15.59, -9.52]		•
	terogeneity: Tau ² = 0.0 st for overall effect: Z =				9 = 0.45)	; I ² = 0%	; fixed	effect mo	del		
D	GG vs GT + TT			,							
		22.78	17.12	33	25.5	11.69	27	29.7%	-2.72 [-10.04, 4.60]		-+
		110.2	90.1	45	98.1	57.6	68	10.5%	12.10 [-17.57, 41.77]		
	omek 2018	95.6	88.1		125.5	92.7	105	2.0%	-29.90 [-109.13, 49.33]	•	
			25.94			103.48	91		-258.46 [-289.59, -227.33]	•	
J	i 2021	76.1	43.1	76	82	35.2	122	25.3%	-5.90 [-17.43, 5.63]		
Z	Theng2021	15.92	9.02	10	36.8	9.43	69	30.9%	-20.88 [-26.90, -14.86]		
>	(iang 2021 1	01.36 1	103.53	9	92.63	65.44	5	1.6%	8.73 [-79.96, 97.42]		
	tal (95% CI)			183			487	100.0%	-44.86 [-79.84, -9.87]		
	terogeneity: Tau ² = 183 st for overall effect: Z =			1.98, df	= 6 (P <	0.00001); 2 = !	98% ; ran	dom effect model		
_	G vs T	· · · ·	,								
		22.81	15.87	87	27.15	11.16	33	30.3%	-4.34 [-9.40, 0.72]		
		105.5	77.8	140	98.6	61.7	86	7.2%	6.90 [-11.43, 25.23]		
т		108.6	80	47	128.4	94.9	173	3.7%	-19.80 [-46.69, 7.09]		
s			165.29		387.67	92.19	153	0.0%	-87.15 [-141.04, -33.26]	←	
	i 2021	77.9	40.3	250	82.9	34.8	146	22.9%	-5.00 [-12.54, 2.54]		+
			11.19		38.38	9.46	103	35.2%	-12.13 [-15.61, -8.65]		~
		95.89	93.22		106.85	68.12	6	0.6%	-10.96 [-77.95, 56.03]		
	tal (95% CI)			640			700	100.0%	-8.00 [-15.08, -0.92]		\bullet
	terogeneity: Tau ² = 40.			, df = 6	(P = 0.0	004); l² =	68%;	random e	ffect model	H	
Te	st for overall effect: Z =	2.21 (P	9 = 0.03)							-100	-50 0 50 100
											lower concentration higher concentration
1											
								224	1617		morphism of the carboxylesterase 1 (CES1) g

No single study could not influence the overall results qualitatively, indicating robustness and reliability of our results (Figure 3).

No publication bias was observed, as funnel plots (**Figure 4**) were relatively symmetrical.

Association between *CES1* rs2244613 and the risk of bleeding

Meta-analysis showed a statistically significant difference between the risk of developing bleeding and rs2244613 genotype. In summary, the *CES1* rs2244613 G allele was related to a lower risk of developing any bleeding when compared with T allele. The following ORs were observed for each model: GG vs. TT, OR = 0.84, 95% CI: 0.40–1.77, P = 0.65, $I^2 = 40\%$; GT vs. TT: OR = 0.70, 95% CI: 0.40–1.24, P = 0.22, $I^2 = 0\%$; GG + GT vs. TT: OR = 0.64, 95% CI: 0.52–0.78, P < 0.0001, $I^2 = 0\%$; GG vs. GT + TT: OR = 0.53, 95% CI: 0.31–0.92, P = 0.02, $I^2 = 0\%$; G vs. T: OR = 0.65, 95% CI: 0.44–0.96, P = 0.03, $I^2 = 0\%$ (Figure 5).

No publication bias was observed, as funnel plots (**Figure 6**) were relatively symmetrical.

Quantitative trait loci analysis of rs2244613 in human tissues

Out of the total 49 genotypic *cis*-eQTL results for rs2244613, only one *cis*-eQTLs reached a genome-wide significance threshold in Figure 7A ($p = 5.1 \times 10^{-10}$ in whole blood tissue). Genome-wide *cis*-eQTLs were upregulated in whole blood tissues in Figure 7B (slope = 0.30). Compared to TT

		GG			тт			0.5% 0.5%	Random Effect Model
Study or Subgroup Caucasian	Mean	SD	Total	Mean	SD	Total	Weight	Mean Difference , 95% CI	Mean Difference , 95% Cl
Sychev 2018	22.78	17.12	33	34.56	2.28	6	40.4%	-11.78 [-17.90, -5.66]	-
omek 2018	95.6	88.1	5	132.8	98.7	68	22.9%	-37.20 [-117.91, 43.51]	
Sychev 2020	124.97	25.94	5	393.89		62		-268.92 [-298.01, -239.83]	-
Subtotal (95% CI)	121.01	20.01	43	000.00	12.00	136	100%	-106.85 [-301.88, 88.18]	
leterogeneity: Tau ² = est for overall effect: 2				df = 2 (P	e < 0.000	001); l²	= 99%		
2 Asian									
Xu 2018	110.2	90.1	45	100.7	77	18	29.3%	9.50 [-34.75, 53.75]	
Ji 2021	76.1	43.1	76	87.2	33.1	24	34.9%	-11.10 [-27.51, 5.31]	
Zheng2021	15.92	9.02	10	41.59	8.82	34	35.8%	-25.67 [-32.00, -19.34]	=
Xiang 2021	101.36			177.97	0	1		Not estimable	
Subtotal (95% CI)			140		-	77	100%	-17.07 [-32.19, -1.96]	\blacklozenge
Heterogeneity: Tau ² = Fest for overall effect: 2				(P = 0.09	9); I² = 5				
Fotal (95% CI)	0005 00	0412 - 05	183	K - C (D	- 0 000	213	0001	-58.29 [-98.64, -17.94]	
Heterogeneity: Tau ² =				lt = 5 (P •	< 0.0000	J1); I ² =	98%		-200 -100 0 100 200
Test for overall effect:						00/			lower concentration higher concentration
Test for subgroup diffe	rences: C	$\ln^2 = 0.8$	1, df =	1 (P = 0.3)	37), I² =	0%			lower concentration - higher concentration
i		GG		G	T + TT				
Study or Subgroup	Mean		Total	Mean		Total	Weight	Mean Difference, 95% Cl	Random Effect Model Mean Difference , 95% Cl
l Caucasian									
Sychev 2018	22.78	17.12	33	25.5	11.69	27	41.4%	-2.72 [-10.04, 4.60]	4
Tomek 2018	95.6	88.1	5	125.5	92.7	105	22.0%	-29.90 [-109.13, 49.33]	
Sychev 2020	124.97	25.94	5	383.43	103.48	91	36.6%	-258.46 [-289.59, -227.33]	
Subtotal (95% CI)			43			223	100%	-97.81 [-289.67, 94.05]	
Heterogeneity: Tau ² = 2 Test for overall effect: 2				ui – 2 (P	< 0.000	i01), i [_] -	- 99%		
	110.2	00.1	45	09.1	57.6	60	26 7%	12 10 [17 57 41 77]	
Xu 2018	110.2	90.1	45 76	98.1	57.6		26.7%	12.10 [-17.57, 41.77]	
Xu 2018 Ji 2021	76.1	43.1	76	82	35.2	122	29.4%	-5.90 [-17.43, 5.63]	*
2 Asian Xu 2018 Ji 2021 Zheng2021 Xiang 2021	76.1 15.92	43.1 9.02	76 10	82 36.8	35.2 9.43	122 69	29.4% 29.8%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86]	
Xu 2018 Ji 2021 Zheng2021 Xiang 2021	76.1	43.1 9.02	76	82	35.2	122	29.4%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42]	
Xu 2018 Ji 2021 Zheng2021	76.1 15.92 101.36 115.67; C	43.1 9.02 103.53 :hi² = 9.16	76 10 9 140 5, df = 3	82 36.8 92.63	35.2 9.43 65.44	122 69 5 264	29.4% 29.8% 14.1%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86]	
Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2	76.1 15.92 101.36 115.67; C	43.1 9.02 103.53 :hi² = 9.16	76 10 9 140 6, df = 3	82 36.8 92.63	35.2 9.43 65.44	122 69 5 264 67%	29.4% 29.8% 14.1%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33]	
Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Total (95% CI)	76.1 15.92 101.36 115.67; C Z = 1.24 (I	43.1 9.02 103.53 :hi ² = 9.16 P = 0.21)	76 10 9 140 6, df = 3	82 36.8 92.63 8 (P = 0.0	35.2 9.43 65.44 03); I ² =	122 69 5 264 67% 487	29.4% 29.8% 14.1% 100%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42]	
Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Tost for overall effect: 2 Total (95% CI) Heterogeneity: Tau ² =	76.1 15.92 101.36 115.67; C Z = 1.24 (i 1827.44; i	43.1 9.02 103.53 thi ² = 9.16 P = 0.21) Chi ² = 25	76 10 9 140 5, df = 3 183 4.98, d	82 36.8 92.63 8 (P = 0.0	35.2 9.43 65.44 03); I ² =	122 69 5 264 67% 487	29.4% 29.8% 14.1% 100%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33]	-200 -100 0 100 200
Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Fost for overall effect: 2 Fotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: 2	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; c Z = 2.51 (l	43.1 9.02 103.53 thi ² = 9.16 P = 0.21) Chi ² = 25 P = 0.01)	76 10 9 140 5, df = 3 183 4.98, d	82 36.8 92.63 3 (P = 0.0	35.2 9.43 65.44 03); l ² = 1	122 69 5 264 67% 487 11); I ² =	29.4% 29.8% 14.1% 100%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33]	-200 -100 0 100 200 lower concentration
Xu 2018 Ji 2021 Zheng2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Fotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Test for subgroup diffe	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; c Z = 2.51 (l	43.1 9.02 103.53 thi ² = 9.16 P = 0.21) Chi ² = 25 P = 0.01)	76 10 9 140 5, df = 3 183 4.98, d	82 36.8 92.63 3 (P = 0.0	35.2 9.43 65.44 03); l ² = 1	122 69 5 264 67% 487 11); I ² =	29.4% 29.8% 14.1% 100%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33]	
Ku 2018 Ji 2021 Zheng2021 Kiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Fotal (95% CI) Heterogeneity: Tau ² = Fotal (95% CI) Heterogeneity: Tau ² = Fost for overall effect: 2 Fost for subgroup difference of the subgro	76.1 15.92 101.36 115.67; C Z = 1.24 (I 1827.44; I Z = 2.51 (I rences: C	43.1 9.02 103.53 thi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.01) thi2 = 0.81 G	76 10 9 140 6, df = 3 4.98, d 1, df = 1	82 36.8 92.63 3 (P = 0.0 f = 6 (P <	35.2 9.43 65.44 03); ² = + < 0.0000 87), ² = + T	122 69 5 264 67% 487 11); I ² = 0%	29.4% 29.8% 14.1% 100% 98%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87]	lower concentration higher concentration
Ku 2018 Ji 2021 Zheng2021 Kiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = : Fotal (95% CI) Heterogeneity: Tau ² = Fost for overall effect: 2 Fost for subgroup differ Study or Subgroup	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; c Z = 2.51 (l	43.1 9.02 103.53 thi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.01) thi2 = 0.81 G	76 10 9 140 6, df = 3 4.98, d 1, df = 1	82 36.8 92.63 3 (P = 0.0	35.2 9.43 65.44 03); ² = + < 0.0000 87), ² = + T	122 69 5 264 67% 487 11); I ² = 0%	29.4% 29.8% 14.1% 100% 98%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33]	lower concentration higher concentration
Ku 2018 ii 2021 Zheng2021 Subtotal (95% CI) Heterogeneity: Tau ² = 'est for overall effect: 2 'otal (95% CI) Heterogeneity: Tau ² = 'est for overall effect: 2 'est for overall effect: 2 Study or Subgroup differ Caucasian	76.1 15.92 101.36 115.67; C Z = 1.24 (I 1827.44; I Z = 2.51 (I rences: C <u>Mean</u>	$\begin{array}{c} 43.1 \\ 9.02 \\ 103.53 \\ \text{thi}^2 = 9.16 \\ \text{P} = 0.21 \\ \end{array}$ $\begin{array}{c} \text{Chi}^2 = 25 \\ \text{P} = 0.01 \\ \text{thi}^2 = 0.81 \\ \end{array}$ $\begin{array}{c} \text{G} \\ \text{SD} \end{array}$	76 10 9 140 6, df = 3 4.98, d 1, df = 1	82 36.8 92.63 3 (P = 0.0 f = 6 (P < I (P = 0.3 Mean	35.2 9.43 65.44)3); ² = 1 <<0.0000 87), ² = 1 T SD	122 69 5 264 67% 487 11); 1 ² = 0% <u>Total</u>	29.4% 29.8% 14.1% 100% 98% <u>Weight</u>	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87]	lower concentration higher concentration
Ku 2018 ku 2018 ki 2021 Zheng2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Test for overall effect: 2 Test for subgroup differ Study or Subgroup Caucasian Sychev 2018	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; l Z = 2.51 (l rences: C <u>Mean</u> 22.81	43.1 9.02 103.53 thi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.01) thi2 = 0.81 G SD 15.87	76 10 9 140 5, df = 3 183 4.98, d 1, df = 1 <u>Total</u>	82 36.8 92.63 3 (P = 0.0) f = 6 (P < 0.3) 1 (P = 0.3 Mean 27.15	35.2 9.43 65.44)3); l ² = 1 <0.0000 37), l ² = 1 T SD 11.16	122 69 5 264 67% (1); l ² = 0% <u>Total</u>	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] Mean Difference , 95% CI -4.34 [-9.40, 0.72]	lower concentration higher concentration
Ku 2018 i 2021 Zheng2021 Kiang 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = rotal (95% Cl) Heterogeneity: Tau	76.1 15.92 101.36 115.67; C Z = 1.24 (f 1827.44; t Z = 2.51 (f rences: C <u>Mean</u> 22.81 108.6	43.1 9.02 103.53 thi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.01) thi2 = 0.81 G SD 15.87 80	76 10 9 140 6, df = 3 4.98, d 1, df = 1 Total 87 47	82 36.8 92.63 3 (P = 0.0 f = 6 (P < I (P = 0.3 Mean 27.15 128.4	35.2 9.43 65.44 03); I ² = 1 < 0.00000 87), I ² = 1 T SD 11.16 94.9	122 69 5 264 67% 487 (1); ² = 0% <u>Total</u> 33 173	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] 	lower concentration higher concentration
Ku 2018 ki 2021 Zheng2021 Kiang 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = "est for overall effect: 2 "otal (95% Cl) Heterogeneity: Tau ² = "est for overall effect: 2 "est for overall effect: 2 "est for subgroup differ Study or Subgroup Caucasian Sychev 2018 Sychev 2018 Sychev 2020	76.1 15.92 101.36 115.67; C Z = 1.24 (f 1827.44; t Z = 2.51 (f rences: C <u>Mean</u> 22.81 108.6	43.1 9.02 103.53 thi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.01) thi2 = 0.81 G SD 15.87	76 10 9 140 5, df = 3 183 4.98, d 1, df = 1 <u>Total</u>	82 36.8 92.63 3 (P = 0.0) f = 6 (P < 0.3) 1 (P = 0.3 Mean 27.15	35.2 9.43 65.44 03); I ² = 1 < 0.00000 87), I ² = 1 T SD 11.16 94.9	122 69 5 264 67% 487 11); I ² = 0% <u>Total</u> 33 173	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] 	lower concentration higher concentration
Ku 2018 Ji 2021 Zheng2021 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: 2 Fotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: 2 Fotal (95% Cl) I Caucasian Sychev 2018 Fomek 2018 Sychev 2020 Subtotal (95% Cl) Heterogeneity: Tau ² =	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; l Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C	43.1 9.02 103.53 hi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.01) hi2 = 0.81 G SD 15.87 80 165.29 Chi2 = 10	76 10 9 140 3, df = 3 183 4.98, d 1, df = 1 1, df = 1 87 47 39 173 .10, df	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 <u>Mean</u> 27.15 128.4 387.67	35.2 9.43 65.44 03); I ² = 1 c 0.00000 87), I ² = 1 T SD 11.16 94.9 92.19	122 69 5 264 67% 11); I ² = 0% <u>Total</u> 33 173 153 359	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] 	lower concentration higher concentration
Ku 2018 ki 2021 Zheng2021 Kiang 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = : Fost for overall effect: 2 Fost for overall effect: 2 Fost for overall effect: 2 Fost for subgroup differ Etudy or Subgroup I Caucasian Sychev 2018 Formek 2018 Sychev 2020 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect:	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; l Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C	43.1 9.02 103.53 hi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.01) hi2 = 0.81 G SD 15.87 80 165.29 Chi2 = 10	76 10 9 140 3, df = 3 183 4.98, d 1, df = 1 1, df = 1 87 47 39 173 .10, df	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 <u>Mean</u> 27.15 128.4 387.67	35.2 9.43 65.44 03); I ² = 1 c 0.00000 87), I ² = 1 T SD 11.16 94.9 92.19	122 69 5 264 67% 11); I ² = 0% <u>Total</u> 33 173 153 359	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] 	lower concentration higher concentration
Ku 2018 Ji 2021 Zheng2021 Kiang 2021 Subotal (95% CI) Heterogeneity: Tau ² = . Fest for overall effect: 2 Fost of overall effect: 2 Fost for overall effect: 2 Fost for subgroup differ Study or Subgroup I Caucasian Sychev 2018 Sychev 2018	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; t Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C Z = 1.58	43.1 9.02 103.53 thi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.01) thi2 = 0.81 G SD 15.87 80 165.29 Chi2 = 10 (P = 0.11) Chi2 = 0.11 SD SD SD SD SD SD SD SD	76 10 9 140 5, df = 3 183 4.98, d 1, df = 1 1, df = 1 47 39 173 17, 39 173	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 <u>Mean</u> 27.15 128.4 387.67 = 2 (P =	35.2 9.43 65.44)3); l ² =	122 69 5 67% 487 7)1); I ² = 0% Total 33 153 359 I ² = 809	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38]	lower concentration higher concentration
Ku 2018 Ji 2021 Zheng2021 Kiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: 2 Fotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 For subgroup differ Study or Subgroup I Caucasian Sychev 2018 Sychev 2018 Sychev 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Asian Ku 2018	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; (Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C Z = 1.58	43.1 9.02 103.53 shi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.21) hi2 = 0.81 G 50 15.87 80 165.29 Chi2 = 10 (P = 0.11 77.8	76 10 9 140 3, df = 3 183 4.98, d 1, df = 1 1, df = 1 7 39 173 173 173 173	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 1 (P = 0.3 27.15 128.4 387.67 = 2 (P = 98.6	35.2 9.43 65.44 3)3); ² = - - - - - - - - - - - - - - - - - - -	122 69 5 264 67% 487 11); l ² = 00% Total 133 153 359 l ² = 80 ^o 86	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100% %	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38] 6.90 [-11.43, 25.23]	lower concentration higher concentration
Ku 2018 Ku 2018 Ku 2021 Zheng2021 Kiang 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = Fost for overall effect: 2 Fost for overall effect: 2 Fost for overall effect: 2 Fost for subgroup differ Study or Subgroup Caucasian Sychev 2018 Sychev 2020 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: 2 Asian Ku 2018 bi 2021	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; (Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C Z = 1.58 105.5 77.9	43.1 9.02 103.53 hi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.21) hi2 = 0.81 G 50 15.87 80 165.29 Chi2 = 10 (P = 0.11 77.8 40.3	76 10 9 140 3, df = 3 183 4.98, d 1, df = 1 1, df = 1 7 39 173 .10, df 17 39 173 .10, df	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 128.4 387.67 = 2 (P = 98.6 82.9	35.2 9.43 65.44 (3); ² = - (37), ² = - T <u>SD</u> 111.16 94.9 92.19 0.006); 61.7 34.8	122 69 5 264 67% 487 11); l ² = 00% Total 173 3153 359 2 ² = 80% 866 146	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100% %	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38] 6.90 [-11.43, 25.23] -5.00 [-12.54, 2.54]	lower concentration higher concentration
Ku 2018 ki 2021 Zheng2021 Kiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = 'est for overall effect: 2 Total (95% CI) Heterogeneity: Tau ² = 'est for overall effect: 2 Total (95% CI) Heterogeneity: Tau ² = Caucasian Sychev 2018 Tomek 2018 Sychev 2020 Subtotal (95% CI) Heterogeneity: Tau ² = 'est for overall effect: 2 Asian Ku 2018 bi 2021 Zheng2021	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; l Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C Z = 1.58 105.5 77.9 26.25	43.1 9.02 103.53 hi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.01) hi2 = 0.81 G 5D 15.87 80 165.29 Chi2 = 10 (P = 0.11 77.8 40.3 11.19	76 10 9 140 3, df = 3 183 4.98, d 1, df = 1 1, df = 1 173 173 173 10, df 1) 1400 250 55	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 <u>Mean</u> 27.15 128.4 387.67 = 2 (P = 98.6 82.9 38.38	35.2 9.43 65.44)3); l ² = -	122 69 5 264 67% 487 7 0% <u>Total</u> 33 153 359 1 ² = 80 ⁶ 866 146 103	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100% 6 5% 46.2%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38] 6.90 [-11.43, 25.23] -5.00 [-12.54, 2.54] -12.13 [-15.61, -8.65]	lower concentration higher concentration
Ku 2018 Ji 2021 Zheng2021 Kiang 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = : Fest for overall effect: 2 Fotal (95% Cl) Heterogeneity: Tau ² = : Fest for overall effect: 2 Fest for subgroup differ Study or Subgroup differ Est for subgroup differ Study or Subgroup differ Study or Subgroup differ Study or Subgroup differ Est for subgroup differ Study or Subgroup differ Study or Subgroup differ Est for overall effect: 2 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: 2 Asian Ku 2018 Ji 2021 Zheng2021 Xiang 2021	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; (Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C Z = 1.58 105.5 77.9	43.1 9.02 103.53 hi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.21) hi2 = 0.81 G 50 15.87 80 165.29 Chi2 = 10 (P = 0.11 77.8 40.3	76 10 9 140 183 4.98, d 1, df = 1 Total 87 47 39 173 10, df 10 10 250 22	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 <u>Mean</u> 27.15 128.4 387.67 = 2 (P = 98.6 82.9 38.38	35.2 9.43 65.44)3); l ² = -	122 69 5 264 67% 487 7 11); I ² = 0% <u>Total</u> 333 153 359 9 [² = 80% 866 146 103 6	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100% %	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38] 6.90 [-11.43, 25.23] -5.00 [-12.54, 2.54] -12.13 [-15.61, -8.65] -10.96 [-77.95, 56.03]	lower concentration higher concentration
Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Test for subgroup differ Study or Subgroup differ Study or Subgroup differ Study or Subgroup 1 Caucasian Sychev 2018 Sychev 2018 Sychev 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Asian Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² =	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; (Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C Z = 1.58 105.5 77.9 26.25 95.89 25.34; Cl	43.1 9.02 103.53 hi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.21) hi2 = 0.81 G 50 15.87 80 165.29 Chi2 = 10 (P = 0.11 77.8 40.3 11.19 93.22 hi2 = 6.34 Chi2 = 7.35 Chi3 = 7.	76 10 9 140 3, df = 3 183 4.98, d 1, df = 1 1, df = 1 1, df = 1 1, df = 1 1, df = 2 173 173 173 173 173 173 173 173 173 173	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 Mean 27.15 128.4 387.67 = 2 (P = 98.6 82.9 38.38 106.85	35.2 9.43 65.44)3); l ² =	122 69 5 264 67% 487 7 11); I ² = 0% Total 153 359 1 ² = 80 ⁹ 146 103 6 341	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100% 6 5% 46.2%	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38] 6.90 [-11.43, 25.23] -5.00 [-12.54, 2.54] -12.13 [-15.61, -8.65]	lower concentration higher concentration
Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subotal (95% CI) Heterogeneity: Tau ² = : Total (95% CI) Heterogeneity: Tau ² = : Total (95% CI) Heterogeneity: Tau ² = : Study or Subgroup differ Study or Subgroup differ Study or Subgroup 1 Tomek 2018 Sychev 2018 Sychev 2020 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Asian Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% CI)	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; (Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C Z = 1.58 105.5 77.9 26.25 95.89 25.34; Cl	43.1 9.02 103.53 hi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.21) hi2 = 0.81 G 50 15.87 80 165.29 Chi2 = 10 (P = 0.11 77.8 40.3 11.19 93.22 hi2 = 6.34 Chi2 = 7.35 Chi3 = 7.	76 10 9 140 3, df = 3 183 4.98, d 1, df = 1 1, df = 1 1, df = 1 1, df = 1 1, df = 2 173 173 173 173 173 173 173 173 173 173	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 Mean 27.15 128.4 387.67 = 2 (P = 98.6 82.9 38.38 106.85	35.2 9.43 65.44)3); l ² =	122 69 5 264 67% 487 7 11); I ² = 0% Total 153 359 1 ² = 80 ⁹ 146 103 6 341	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100% %	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38] 6.90 [-11.43, 25.23] -5.00 [-12.54, 2.54] -12.13 [-15.61, -8.65] -10.96 [-77.95, 56.03]	lower concentration higher concentration
Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Fotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Test for subgroup differ Study or Subgroup differ Study or Subgroup differ Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2 Asian Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² =	76.1 15.92 101.36 115.67; C Z = 1.24 (l 1827.44; (Z = 2.51 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C Z = 1.58 105.5 77.9 26.25 95.89 25.34; Cl	43.1 9.02 103.53 hi2 = 9.16 P = 0.21) Chi2 = 25 P = 0.21) hi2 = 0.81 G 50 15.87 80 165.29 Chi2 = 10 (P = 0.11 77.8 40.3 11.19 93.22 hi2 = 6.34 Chi2 = 7.35 Chi3 = 7.	76 10 9 140 3, df = 3 183 4.98, d 1, df = 1 1, df = 1 1, df = 1 1, df = 1 1, df = 2 173 173 173 173 173 173 173 173 173 173	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 1 (P = 0.3 Mean 27.15 128.4 387.67 = 2 (P = 98.6 82.9 38.38 106.85	35.2 9.43 65.44)3); ² = - ; 0.0000 (7), ² = - T T SD 11.16 94.9 92.19 0.006); 61.7 34.8 9.46 68.12	122 69 5 264 67% 487 7 11); I ² = 0% Total 153 359 1 ² = 80 ⁹ 146 103 6 341	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100% %	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38] 6.90 [-11.43, 25.23] -5.00 [-12.54, 2.54] -12.13 [-15.61, -8.65] -10.96 [-77.95, 56.03]	lower concentration higher concentration
Ku 2018 Ji 2021 Zheng2021 Kiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = : Fest for overall effect: 2 Fotal (95% CI) Heterogeneity: Tau ² = : Fest for overall effect: 2 Fotal (95% CI) Heterogeneity: Tau ² = : Fest for overall effect: 2 Subtotal (95% CI) Heterogeneity: Tau ² = : Fest for overall effect: 2 Asian Ku 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% CI) Heterogeneity: Tau ² = : Fest for overall effect: : Subtotal (95% CI) Heterogeneity: Tau ² = : Fest for overall effect: : Fotal (95% CI)	76.1 15.92 101.36 $115.67; C$ $Z = 1.24 (l)$ $1827.44; l$ $Z = 2.51 (l)$ rences: C $Mean$ 22.81 108.6 300.52 $633.30; C$ $Z = 1.58$ 105.5 77.9 26.25 95.89 $25.34; Cl$ $Z = 1.89$	$43.1 \\ 9.02 \\ 103.53 \\ hi^2 = 9.16 \\ P = 0.21) \\ Chi^2 = 25 \\ P = 0.21) \\ hi^2 = 0.81 \\ G \\ SD \\ 15.87 \\ 80 \\ 165.29 \\ Chi^2 = 10 \\ (P = 0.11 \\ 77.8 \\ 40.3 \\ 11.19 \\ 93.22 \\ hi^2 = 6.34 \\ (P = 0.06 \\ R \\ e = 0.06 \\ R \\ $	76 10 9 140 183 4.98, d 183 4.98, d 1, df = 1 7 7 10, df = 1 10, df = 1 10, df = 1 10, df = 1 10, df = 1 10, df = 1 10, df = 1 10, df = 1 10, df = 1 10, df = 1 10, df = 1 10, df = 1 10, d	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 0.1 f = 6 (P < 0.1 f = 0.3 f = 6 (P < 0.1 f = 0.3 f = 0.1 f = 0.3 f = 0.1 f = 0	35.2 9.43 65.44)3); ² = -	122 69 5 67% 487 71); I ² = 0% <u>Total</u> 333 173 153 359 9 [² = 80% 866 103 6 341 53% 700	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100% %	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38] 6.90 [-11.43, 25.23] -5.00 [-12.54, 2.54] -12.13 [-15.61, -8.65] -10.96 [-77.95, 56.03] -7.15 [-14.57, 0.27] -8.00 [-15.08, -0.92]	Iower concentration higher concentration
Ku 2018 Ji 2021 Zheng2021 Kiang 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = : Fest for overall effect: 2 Fotal (95% Cl) Heterogeneity: Tau ² = : Fost for overall effect: 2 Fost for subgroup differ Study or Subgroup I Caucasian Sychev 2018 Sychev 2018 Sychev 2020 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: 2 2 Asian Xu 2018 Ji 2021 Zheng2021 Xiang 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: 2 2 Asian Xu 2018 Ji 2021 Zheng2021 Kiang 2021 Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect: 3 Subtotal (95% Cl)	76.1 15.92 101.36 115.67; C Z = 1.24 (l rences: C <u>Mean</u> 22.81 108.6 300.52 633.30; C Z = 1.58 105.5 77.9 26.25 95.89 25.34; Cl Z = 1.89	$43.1 \\ 9.02 \\ 103.53 \\ hi^2 = 9.16 \\ P = 0.21) \\ Chi^2 = 25 \\ P = 0.21) \\ hi^2 = 0.81 \\ G \\ SD \\ 15.87 \\ 80 \\ 165.29 \\ Chi^2 = 10 \\ (P = 0.11 \\ 77.8 \\ 40.3 \\ 11.19 \\ 93.22 \\ hi^2 = 6.34 \\ (P = 0.06 \\ hi^2 = 19.00 \\$	76 10 9 140 183 4.98, df = 5 1, df = 1 Total 1, df = 1 Total 87 47 39 173 10, df 10 255 22 467 5, df = 5 640 04, df = 5 640 04, df = 5 10 10 10 10 10 10 10 10 10 10	82 36.8 92.63 3 (P = 0.0 f = 6 (P < 0.1 f = 6 (P < 0.1 f = 0.3 f = 6 (P < 0.1 f = 0.3 f = 0.1 f = 0.3 f = 0.1 f = 0	35.2 9.43 65.44)3); ² = -	122 69 5 67% 487 71); I ² = 0% <u>Total</u> 333 173 153 359 9 [² = 80% 866 103 6 341 53% 700	29.4% 29.8% 14.1% 100% 98% <u>Weight</u> 79.0% 16.3% 4.7% 100% %	-5.90 [-17.43, 5.63] -20.88 [-26.90, -14.86] 8.73 [-79.96, 97.42] -9.28 [-23.88, 5.33] -44.86 [-79.84, -9.87] -44.86 [-79.84, -9.87] -4.34 [-9.40, 0.72] -19.80 [-46.69, 7.09] -87.15 [-141.04, -33.26] -26.75 [-59.88, 6.38] 6.90 [-11.43, 25.23] -5.00 [-12.54, 2.54] -12.13 [-15.61, -8.65] -10.96 [-77.95, 56.03] -7.15 [-14.57, 0.27]	Iower concentration higher concentration

FIGURE 2

Subgroup analyses for the association between carboxylesterase 1 (*CES1*) rs2244613 polymorphism and the trough plasma concentration of dabigatran: (A) homozygote model, (B) recessive model, and (C) allelic model.

allele patients, the expression of *CES1* was significantly lower in GG. sQTLs showed genome-wide significance in seventeen tissues ($p < 5 \times 10^{-8}$) in **Figure 7C** and **Supplementary Figure 2**. Particularly, finding the *cis*-eQTL and sQTLs genotypes implicated the rs2244613 variant as a transcriptional regulatory factor.

Discussion

Our study comprehensively explored the application of dabigatran in atrial fibrillation, cardioembolic stroke, and knee replacement, and other diseases to explore the relationship between *CES1* rs2244613 and dabigatran PKs and bleeding risk.

2,777 patients in 10 articles were included. We found that the bleeding risk of patients taking dabigatran with GG and GT genotypes was significantly lower than that of patients with TT genotype; the bleeding risk of patients with GG genotype was remarkably lower than that of patients with GT + TT genotypes. Moreover, the bleeding risk is lower in patients carrying the G allele compare to T allele carriers. Additionally,

we consistently observed that the trough concentrations of dabigatran were notably lower in the G compared to the T allele. Therefore, we conclude that *CES1* rs2244613 affects dabigatran plasma concentration and ADR incidence. Moreover, the effect of *CES1* rs2244613 on the trough concentrations of dabigatran varied among ethnicities, which is consistent with previous works (29).

gene: (A) homozygote model, (B) heterozygote model, (C) dominant model, (D) recessive model, and (E) allelic model.

Mammalian CES belong to the α , β -hydrolase-fold protein superfamily, which can be divided into five categories in accordance with the homology of the amino acid sequences

(*CES1* – *CES5*). Both *CES1* and *CES2* are mainly involved in the metabolism of human drugs, and *CES1* is mostly found in the human liver (27, 28, 30, 31). Once dabigatran etexilate enters

the body, it must be hydrolyzed at two separate sites to form an active thrombin inhibitor. First, in the intestine, the carbamate group is hydrolyzed by *CES2*, while *CES1* hydrolyses the ethyl ester part. After that, it can be converted into dabigatran, which has metabolic activity (5, 14). Then it binds to the specific site of thrombin, inhibiting thrombin activity and preventing fibrin formation, thereby exerting an anticoagulant effect (14).

In fact, apart from *CES1* and *CES2*, there are some other genes encoding enzymes [e.g., UDP-glucuronosyltransferase gene (*UGT*) and cytochrome P450 gene (*CYP*)] and genes encoding transporters [e.g., ATP binding cassette subfamily

gene (*ABC*) and solute carriers' family gene (*SLC*)]. After oral administration, dabigatran binds to plasma proteins and is catalyzed by three UGTs (UGT1A9, UGT2B7, and UGT2B15) to form acyl glucuronic acid isomers, of which UGT2B15 contains the strongest effect. Particularly, dabigatran 1-O-acylglucuronide, a metabolite of dabigatran, exhibited anticoagulant activity comparable to the parent drug (32). In addition, cytochrome P450 (CYP2D6 and CYP3A5) may metabolize dabigatran after CES esterase's converting dabigatran to the active moiety. Dabigatran is mainly excreted unchanged in urine (85%) and remains in feces (9). Genes

FIGURE 7

(A) Genotype *cis*-expression quantitative trait loci analysis for rs2244613 in 49 human tissues was obtained from the GTE database. (B) Violin plots of allele-specific *cis*-eQTLs according to rs2244613 genotypes in whole blood tissue in the Genotype-Tissue Expression (GTEx) dataset. (C) Violin plots of allele-specific splicing quantitative trait loci (sQTL) according to rs2244613 genotypes in liver tissue in the GTEx dataset.

-2.0

GG

(14)

GT

(70)

TT

(318)

-2.0

GG

(25)

GT

(224)

TT

(421)

encoding transporters are also reported. P-glycoprotein (P-gp) is a classical transporter encoded by the *ABCB1* gene, and dabigatran is one of its substrates. The gene polymorphism of *ABCB1* is considered being related to the pharmacokinetics and drug safety of dabigatran, and has been widely confirmed (33). In addition, SLC family transporters are also involved in the metabolism of dabigatran. For example, studies have shown that the *SLC22A1* mutant haplotype has higher t_{max} and $t_{1/2}$ with dabigatran than heterozygous and wild types, resulting in differences in the pharmacokinetics and safety of dabigatran among users of different genotypes (9).

High interindividual variability in plasma levels of dabigatran was reported, and the coefficient of variation of up to 30% for systemic exposure (34). Genetic variations in drug-metabolizing enzymes, receptors, and transporters have been identified as a major cause of interindividual variability in drug response, potentially leading to differences in responsiveness and adverse reactions to dabigatran therapy among individuals with different genotypes (35). Presently, thousands of SNPs are described in the CES1 gene, such as rs8192935, rs71647871, and rs2244613 (36). The allele frequency of CES1 rs2244613 was previously reported to be different in Chinese vs. Caucasian populations, with a G allele prevalence of 61.1% and 15.3-28.3%, respectively. Furthermore, CES1 rs2244613 G allele was previously associated with reduced trough concentrations and a decreased bleeding risk rather than peak drug concentrations (4, 13, 25, 37). Another study of patients with atrial fibrillation who received oral dabigatran also concluded that the CES1 SNP rs2244613 was remarkably in association with dabigatran trough concentrations (38). In summary, most conclusions in post researches are consistent with ours, except Xu et al. As a meta-analysis, our study has a large sample size and employs data on dabigatran in a variety of disease populations, only for the drug dabigatran rather than a specific disease, so it has a comparatively high reliability. The reason for the large discrepancy between Xu's research conclusions and ours may be the limitation of their sample size.

This study still has the following limitations. First, the results of our study indicate that SNPs may directly affect the bleeding risk of dabigatran through an internal mechanism and may indirectly influence the occurrence of adverse events by changing the concentration. The specific mechanisms acquire further basic research. Secondly, this study did not control other factors except genotypes, and the heterogeneity cannot be ignored. Thirdly, the blood concentration of dabigatran used in this study is from a single test rather than the average concentration of multiple tests, which may exist to some extent by chance. Fourthly, we have not analyzed other variants within *CES1* and *CES2*, meta-analysis of other variants will be done in the follow-up.

Conclusion

In summary, patients carrying at least one *CES1* rs2244613 G allele are associated with decreased dabigatran trough concentrations and lower bleeding risk compared to non-carriers (i.e., with the T/T genotype). This work is of great relevance as it will help eventually in the guidance and individualization of dabigatran prescription.

Data availability statement

The original contributions presented in this study are included in the article/Supplementary material, further inquiries can be directed to the corresponding authors.

Author contributions

XZ, ZZhai, and CW had full access to all the data in the study and took responsibility for the content of the manuscript. HW and ZZhang conceived and designed the study. HL and YQ integrated data, analyzed the data, and wrote the manuscript. GF provided methodological support. YZ, PZ, PY, and A-LV participated in editing of the manuscript. All authors were involved in the revision of the manuscript for important intellectual content and approved the final version.

Funding

This research was funded by Beijing Nova Program, grant number: Z211100002121057 and Elite Medical Professionals project of China-Japan Friendship Hospital, grant number: ZRJY2021-QM12. PZ was financed by a Margarita Salas-UAM postdoctoral contract.

Acknowledgments

We thank Yu Jiang from Peking Union Medical College; Xiaoye Li from Zhongshan Hospital, Fudan University; Sherzod Abdullaev from Research Institute of Molecular and Personalized Medicine; Heze Han from Beijing Tiantan Hospital, Capital Medical University, and Zhu Zhu and Jie Pan from the Second Affiliated Hospital of Soochow University for their inspiration to the study. We also thank the editor and reviewers for their comments and instruction.

Conflict of interest

HW was employed by the Shenzhen Zaozhidao Technology Co., Ltd., and A-LV was employed by the VTT Technical Research Centre of Finland Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the

References

1. Chan N, Sobieraj-Teague M, Eikelboom JW. Direct oral anticoagulants: evidence and unresolved issues. *Lancet.* (2020) 396:1767–76. doi: 10.1016/S0140-6736(20)32439-9

2. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. *Lancet.* (2014) 383:955–62. doi: 10.1016/S0140-6736(13)62343-0

3. Antonijevic NM, Zivkovic ID, Jovanovic LM, Matic DM, Kocica MJ, Mrdovic IB, et al. Dabigatran-metabolism, pharmacologic properties and drug interactions. *Curr Drug Metab.* (2017) 18:622–35. doi: 10.2174/1389200218666170427113504

4. Liu Y, Yang C, Qi W, Pei Z, Xue W, Zhu H, et al. The impact of ABCB1 and CES1 polymorphisms on dabigatran pharmacokinetics in healthy chinese subjects. *Pharmgenomics Pers Med.* (2021) 14:477–85. doi: 10.2147/PGPM.S291723

5. Laizure SC, Parker RB, Herring VL, Hu ZY. Identification of carboxylesterasedependent dabigatran etexilate hydrolysis. *Drug Metab Dispos*. (2014) 42:201–6. doi: 10.1124/dmd.113.054353

6. Shi J, Xiao J, Wang X, Jung SM, Bleske BE, Markowitz JS, et al. Plasma carboxylesterase 1 predicts methylphenidate exposure: a proof-of-concept study using plasma protein biomarker for hepatic drug metabolism. *Clin Pharmacol Ther.* (2022) 111:878–85. doi: 10.1002/cpt.2486

7. Baturina O, Andreev D, Fedina L, Mirzaev K, Ivashchenko D, Ryzhikova K, et al. Influence of clinically significant genes on antiplatelet effect of clopidogrel and clinical outcomes in patients with acute coronary syndrome and atrial fibrillation. *Pharmacology.* (2022) 107:216–26. doi: 10.1159/000521531

8. Sychev DA, Levanov AN, Shelekhova TV, Bochkov PO, Denisenko NP, Ryzhikova KA, et al. The impact of ABCB1 (rs1045642 and rs4148738) and CES1 (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty. *Pharmacogenomics Pers Med.* (2018) 11:127–37. doi: 10.2147/PGPM.S169277

9. Zubiaur P, Saiz-Rodríguez M, Ochoa D, Navares-Gómez M, Mejía G, Román M, et al. Effect of sex, use of pantoprazole and polymorphisms in SLC22A1, ABCB1, CES1, CYP3A5 and CYP2D6 on the pharmacokinetics and safety of dabigatran. *Adv Ther.* (2020) 37:3537–50. doi: 10.1007/s12325-020-01414-x

10. Chin PK, Wright DF, Zhang M, Wallace MC, Roberts RL, Patterson DM, et al. Correlation between trough plasma dabigatran concentrations and estimates of glomerular filtration rate based on creatinine and cystatin C. *Drugs R D.* (2014) 14:113–23. doi: 10.1007/s40268-014-0045-9

11. Roșian A-N, Roșian ȘH, Kiss B, Ștefan MG, Trifa AP, Ober CD, et al. Genotype-phenotype correlation for dabigatran in patients with non-valvular atrial fibrillation (a single centre research). *Hum Vet Med.* (2020) 12: 123–9.

12. Sychev D, Skripka A, Ryzhikova K, Bochkov P, Shevchenko R, Krupenin P, et al. Effect of CES1 and ABCB1 genotypes on the pharmacokinetics and clinical outcomes of dabigatran etexilate in patients with atrial fibrillation and chronic

reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/ fcvm.2022.959916/full#supplementary-material

SUPPLEMENTARY FIGURE 1

PRISMA flow diagram.

SUPPLEMENTARY FIGURE 2

Violin plots of allele-specific sQTLs according to rs2244613 genotypes in 17 human tissues in the GTEx dataset.

SUPPLEMENTARY TABLE 1 PRISMA checklist.

kidney disease. Drug Metab Pers Ther. (2020) 35:20190029. doi: 10.1515/dmpt-2019-0029

13. Paré G, Eriksson N, Lehr T, Connolly S, Eikelboom J, Ezekowitz MD, et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. *Circulation*. (2013) 127:1404–12. doi: 10.1161/CIRCULATIONAHA.112.001233

14. Shi J, Wang X, Nguyen JH, Bleske BE, Liang Y, Liu L, et al. Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender. *Biochem Pharmacol.* (2016) 119:76–84. doi: 10.1016/j.bcp.2016.0 9.003

15. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. (2021) 372:n71. doi: 10.1136/bmj.n71

16. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol.* (2014) 14:135. doi: 10.1186/1471-2288-14-135

17. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. *The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses.* (2002). Available online at: http://www.ohri.ca/programs/ clinical_epidemiology /oxford.asp (accessed on 4 April, 2022).

18. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. (2003) 327:557–60. doi: 10.1136/bmj.327.7414.557

19. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. (1959) 22:719-48.

20. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. (1997) 315:629–34. doi: 10.1136/bmj. 315.7109.629

21. GTEx Consortium. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. *Science.* (2015) 348:648–60.

22. Meshcheryakov YV, Chertovskikh YV, Sychev DA. The pharmacogenetics of the new oral anticoagulant dabigatran - the role of rs2244613 CES1 polymorphism in the adverse reactions development. *Pharmacogenet Pharmacogenomics*. (2017) 2:18–9.

23. Xu L. Study on TDM Monitoring, Hemorrhage Risk and Thrombosis Risk of Dabigatran Etexilate in NVAF Patients for Atrial Fibrillation Ablation in China (Chinese). Master's thesis. Shanghai Jiao Tong University, Shanghai (2018).

24. Tomek A, Jansky P, Olserova A, Cederquist L. The correlation of through plasmatic concentration of dabigatran and CES1 genotype with major bleeding in stroke patients. *Stroke*. (2018) 49:ATM110. doi: 10.1161/str.49.suppl_1.TMP110

25. Ji Q, Zhang C, Xu Q, Wang Z, Li X, Lv Q. The impact of ABCB1 and CES1 polymorphisms on dabigatran pharmacokinetics and pharmacodynamics in patients with atrial fibrillation. *Br J Clin Pharmacol.* (2021) 87:2247–55. doi: 10.1111/bcp.14646

26. Lähteenmäki J, Vuorinen AL, Pajula J, Harno K, Lehto M, Niemi M, et al. Pharmacogenetics of bleeding and thromboembolic events in direct oral anticoagulant users. *Clin Pharmacol Ther.* (2021) 110:768–76. doi: 10.1002/cpt. 2316

27. Zheng X, Zhang L, Zhang J. Effects of ABCB1 and CES1 genetic polymorphisms on the anticoagulant efficacy of dabigatran etexilate in patients with non-valvular atrial fibrillation (Chinese). *Chin J Clin Lab Sci.* (2021) 39:903–8.

28. Xiang J. Correlation Study of ABCB1 and CES1 Gene Polymorphisms with Rivaroxaban/Dabigatran Plasma Concentration and Drug Safety in Patients with Atrial Fibrillation (Chinese). Master's thesis, ChongQing Medical University, Chongqing (2021).

29. Sychev DA, Abdullaev SP, Mirzaev KB, Ryzhikova KA, Shuyev GN, Sozaeva ZA, et al. Genetic determinants of dabigatran safety (CES1 gene rs2244613 polymorphism) in the Russian population: multi-ethnic analysis. *Mol Biol Rep.* (2019) 46:2761–9. doi: 10.1007/s11033-019-04722-w

30. Hosokawa M, Furihata T, Yaginuma Y, Yamamoto N, Koyano N, Fujii A, et al. Genomic structure and transcriptional regulation of the rat, mouse, and human carboxylesterase genes. *Drug Metab Rev.* (2007) 39:1–15. doi: 10.1080/03602530600952164

31. Laizure SC, Herring V, Hu Z, Witbrodt K, Parker RB. The role of human carboxylesterases in drug metabolism: have we overlooked their importance? *Pharmacotherapy.* (2013) 33:210–22. doi: 10.1002/phar.1194

32. Ebner T, Wagner K, Wienen W. Dabigatran acylglucuronide, the major human metabolite of dabigatran: in vitro formation, stability, and pharmacological activity. *Drug Metab Dispos.* (2010) 38:1567–75. doi: 10.1124/dmd.110.033696

33. Yamazaki S, Evers R, De Zwart L. Physiologically-based pharmacokinetic modeling to evaluate in vitro-to-in vivo extrapolation for intestinal P-glycoprotein inhibition. *CPT Pharmacometrics Syst Pharmacol.* (2022) 11:55–67. doi: 10.1002/psp4.12733

34. Stangier J, Rathgen K, Stähle H, Gansser D, Roth W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. *Br J Clin Pharmacol.* (2007) 64:292–303. doi: 10.1111/j.1365-2125.2007.02899.x

35. Chen F, Zhang B, Parker RB, Laizure SC. Clinical implications of genetic variation in carboxylesterase drug metabolism. *Expert Opin Drug Metab Toxicol.* (2018) 14:131–42. doi: 10.1080/17425255.2018.1420164

36. Raymond J, Imbert L, Cousin T, Duflot T, Varin R, Wils J, et al. Pharmacogenetics of direct oral anticoagulants: a systematic review. *J Pers Med.* (2021) 11:37. doi: 10.3390/jpm11010037

37. Hamzic S, Kummer D, Milesi S, Mueller D, Joerger M, Aebi S, et al. Novel genetic variants in carboxylesterase 1 predict severe early-onset capecitabine-related toxicity. *Clin Pharmacol Ther.* (2017) 102:796–804. doi: 10.1002/cpt.641

38. Dimatteo C, D'Andrea G, Vecchione G, Paoletti O, Cappucci F, Tiscia GL, et al. Pharmacogenetics of dabigatran etexilate interindividual variability. *Thromb Res.* (2016) 144:1–5. doi: 10.1016/j.thromres.2016.05.025