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Sigmoid isosti�ness-lines: An
in-vitro model for the
assessment of aortic stenosis
severity

Eric Bu	e1,2*,Michael Stucki1,2, Shaokai Zheng2,

Maxime Chiarelli2, Christian Seiler1, Dominik Obrist2 and
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Introduction: The aortic valve opening area (AVA), used to quantify aortic

stenosis severity, depends on the transvalvular flow rate (Q). The currently

accepted clinical echocardiographic method assumes a linear relation

between AVA and Q. We studied whether a sigmoid model better describes

this relation and determined “isosti�ness-lines” across a wide flow spectrum,

thus allowing building a nomogram for the non-invasive estimation of

valve sti�ness.

Methods: Both AVA and instantaneous Q (Qinst) were measured at 10 di�erent

mean cardiac outputs of porcine aortic valves mounted in a pulsatile flow loop.

The valves’ cusps were chemically sti�ened to obtain three sti�ness grades and

the procedure was repeated for each grade. The relative sti�ness was defined

as the ratio between LV work at grade with the added sti�ness and at native

sti�ness grade. AVApeak corresponding to the selected Qpeak of the highest

3 and 5 cardiac output values was predicted in K-fold cross-validation using

sequentially a linear and a sigmoid model. The accuracy of each model was

assessed with the Akaike information criterion (AIC).

Results: The sigmoid model predicted more accurately AVApeak (AIC for

prediction of AVA with Qpeak of the 3 highest cardiac output values: –1,743

vs. –1,048; 5 highest cardiac output values: –1,471 vs. –878) than the

linear model.

Conclusion: This study suggests that the relation between AVA and Q can

be better described by a sigmoid than a linear model. This construction

of “isosti�ness-lines” may be a useful method for the assessment of aortic

stenosis in clinical echocardiography.

KEYWORDS

aortic stenosis, isosti�ness lines, valvular heart disease, low-flow, low-gradient aortic
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1. Introduction

Patients with symptomatic severe aortic stenosis, one of

the two most common valvular heart diseases, benefit from

aortic valve replacement (1). This underlines the importance

of a correct diagnosis. The aortic valve opening area (AVA)

is the main parameter used to assess the severity of aortic

stenosis (1). However, AVA depends on the transvalvular flow

rate (Q) and the nature of this relation is unclear. Around a

third of patients with severe aortic stenosis have reduced Q

due to reduced left ventricular function (2, 3). This situation is

ambiguous because the reduced AVA can be due to reduced Q

alone, with or without increased stiffness of the valve. However,

aortic valve replacement is indicated only for stiffened valves

(e.g., due to calcification). Dobutamine stress echocardiography

is used as an additional test to increase Q and observe the

corresponding change in AVA (4–6). The main assumption,

currently used for clinical decisions, is that the relation between

Q and AVA is linear. Previous study showed that the relation

between Q and transvalvular pressure loss (1P) under stress

is non-linear and difficult to predict (7) and that severe aortic

stenosis does not seem to behave like an orifice with a fixed

area (8) To account for the large interindividual variability

of Q-increases during dobutamine stress, the AVA has been

projected to a standardized Q-value (set arbitrarily to 250 ml/s)

using linear interpolation (3). The corollary of the assumption

of linearity, however, is that AVA would always continue to

increase without boundaries with increasing Q. In this in vitro

experiment with varying stiffness grades of porcine aortic valves,

we compared the accuracy of a linear and a sigmoid, saturating

model for the prediction of valve stiffness and AVA. We

constructed “isostiffness-lines” over a large spectrum of Q that

also include values encountered during low-flow situations and

stress tests.

2. Methods

We harvested aortic valves from 4 months old pigs (≈ 120

kg) which were slaughtered within 24 h and kept thereafter

at 4◦C before the preparation of the valves. A valve identifier

scheme was defined as follows: AXXX, where A stands for aortic

valve and XXX is the ID number of the valve starting from 001

defined as the harvested valve number. We cut the valve with

human surgical instruments as follows: on the side of the left

ventricle (LV), we preserved 1 cm of the left ventricular outflow

tract (LVOT) below the lower plane defined by the cusps of

the aortic valve and cut the ascending aorta 0.5 cm above the

plane defined by the 3 commissures of the aortic valve. We

then sutured the LVOT on a wedge of neoprene sheet with

a central hole. We then secured the neoprene sheet with the

sutured valve between two POM (Polyoxymethylene) flanges

clamped together with screws (Figures 1A,B). We sutured the

aortic side of the valve to a loosely tied indented ring so

that the valve cusp would not collapse during diastole, thus

allowing the proximal ascending aorta to dilate during systole.

We measured the area of the LVOT by counting the number

of pixels within the LVOT in an image of the mounted valve

taken with the camera in the axial direction from the ventricle

side. We calibrated the pixel size by measuring the number

of pixels of the inner portion of a circular hole of the known

area of the flange on the same image (Figures 1C,D). We

placed the valve inside a distal ascending aorta phantom made

of silicone (ELASTOSIL R©RT 601 A/B Wacker Chemie AG,

München, Germany). The aortic valves were tested in a flow loop

simulating the left heart as described previously (9). The cardiac

output was measured by a transit-time flow probe (TS410/ME-

11PXL, Transonic Systems, Inc., Ithaca, NY, USA) which was

positioned directly upstream of the mechanical mitral valve

between the left atrium and the LV (Figure 2A). The blood

mimicking fluid, composed of 40/60% (by weight) glycerine

and deionized water at room temperature was used to mimic

the viscosity of the blood (9). We recorded the pressure with

pressure transducers in the LV (XtransVR, CODAN pvb Critical

Care GmbH, Forstinning, Germany) and in the compliance

chamber (PBMN flush, Baumer Electric AG, Switzerland) of

the flow loop. The two pressure sensors were calibrated with a

water column. The distance between the two pressure sensors

was 23.2 cm and the distance between the valve and the pressure

sensor was 20.5 cm (with a length of the ascending aorta

phantom of 15.5 cm, the pressure sensor residing 5 cm inside

the compliance chamber. The signals of the pump position, flow-

meter, pressure in the LV and the compliance chamber, and the

trigger were acquired via a data acquisition system (DAQ USB-

6221, National Instruments, Austin, Texas, USA) at a sampling

frequency of 20,000Hz.

2.1. Aortic valve opening area (AVA)

Aortic valve opening area of the mounted aortic valves in

a pulsatile flow loop was filmed during the ejection time with

a high speed camera with a frame rate of 2,000 Hz (Photron

FASTCAMMini AX 100, Reutlingen, Germany).

A light source was placed behind the valve and the

image contrast was optimized before acquisition. The image

was binarized for every pixel during post-processing to

dichotomize valve tissue and AVA (Figure 2B). The pixels

were counted and the pixel size was measured by optically

measuring a calibration checkerboard with squares of

known size while keeping the same camera focus and

focal length. The AVA divided by the LVOT area was

reported for each valve in order to account for different

valve sizes.
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2.2. Transvalvular flow rate (Q)

The instantaneous Qinst was calculated from the piston

velocity of the pump multiplied by the area of the piston.

The retrograde flow (Qretro) measured by the flow sensor

positioned proximal to the mechanical mitral valve was

subtracted. This resulted in a notch in the flow signal

(Figure 3A). In order to impose the same vascular afterload

in all experiments, the resistor and the water level of the

compliance chamber of the flow loop were adjusted to obtain

a constant systolic pressure of 110 mmHg and a diastolic

pressure of 70 mmHg (Figures 4A–C). The mean systolic

transvalvular flow (Qsyst) was computed by taking the average

of all the Qinst values over the ejection time. Both Qsyst

in [ml/s] [as commonly used in the clinical literature (3,

4)] and Qsyst indexed to the LVOT area in [m/s] were

reported in order to account for different valve sizes. For

each time point, both AVA and Qinst were measured at

10 different cardiac output values ranging from 0.5 to 5.0

liters/min (Figure 3).

FIGURE 1

(A,B) Valve mounting: A harvested valve loosely attached to a ring with a sewing thread on the side of the ascending aorta and sewn to a

neoprene sheet entrapped between two POM (Polyoxymethylene) flanges. (C,D) LVOT area measurement.
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FIGURE 2

Sketch of the setup (A). Video frames of valve opening (B).

2.3. Transvalvular gradient

The instantaneous transvalvular pressure gradient

(1P) was computed by subtracting the pressure in

the compliance chamber from the pressure in the LV

(Figures 4D–F) which were recorded with the two

transducers in LV and compliance chamber as described

in Section 2. The mean transvalvular gradient was

computed by averaging all the positive values during

valve patency.

2.4. Cumulative LV work

The cumulative work performed by the LV was calculated

for each time point of the cardiac cycle as previously described

Frontiers inCardiovascularMedicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.960170
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Bu	e et al. 10.3389/fcvm.2022.960170

FIGURE 3

Selection of Qpeak and corresponding AVApeak points (for one valve: A019). (A) Qinst with synchronous corresponding AVAinst. Ten lines

corresponding to the 10 di�erent cardiac output values for one sti�ness grade from 0.5l/min (in light green) to 5.0l/min (in dark blue). Sti�ness

(Continued)
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FIGURE 3 (Continued)

grade 1 is depicted (cardiac output of 0.5l/min was missing at sti�ness grade 0). (B): Instantaneous retrograde Q (Q retro) measured with flow

probe placed proximal to the mitral valve for one sti�ness grade (1). (C): All Qinst and corresponding AVAinst for one valve at one sti�ness grade 1

and 10 cardiac output values. (D): Selection of the Qinst higher than 97% of max{Qinst} and corresponding AVAinst for one valve at one sti�ness

grade (1) and 10 cardiac output values. (E): All Qinst and corresponding AVAinst for one valve at the three sti�ness grades and 10 cardiac output

values. (F): Selection of the Qinst higher than 97% of max{Qinst} and corresponding AVAinst for one valve at three sti�ness grades 1 and 10 cardiac

output values and their mean (Qpeak and AVApeak) for each sti�ness grade and each cardiac cycle: (G).

FIGURE 4

Valve A019: (A–C): Instantaneous aortic pressure. (D–F): Instantaneous transvalvular pressure. (G–I): Instantaneous LV work. In each plot, there

are 10 lines corresponding to the 10 di�erent cardiac output values from 0.5l/min (in light green) to 5.0l/min (in dark blue) for one sti�ness grade.

(10) (Figures 4G–I):

WLV (T) =

∫ T

0
PLV

dVLV

dt
· dt (1)

where WLV (T) is the cumulative work performed by the pump

from the start of the cycle to the time point T, PLV is the pressure

in the LV and dVLV is the instantaneous change in volume in

the LV.
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FIGURE 5

Measurement of delay between the camera and pump position sensor via the DAQ (A,B): Detection of the position of the pump with the

camera. (C,D): Circular cross-correlation results of the position of pump: DAQ vs. camera signal. We obtained the signal of the position of the

pump through the DAQ and filmed its displacement with the camera. We then made a binary copy of the region of interest and searched the

leading edge of the pump by setting a point on a horizontal line in front of the pump on its displacement axis. For each frame, we searched the

first white pixel, marked it as black for quality control, and thus recorded the pump position through the entire circle (A,B). The entire series

included 9 cycles with the camera and 9 with the position sensor via the DAQ. We then calculated the lag between the camera and the position

of the pump via the DAQ using circular cross-correlation. We found that the signal of the camera was in advance of 14 ms with respect to the

DAQ (C,D). The circular cross-correlation of two signals x, y, ∈ size of N can be defined by [§8.8.1, Smith (11)]:

r̂x,y (l) =
1
N
(x ⋆ y)(l) = 1

N

∑N−1
n=0 x(n)y(n+ l) l = {0, 1, 2, . . . ,N− 1} Where ⋆ is the Discrete Fourier Transform correlation operator. The delay between

the camera and the flow probe measured in another experiment was of 11 ms.

TABLE 1 Baseline characteristics.

Parameter Cardiac output [l/min] Grade a Grade b Grade c

Mean transvalvular gradient [mmHg] 0.5 7.5± 3.9 11.3± 4.1 12.8± 4.2

2.5 12.5± 5.2 22.0± 5.6 31.7± 9.7

5.0 23.0± 7.2 41.9± 8.8 61.7± 14.3

LV work [J] 0.5 0.15± 0.03 0.18± 0.04 0.20± 0.05

2.5 0.47± 0.06 0.53± 0.07 0.61± 0.11

5.0 1.01± 0.12 1.20± 0.18 1.37± 0.21

Qsyst [ml/s] 0.5 133± 9 135± 19 138± 22

2.5 291± 15 300± 17 307± 26

5.0 508± 27 512± 26 525± 34

Qsyst indexed to LVOT [m/s] 0.5 0.24± 0.04 0.25± 0.07 0.26± 0.08

2.5 0.57± 0.08 0.59± 0.10 0.60± 0.12

5.0 0.96± 0.15 0.96± 0.15 0.95± 0.18

Maximum AVA [% of LVOT] 0.5 29.0± 4.3 12.4± 5.7 10.7± 6.0

2.5 30.6± 4.6 18.2± 5.0 14.3± 4.7

5.0 37.2± 6.2 23.1± 6.2 18.1± 4.1

Relative stiffness value - 1.00±0.00 1.16±0.08 1.34±0.14
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2.5. Valve sti�ening and relative sti�ness
computation

The valves were stiffened by treating them with

formaldehyde, a protein cross-linking agent, to obtain a

total of three stiffness grades (stiffness grades a, b, and c). The

relative stiffness s of the native stiffness grade a was defined

as sa = 1 and the relative stiffness of grades b and c was

computed as ratio (k) between the LV work at grades b and c

and the LV work at grade a at the four highest cardiac output

FIGURE 6

Schematic depiction of the K-fold cross-validation algorithm.
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FIGURE 7

Baseline characteristics: (A–C): Mean transvalvular gradient. (D–F): LV Work. (G–I): Qsyst. (J–L) :Qsyst indexed to LVOT. (M–O): Maximal AVA. - In

each plot, there are eleven lines, each representing one valve.
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TABLE 2 E�ect of cardiac output and sti�ness grade.

Effects Parameters Mean 95% CI p val

Effect of cardiac output

Maximum AVA [% of LVOT] 2.0 [1.3;2.6] <0.001

Qsyst [ml/s] 84.0 [83.0;85.0] <0.001

Qsyst indexed to LVOT [m/s] 0.16 [0.15;0.16] <0.001

LV work [J] 0.22 [0.21;0.23] <0.001

Mean transvalvular gradient [mmHg] 7.0 [6.1;7.9] <0.001

Effect of stiffness grade

Maximum AVA [% of LVOT] −40.0 [−44.2;−35.9] <0.001

Qsyst [ml/s] 45.0 [−36.0;126.0] 0.277

Qsyst indexed to LVOT [m/s] 0.07 [−0.09;0.24] 0.378

LV work [J] 0.49 [0.26;0.72] <0.001

Mean transvalvular gradient [mmHg] 57.1 [48.5;65.7] <0.001

FIGURE 8

Assessment of the accuracy of the prediction of the relative sti�ness - K-fold cross-validation results: (A,B): Linear regression (left) with black

line and blue line representing the identity and the linear regression, respectively, and Bland- Altman analysis (right) for 11 valves with the

sigmoid model. (C,D): Idem with the linear model. In each linear regression plot, the blue line represents the linear regression between the

measured and predicted AVA. The ideal perfect predictions with slope 1 and intercept 0 (the identity) are depicted in black.
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values as follows:




Wa
max 5.01/min · k

b, c
5.0

Wa
max 4.51/min · k

b, c
4.5

Wa
max 4.01/min · k

b, c
4.0

Wa
max 3.51/min · k

b, c
3.5




=




Wb, c
max 5.01/min

Wb, c
max 4.51/min

Wb, c
max 4.01/min

Wb, c
max 3.51/min




(2)

sb, c =
kb, c5.0 + kb, c4.5 + kb, c4.0 + kb, c3.5

4
(3)

where Wmax = max
0≤T≤Tcycle

{WLV(T)} is the LV work or

the work performed by the ventricle over the whole

cycle at one particular stenosis grade and one particular

cardiac output value. The average of the ratios of

the four highest cardiac output values was calculated,

corresponding to the range of physiological cardiac

output values.

2.6. Post-processing

The delay between the camera and the pump position

sensor was measured as well as the delay between the

camera and the flow probe to synchronize the three signals

using a circular cross-correlation [Figure 5; (11)]. The AVA

signal was smoothened by performing a centered moving

average over 40 frames (0.02 s) for each time point,

thus keeping the signal at 2,000 Hz. Qinst signal was

smoothened by centered moving average over 800 samples

(0.04 s) and down-sampled by a factor of 10 to a sampling

rate of 2,000 Hz. Only the Q values (together with the

corresponding AVA) which where higher than 97% of

max{Qinst} were selected. This corresponds to the phase of

the cycle were the flow is the least pulsatile. From this

subset, the averages (Qpeak, AVApeak) were computed for each

cardiac output value of each stiffness grade (Figure 3) for

further analysis.

2.7. Statistics of baseline characteristics

From the experiments with the different valves, the

mean and standard deviation of the relative stiffness, mean

transvalvular gradient [mmHg], LV work [J], Qsyst [ml/s] and

Qsyst indexed to LVOT [m/s], and maximum AVA [% of LVOT]

were reported for each stenosis grade and the 3 following cardiac

output values: 0.5, 2.5, and 5.0 l/min in Table 1. In a linear mixed

effect model, we tested the fixed effect of the cardiac output and

the relative stiffness on each of those 5 variables, setting the valve

identifiers as the random effect.

2.8. Prediction of relative sti�ness and
AVA in a modified K-fold cross-validation
algorithm

The relative stiffness of each grade was predicted in K-fold

cross-validation, a machine learning algorithm (12).

2.8.1. Linear and sigmoid models

First, a linear (with respect to Q) model was used as follows:

ÂVA1 = F1(Q, s1, θ1, θ2) = θ1 ·Q · θ
s1
2 (4)

By analyzing a scatter plot of {Q;AVA} points, we postulated a

saturating sigmoid behavior (with respect to Q) and modeled it

mathematically as follows:

ÂVA2 = F2(Q, s2, θ3, θ4, θ5) =
θ3

s
θ4
2

( 1

e(−Q·θ5) + 1
− 0.5

)
(5)

where ÂVA1 and ÂVA2 are the respective predicted AVA for each

model, s1 and s2 are the two relative stiffnesses of each model,

θ1,...,5 are the hyperparameters to be fitted on the training set and

to be kept constant for all the valves of the test set and the final

clinical decision tool, F1 and F2 are the two functions describing

the relation between those variables.

2.8.2. Fitting of hyperparameters and relative
sti�ness

We sequentially trained the hyperparameters θ1,...,5 and

relative stiffness s1,2 in a modified K-fold cross-validation

algorithm (Figure 6). As previously described (12), we first split

the entire dataset comprising Qpeak and corresponding AVA and

s data points of all the analyzed valves into a training dataset

which included all the valves except one and a test dataset which

included the valve set aside in the training dataset. The entire

dataset was composed of K=11 valves, with 3 different stiffness

grades at 10 different cardiac output values making a total of

330 data points. During the training step (Equation 6), we fitted

the parameter θ1−5 on the training dataset. We repeated the

procedure sequentially setting each valve in the test set such that:

θ̂θθ
j
= argmin

θ

m1∑

i=1

[
AVAi − F

(
Qi, si,θθθ

)]2
(6)

where

• j ∈ {1, ...,K} is the index of the split. For each split, there is a

training set (noted as xtrainj ) and a test set (noted as xtestj ).

• each data point i ∈ {1, ...,m1} corresponds to one Qi with

one AVAi at one particular stiffness s
trainj
i of the training set

trainj of sizem1=(K − 1) · ns · nf . In our case: (K − 1) = 10
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FIGURE 9

Prediction of the AVApeak of the corresponding Qpeak at the highest cardiac output values: “Isosti�ness-lines.” One valve (A024) at three di�erent

sti�ness grades was chosen to illustrate the di�erence in prediction accuracy between linear (green) and sigmoid (blue) models of the AVApeak

(Continued)
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FIGURE 9 (Continued)

corresponding to Qpeak with the highest cardiac output values. Prediction of AVApeak at the 3 highest cardiac output values: (A–C). The black

points are true AVA used for the prediction. The red points are the true AVA set aside (not used for prediction). The points in color are the

predicted AVA with their corresponding lines for the two respective models. Combination of the three sti�ness grades data points and

corresponding prediction of three “isosti�ness”- lines of the sigmoid model: (D). Prediction of AVA at the 5 highest cardiac output values: (E–G).

Combination of the three sti�ness grades data points and corresponding prediction of three “isosti�ness” lines of the sigmoid model: (H).

valves, ns = 3 number stiffness grades and nf = 10 different

cardiac output values. Thereforem1 = 300.

• θ̂θθ
j
is the optimal vector θθθ (θθθ = [θ1, θ2]

⊤ for F1 and θθθ =

[θ3, θ4, θ5]
⊤ for F2) obtained on training set j.

• The least square optimization uses the

Levenberg-Marquardt algorithm.

Once θ̂1−5
j
for F1 and F2 were obtained, we could use them as a

fixed variable during the test step (Equation 7) to fit the predicted

relative stiffness ŝj on the set composed of the remaining test

valve:

ŝj = argmin
s

m2∑

i=1

[
AVA

testj
i − F

(
Q
testj
i , s, θ̂ j

)]2
(7)

m2=n
trainj · ·ns · nf . In our case: 1 valve, ns=1 stiffness

grades nf =10 different cardiac output values, m2=10. For each

test set, the test step was repeated three times for the three

stiffness grades.

2.8.3. Accuracy assessment of the linear and
sigmoid models

We assessed the accuracy of the models by evaluating the

agreement between measured and predicted relative stiffnesses

(s and ŝ), we computed the Pearson correlation coefficient, the

bias, and its respective 95% CIs, the coefficient of variation, and

the mean squared error (MSE) by performing a linear regression

and Bland-Altman analysis. In order to assess the goodness

of fit of the model while taking into account its complexity,

we computed the Akaike information criteria (AIC) which we

defined as the endpoint (13), with lower values indicating a

superior model. The MSE and AIC were computed as follows:

MSE =
1

n

n∑

i=1

(ÂVA1,2 − AVAi)
2 (8)

AIC = n · log
(
MSE

)
+ 2k (9)

where n is the total number of data points (one for each

cardiac output of each stenosis grade of each valve) and k

is the number of hyperparameters plus one (corresponding

to the variance estimate) (14). We reported the mean values

of θ1,...,5 and their SD obtained during the K-fold cross-

validation. Finally, using the same test set, we predicted the

AVApeak points corresponding to the Qpeak of the 3 and 5

highest cardiac output values, respectively, for each stiffness

grade of each valve, by predicting the ŝ1,2 using the {Qpeak,

AVApeak} data points with nf = 10-3 = 7 respectively nf =

10-5 = 5 Qpeak of the lowest cardiac output values using

Equation (7). We then used ŝ1,2 and θ1,...,5 and the Qpeak of

the 3, respectively, 5 highest cardiac output values to predict

AVApeak using the linear [Equation (4)] and sigmoid model

[Equation (5)]. This prediction scheme takes into account that,

in the clinical routine, low-flow low-gradient aortic stenoses are

common and require projecting the AVA at normal Q from low

Q-values. The number of AVApeak to be predicted (3 and 5) were

chosen arbitrarily.

2.9. Software used

Data processing and analysis were written in Python

and Julia programming languages (15, 16). Image

processing was performed in Python. Mixed models were

computed using the lme4 packages (17) of R programming

language (18).

3. Results

Three valves were excluded from the data analysis because

their neoprene sheet was accidentally torn during the valve

preparation process. The baseline characteristics of the 11

valves included in the final data analysis are presented in the

Figure 7 and Table 1. There were 4 data points missing making

a total of 330-4=326 effective data points {Qpeak, AVApeak}.

The obtained Qsyst largely encompassed the reported mean

physiological Q encountered in the clinic (134 ± 8 to 508

± 28 ml/s at 0.5 and 5.0 l/min read at the flow probe). At

normal physiological flow (cardiac output of 5.0 l/min) and

native stiffness grade, there was a Qsyst of 508 ± 27 ml/s,

Qsyst indexed to LVOT of 0.96 ± 0.15 m/s, a maximum AVA

of 37.2 ± 6.5 % of LVOT, a transvalvular mean gradient of

23.3 ± 7.5 mmHg and a Wmax of 1.01 ± 1.01 J. There was

a significant positive effect of the cardiac output on those five

5 variables: (p < 0.001, Table 2). On the other hand, both the

Qsyst (p = 0.277) and the Qsyst indexed to LVOT (p = 0.378)

were not influenced by the relative stiffness, confirming that

Qsyst was, as expected, very similar between different stiffness

grades. Moreover, the relative stiffness had a significant negative
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FIGURE 10

Assessment of the accuracy of the prediction of the AVApeak: Assessment of the AVApeak predicted with the linear model with Qpeak of the 3

highest cardiac output values with linear regression (A) and Bland-Altman analysis (B). Assessment of the AVApeak predicted with the sigmoid

(Continued)
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FIGURE 10 (Continued)

model with Qpeak of the 3 highest cardiac output values with linear regression (C) and Bland-Altman analysis (D). Assessment of the AVApeak

predicted with the linear model with Qpeak of the 5 highest cardiac output values with linear regression (E) and Bland-Altman analysis (F).

Assessment of the AVApeak predicted with the sigmoid model with Qpeak of the 5 highest cardiac output values with linear regression (G) and

Bland-Altman analysis (H). In each linear regression plot, the blue line represents the linear regression between the measured and predicted

AVApeak. The ideal perfect predictions with slope 1 and intercept 0 (the identity) are depicted in black.

effect on the maximum AVA and a significant positive effect

on both the LV work and the mean transvalvular gradient

(p<0.001 for the three values, Table 2). The linear model F1

could predict the stiffness with good accuracy (ŝ1=0.860 · s1

+ 0.095, r = 0.794, p < 0.001, θ1=3.69 ± 0.66, θ2 = 0.066 ±

0.009) with a higher bias and equally high coefficient of variation

compared to the sigmoid model (bias: 0.07, 95% CI = [–0.15;

0.29], CV: 57%, Figures 8C,D). The sigmoid model F2 could

predict the relative stiffness with good accuracy (ŝ2 = 0.822

· s2 + 0.196, r = 0.758, p < 0.001, θ3=0.72 ± 0.01, θ4=3.14

± 0.11, θ5=2.80 ± 0.23) with a relatively low bias but a high

coefficient of variation (bias: 0.01, 95% CI = [–0.23; 0.25], CV =

57%, Figures 8A,B). Overall, the sigmoid model better predicted

the relative stiffness than the linear model (AIC: –242 vs. –

239). The sigmoid models also better predicted the AVApeak

corresponding to the Qpeak of the 3 (AIC = –1,743 vs. AIC

= –1,048) and 5 highest cardiac output values (AIC = –1,471

vs. AIC = -878) than the linear model for each stiffness grade

of each valve (Figure 9). The MSE was more than five times

higher in the linear model than in the sigmoid model (MSE =

12.69e−5 vs. 2.24e−5 and MSE = 12.63e−5 vs. 2.40e−5 for the

prediction of AVApeak with Qpeak of the 3 and 5 highest cardiac

output values, respectively). The linear model systematically

overestimated the predicted AVApeak as can be observed with

the slope value (slope = 1.40 respectively slope = 1.58 for 3

respectively, 5 AVApeak predictions) whereas there was no such

bias in the sigmoid model in which the slope was much closer

to 1 (slope = 0.98 respectively slope = 1.07 for 3 respectively,

5 AVAs predictions (Figure 10). Interestingly, even after having

carefully subtracted the delay between the signal allowing to

synchronize the Qinst and the AVAinst signal, we observed that

a subset of points had positive computed Qinst with a closed

valve. This could be attributed to a bulging effect of the valve

where the cusps move during the isovolumetric contraction

time without opening (Figure 3C). Finally, we plotted all the

“isostiffness-lines” of all the valves on a single plot (Figure 11A).

Due to the cross-validation, every valve has different θ which

explains why some lines cross each other (which would not

be the case with unified θ . Moreover, the relative stiffness

of the valve A028b had the highest relative stiffness and was

higher than the relative stiffness of A028c (Figure 11A). We

plotted the corresponding mean value of the “isostiffness-

lines” of each group with their corresponding confidence

interval (Figure 11B).

4. Discussion

In this in vitro experiment, we could successfully implant

harvested porcine valves in a flow loop simulating the

left heart with physiological afterload. We could impose

a broad spectrum of cardiac output and corresponding Q

encompassing both physiological normal-flow and low-flow

encountered in real patients being referred for evaluation for

aortic valve replacement in case of severe aortic stenosis.

We could reliably stiffen the valves chemically to obtain an

in vitro model of aortic stenosis. The calculated LV work

was well aligned with the work per beat reported in the

literature (19). Most importantly, the sigmoid model predicted

more accurately the AVApeak at high Qpeak, a challenging

and frequent situation for clinicians performing low-dose

dobutamine stress echocardiography in patients with aortic

stenosis. The non-linear behavior of hemodynamic parameters

such as transvalvular pressure loss and peak flow rate Qpeak

have previously been described in past (8). In order to be usable

in the clinic, the model had to be simple and should take

parameters that can be easily measured in echocardiography

such as AVA, Q, and the area of the LVOT. The modified

sigmoid function presented in this manuscript which meets

those two design constraints has been found empirically. This

study gives hope of constructing a nomogram with “isostiffness-

lines” over the entire clinically relevant spectrum of Q- and

AVA-values. With such a nomogram, the intrinsic stiffness of

individual aortic valves could be defined independently of the

instantaneous Q at the time of patient evaluation. Clinical

scenarios include any form of cardiac decompensation at the

advanced stage of aortic stenosis when Q is low. A unique

iso-stiffness value must, therefore, be determined to define

the limit between severe and non-severe aortic stenosis. This

value could then be used as a threshold to refer the patient

to aortic valve replacement without the need of performing

additional tests to increase Q, such as dobutamine stress

echocardiography. This will require validation in the clinics but

has the potential to simplify the evaluation of patients with

aortic stenosis.

5. Limitations

We could not subtract the retrograde flow of valve A017

because the flow sensor was positioned proximal to the left

Frontiers inCardiovascularMedicine 15 frontiersin.org

https://doi.org/10.3389/fcvm.2022.960170
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Bu	e et al. 10.3389/fcvm.2022.960170

FIGURE 11

Nomogram: (A) Depiction of all “isosti�ness-lines” of all the valves with grades 0, 1, and 2 in blue, green, and red, respectively. (B) Mean and

corresponding confidence interval (± standard error) of the “isosti�ness-line” for each sti�ness grade. A similar theoretical nomogram with

di�erent “isosti�ness-lines” could be used in clinical practice to classify aortic stenosis severity, for any valve size, at any flow rate.
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atrium. However, we decided to include the valve in the

final analysis as the amplitude of the retrograde flow at the

phase of the ejection time selected for the cross-validation

was small as seen in Figure 3C. We observed that valve

number A028 had a slightly higher AVA at grade c than at

grade b. Although this underlines the imperfection of the

stiffening procedure, we included this valve in the analysis as

the corresponding computed relative stiffness at grade c was

also lower than at grade b and the algorithm did not make

any assumptions about the order of the stiffness grade. Due

to the physical limitations of the compliance chamber, the

range of diastolic pressure varied at extreme (both low and

high) cardiac output values (Figures 4B,C). As the pressure was

measured in the compliance chamber at 20.5 cm downstream

of the valve annulus, full pressure recovery was allowed (20)

and effects of turbulent flow immediately downstream of the

valve orifice were avoided. The transvalvular pressure loss

was slightly overestimated due to the viscous losses in the

ascending aorta (15.5 cm). This additional loss was estimated

according to Poiseuille’s law at approximately 0.01 mmHg,

which seems acceptably small (although the actual loss was

probably somewhat higher due to pulsatility). Formaldehyde

stiffens the valve tissue by protein cross-linking but does not

reflect the calcification process of the valves. It also assumes

a uniform stiffening and not a focal stiffening of the tip

of the cusps which can be encountered in the clinic. We

attempted other stiffening procedures by applying tar to the

valve which resulted in the unsatisfying loss of integrity of

the valve. The AVA with respect to LVOT was small. We

attribute this effect to our suturing technique which could not

completely place the valve under the same dynamic tensile

conditions as seen during physiological systole. This also

explains the relatively high transvalvular gradient obtained at

physiological Q. As we think that it is physically difficult to

conceive an infinite AVA with infinite Q, a saturating effect

was a prerequisite for a model candidate corresponding to

this physical constraint. The sigmoid functions have such a

characteristic. Although we could prove the higher accuracy

of the sigmoid model over the linear model, we acknowledge

that this sigmoid model does not capture most of the other

complex physical phenomena involved in the process of the

opening of a valve under the constraint of transvalvular

flow. Therefore, a function better describing this relation

probably exists.
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