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Introduction: We sought to explore biomarkers of coronary atherosclerosis in

an unbiased fashion.

Methods: We analyzed 665 patients (mean± SD age, 56± 11 years; 47% male)

from the GLOBAL clinical study (NCT01738828). Cases were defined by the

presence of any discernable atherosclerotic plaque based on comprehensive

cardiac computed tomography (CT). De novo Bayesian networks built out of

37,000 molecular measurements and 99 conventional biomarkers per patient

examined the potential causality of specific biomarkers.

Results: Most highly ranked biomarkers by gradient boosting were interleukin-

6, symmetric dimethylarginine, LDL-triglycerides [LDL-TG], apolipoprotein

B48, palmitoleic acid, small dense LDL, alkaline phosphatase, and asymmetric

dimethylarginine. In Bayesian analysis, LDL-TG was directly linked to

atherosclerosis in over 95% of the ensembles. Genetic variants in the genomic

region encoding hepatic lipase (LIPC) were associated with LIPC gene

expression, LDL-TG levels and with atherosclerosis.

Discussion: Triglyceride-rich LDL particles, which can now be routinely

measured with a direct homogenous assay, may play an important role in

atherosclerosis development.
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Clinical trial registration: GLOBAL clinical study (Genetic Loci and

the Burden of Atherosclerotic Lesions); [https://clinicaltrials.gov/ct2/show/

NCT01738828?term=NCT01738828&rank=1], identifier [NCT01738828].
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Highlights

- In our Bayesian analysis, LDL-TG was directly upstream from
atherosclerosis.

- LDL-TG was associated with atherosclerosis independently of
well-known factors.

- Hepatic lipase’s genetic variants correlated with LDL-TG levels
and atherosclerosis

- LDL-TG was positively linked to triglycerides, sd-LDL, and
inflammatory markers.

Introduction

Cardiovascular disease remains the leading cause of
mortality and morbidity worldwide (1). Acute manifestations
of coronary artery disease (CAD) are caused by at least
three relevant biological processes: underlying coronary arterial
atherosclerosis that develops over decades (2), acute plaque
rupture/erosion (3) followed by coronary arterial thrombosis
(4). Many long-term studies of cardiovascular outcomes
have identified low-density lipoprotein cholesterol (LDL-C)
and apolipoprotein-B (Apo-B) as key causal risk factors for
cardiovascular events (5, 6).

Such long-term cardiovascular outcomes studies are very
helpful in establishing clinically relevant risk factors that can
be monitored and modified in clinical practice, such as LDL-
C and Apo-B. A limitation of the current cardiovascular
biomarker studies is that they primarily rely on clinical events,
which is a combination of the three underlying biological
processes with different time scales, namely atherogenesis,
plaque rupture/erosion and thrombosis. As a consequence,
the current cardiovascular biomarker studies do not efficiently
identify and discriminate which of these three specific biological
processes is associated with and causally linked to a risk factor.

Non-invasive coronary arterial imaging with cardiac
CT presents a unique opportunity to isolate causal factors
of atherosclerosis per se. Accordingly, we designed a
nested case-control analysis within the Genetic Loci and
the Burden of Atherosclerotic Lesions (GLOBAL) clinical
study (ClinicalTrials.gov number NCT01738828) (7) to
identify additional causal factors. We used de novo Bayesian

network analysis, a hypothesis-free approach (8), to enrich
for associations with risk of CT for causal relevance to the
development of atherosclerosis. In order to examine causal
relevance of relationships among the multi-modal covariates
of CAD (genetics, gene expression, proteomics, etc.), we
used a specific technique successfully employed to infer
biological pathways from steady-state cross-sectional data,
namely Bayesian belief networks (8, 9). In addition, our
network analysis incorporated whole genome sequencing data
and other data modalities to avoid latent confounding and
to study potential causal biomarkers revealed by Bayesian
network analysis.

Materials and methods

Patients

The analyses for the present study were performed in
a subgroup from the Genetic Loci and the Burden of
Atherosclerotic Lesions (GLOBAL) multicentric clinical study
(ClinicalTrials.gov number NCT01738828). The present nested
Case-Control study was performed in the pre-specified Pilot
Discovery (340 patients) and Pilot Validation (340 patients)
cohorts, which, in combination, included 680 patients. Entirely
complete clinical, imaging, multiomic and genetic data with zero
missingness that is required to build the integrated data frame
for Bayesian analysis was available in 665 patients. Of these, 317
subjects had no discernable atherosclerosis on comprehensive
CT and were therefore designated as “Controls” and 348
subjects had discernable plaque on CT and were designated as
“Cases.” The GLOBAL study included subjects of 18–90 years
of age and self-referred as Caucasian, with the indication of or
undergoing coronary computerized tomography (CT). Subjects
under immunosuppressive or immunomodulatory therapy or
chemotherapy were excluded from the study. Those with major
surgery and blood transfusion within the last two months,
contraindicated CT, or preexisting cardiac affections were also
excluded from the study. Blood draw for all blood-based
biomarker analysis, “omics” testing and genetic testing was
performed at the time of the CT imaging procedure. For further
details about the GLOBAL study design, please go to Voros
et al. (7). The study was conducted according to the criteria
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set by the declaration of Helsinki and all included subjects
signed informed consent for the use of genetic material for
research purposes. The study was approved by institutional
review boards and ethics committee as appropriate. Cardiac
CT was evaluated as previously described (7). Subjects with
any evidence of atherosclerotic plaque in coronary CT were
considered cases, and those without, controls. Peripheral blood
samples were obtained from enrolled subjects, and plasma,
serum, whole blood, and buffy coat were adequately stored for
further analysis.

Data analysis approach

In order to examine causal relevance of relationships among
the multi-modal covariates of CAD (genetics, gene expression,
proteomics, etc.), we used Bayesian belief networks (8, 9).
Although Bayesian Belief networks may not always be able to
establish a unique relationship between covariates, we relied on
Markov equivalence to take advantage of additional information
in order to break synonymous probabilistic relationships. This
approach can take the form of intentional perturbations (8) or
of genetic constraints, the use of which in Bayesian networks
permits analysis that is statistically related to mendelian
randomization (10). Furthermore, we investigated our networks
of causally enriched probabilistic relationships by means of
per-patient counterfactual simulations (11), where the genetic
constraints played a role similar to that of instruments
in instrumental variable analysis. In addition, our networks
incorporated our whole genome sequencing data and other data
modalities to avoid latent confounding and to study potential
causal biomarkers revealed by Bayesian network analysis.

Detailed sample size calculations for
Bayesian network analysis

Tanner and Donoho have pioneered a compressed sensing
approach which bounds inferable complexity given available
data and assumed sparseness (12). In their simulations, for
example, if number of samples, n = 300, number of useful
predictors, k, is 3 on average, and number of variables, p, is
100,000 (as in our case), the x-axis – delta – in Figure 1 is
n/p = 300/100000 ∼ 0, the worst possible case, but the y-axis –
rho – is k/n = 3/300∼ 0 < < 0.15. While the specific numbers do
not map to our problem domain, they illustrate that statistical
inference depends on k, n, and p, and in our case is expected
to be very hard. In order to ensure that we do not suffer from
overfitting, we have applied a number of priors, as documented
in the manuscript. In particular, these include the probability
of the local model (modeled by BIC, or penalized likelihood)
multiplied by the prior probability of the model of a given
complexity and has been described by us in the supplement

to a prior work (13). In the case of a single class (e.g., only
gene expression), the total overall penalty simplifies to E-BIC
with gamma = 1/2, or simply BIC + log(| S|), where | S| is the
number of all possible models (network fragments) of the same
size as S. When multiple data types are present, our incremental
penalty for adding a term of class C to a model is defined as
deltaBIC + log(| C|) + log(| S_c|), where deltaBIC is the change
in BIC due to this addition, | C| is the number of classes, and
| S_c| is the number of elements in class C. Effectively, this
formula computes E-BIC subject to the Bayesian belief that all
classes are equally informative a priori, before any data is seen,
thus penalizing large classes, e.g., genetics, more than small
ones, e.g., clinical data. Subject to this regularization strategy,
the network’s default state is to be fully disconnected, and it can
only become connected through the preponderance of evidence
that overcomes these two penalties. Further, the use of large
model ensembles makes it virtually impossible that the network
overtrains systematically; in a way that would be repeatable in
simulations. Any overtraining would be diluted by the entropy
of the ensemble. Performing simulations on a per-network basis
and averaging their predictions allows us to shrink the overall
standard error of the estimate by the aforementioned dilution
of errors. This property of ensemble methods is well-studied
and has been reflected in a number of popular approaches to
classification and regression, as described in the manuscripts
cited above.

Conventional biomarker analysis
A panel of conventional biomarkers were evaluated

using commercially available kits and reagents, as listed in
Supplementary Table 2.

Isolation of genomic deoxyribonucleic
acid

Isolation of genomic DNA was performed using the
QIAamp DNA Blood Midi Kit (Qiagen part no. 51185). Starting
with 0.3–1 ml of whole blood, a lysis buffer and protease were
added to each sample for cell lysis. After lysis, the lysate was
loaded onto a QIAamp spin column. DNA remained bound to
the QIAamp membrane, while impurities were washed away in
2 vacuum steps. Upon drying the membrane, DNA was eluted
in 200 µl of elution buffer. The yield of genomic DNA was
subsequently determined by PicoGreen quantitation or by using
the Qubit fluorometer.

Whole genome sequencing (Illumina
Service Laboratory)

Whole-genome sequencing was performed by the Illumina
Service Laboratory.
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FIGURE 1

Clusters of circulating biomarkers against CT measures of atherosclerotic plaque, stenosis, and disease burden. This figure displays the results of
unsupervised hierarchical clustering of circulating biomarkers against CT measures of atherosclerotic plaque, stenosis, and disease burden.
Each row represents a biomarker that was nominally associated with atherosclerosis, and each column represents a CT measurement of
atherosclerosis. The dendrograms on both axes show the results of hierarchical cluster analysis. Inside the heat map, positive correlations are
shown in red and negative correlations are shown in blue; the intensity of the color represents the strength of association, as quantified by
Kendall’s tau. There are six major clusters of CT measurements of atherosclerosis: complex plaque, calcified plaque, non-calcified plaque,
calcification/stenosis, disease burden, and a second cluster of complex plaque. There are four clusters of circulating biomarkers with different
patterns of association with different measures of atherosclerosis: Cluster 1 includes triglycerides, fatty acids, calcification, endothelial
dysfunction, fibrosis, and inflammation. LDL-TG is strongly associated with early-stage, non-calcified plaque and complex plaque, and IL-6 is
strongly associated with later-stage, calcified plaque and atherosclerosis burden. Cluster 2 includes ApoB-containing lipoproteins, lipoprotein
(a), and biomarkers of insulin resistance; Cluster 3 includes hepatic biomarkers and markers of hepatic cholesterol synthesis; and Cluster 4
contains vitamin D alone.

Genomic deoxyribonucleic acid quantitation
Genomic DNA was quantified prior to library construction

using PicoGreen (Quant-iTTM PicoGreen R© dsDNA Reagent,
Invitrogen, Catalog #: P11496). Quants were read with
Spectromax Gemini XPS (Molecular Devices).

Library construction – Polymerase chain
reaction-free

Paired-end libraries were manually generated from 500 ng to
1 µg of genomic DNA using the Illumina TruSeq DNA Sample
Preparation Kit (Catalog #: FC-121-2001), based on the protocol
in the TruSeq DNA PCR-free Sample Preparation Guide.

Prefragmentation genomic DNA cleanup was performed using
paramagnetic sample purification beads (Agencourt R© AMPure R©

XP reagents, Beckman Coulter). Samples were fragmented
and libraries were size-selected following fragmentation and
end-repair using paramagnetic sample purification beads,
targeting 300 bp inserts. Final libraries were quality controlled
for size using a gel electrophoretic separation system and
were quantified.

Clustering and sequencing – v3 chemistry
Following library quantitation, DNA libraries were

denatured, diluted, and clustered onto v3 flow cells using the
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Illumina cBotTM system. cBot runs were performed based on
the cBot User Guide, using the reagents provided in Illumina
TruSeq Cluster Kit v3. Clustered v3 flow cells were loaded onto
HiSeq 2000 instruments and sequenced on 100 bp paired-end,
non-indexed runs. All samples were sequenced on independent
lanes. Sequencing runs were performed based on the HiSeq
2000 User Guide, using Illumina TruSeq SBS v3 Reagents.
Illumina HiSeq Control Software and Real-time Analysis were
used on HiSeq 2000 sequencing runs for real-time image
analysis and base calling.

Genotyping
Samples were processed using Infinium chemistry,

based on the Infinium LCG Assay Guide, and run on the
HumanOmni2.5-8 array. Resulting intensity.idat files were
loaded into GenomeStudio R© software to export genotyping calls.

Ribonucleic acid isolation from
PAXGene tubes

RNA isolation was completed using the PAXgene Blood
miRNA Kit (Qiagen, Venlo, The Netherlands). PAXgene Blood
RNA Tubes were first centrifuged to pellet the samples, then
washed with water and resuspended. After digestion with
proteinase K, the samples were homogenized by centrifugation
through PAXgene Shredder spin columns. Isopropanol was
added to the samples to optimize binding conditions, and the
samples were then centrifuged through PAXgene RNA spin
columns, where total RNA >18 nucleotides (including miRNA)
was bound to the silica membrane. The bound RNA was
treated with DNase to remove genomic DNA contamination
and washed. Pure RNA was then eluted.

Small ribonucleic acid sequencing
methods and materials

Libraries were prepared for small RNA sequencing using
the TruSeq Small RNA Sample Prep Kit (Illumina). Prior
to library preparation, RNA samples were quantitated
by spectrophotometry using a Nanodrop ND-8000
spectrophotometer and assessed for RNA integrity using
an Agilent 2100 BioAnalyzer or Caliper LabChip GX. RNA
samples with A260/A280 ratios ranging from 1.6 to 2.2, with
RNA integrity number values ≥7.0, and for which at least 1,000
ng of total RNA was available proceeded to library preparation.
Total RNA samples must have been prepared using extraction
chemistry that does not exclude small RNA species (e.g., the
QIAGEN miRNeasy Kit).

Library preparation began with 1,000 ng of total RNA in
5 µl of nuclease-free water, to which an adapter oligonucleotide
was added that was then ligated to the 3′ hydroxyl present on

miRNA species using T4 RNA ligase (New England Biolabs).
Similarly, a different adapter sequence was ligated to the 5′ end
of RNAs that possessed a 5′ phosphate, in order to create a
single-stranded molecule with defined sequences at both the
5′ and 3′ ends. This molecule was reverse-transcribed and
amplified using 14 cycles of PCR with primers that include
sequences complementary to the 5′ and 3′ adapter sequences,
a specific index sequence, and Illumina sequencing adapter
sequences. The resulting product was analyzed using an Agilent
2100 BioAnalyzer, and the molar amount of mature miRNA
present in the library was estimated by integrating the area
under the curve in the 145–160 bp range. Individual libraries
were mixed to create multiplexed pools, and the mixture was
purified by gel electrophoresis, wherein the 145–160 bp range
was excised from the gel, crushed using a Gel Breaker tube (IST
Engineering), eluted into nuclease-free water, and concentrated
by precipitation with ethanol. The concentration of the final
library pool was determined using PicoGreen (Invitrogen), and
the size distribution of the pool was determined using an Agilent
2100 BioAnalyzer. Library pools were normalized to 2 nM in
preparation for sequencing.

mRNA sequencing

Prior to library preparation, alpha and beta globin mRNA
was reduced using the GLOBINclearTM-Human Kit (Life
Technologies, Carlsbad, CA), following the manufacturers
protocol. Total RNA samples were converted into cDNA
libraries using the TruSeq Stranded mRNA Sample Prep
Kit (Illumina, #RS-122-2103). Starting with 100 ng of total
RNA, polyadenylated RNA (primarily mRNA) was selected
and purified using oligo-dT conjugated magnetic beads.
This mRNA was chemically fragmented and converted
into single-stranded cDNA using reverse transcriptase and
random hexamer primers, with the addition of Actinomycin
D to suppress DNA-dependent synthesis of the second
strand. Double-stranded cDNA was created by removing
the RNA template and synthesizing the second strand in
the presence of dUTP instead of dTTP. A single A base
was added to the 3′ end to facilitate ligation of sequencing
adapters, which contained a single T base overhang. Adapter-
ligated cDNA was amplified by polymerase chain reaction
to increase the amount of sequence-ready library. During
this amplification, the polymerase stalls when it encounters
a U base, rendering the second strand a poor template.
Accordingly, amplified material used the first strand as a
template, thereby preserving the strand information. Final
cDNA libraries were analyzed for size distribution using an
Agilent BioAnalyzer (DNA 1000 Kit, Agilent #5067-1504),
quantitated by qPCR (KAPA Library Quant Kit, KAPA
Biosystems #KK4824), and then normalized to 2 nM in
preparation for sequencing.
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Mass-spectrometry–based proteomics
methods

We performed proteomics discovery experiments in 2
stages; the first stage was performed using non-targeted mass
spectrometry, followed by the second stage of targeted mass
spectrometry using multiple reaction monitoring.

Discovery experiments using
non-targeted mass spectrometry

Samples were processed essentially as described previously
(14). Briefly, each 30 µl sample was depleted of high abundance
proteins using an affinity resin (IgY14/Supermix, Sigma).
All columns were prepared with the same manufacturing
batch of affinity resin and tested for consistent performance
prior to use. Control samples, consisting of aliquots of a
pooled human plasma sample, were inserted at the start,
middle, and end of each set of 20 paired study samples,
resulting in a batch size of 23. After depletion, samples
were frozen, freeze-dried, digested with trypsin (1:10, w:w,
Promega), and desalted on Empore C18 plates (3M Bioanalytical
Technologies). Resulting peptides were separated by strong
cation exchange (SCX, Waters) chromatography into 6 fractions
with a linear salt gradient and desalted on Oasis HLB plates
(Waters). Samples were distributed into two 96-well plates (one
test plate and one backup plate). Samples were then dried and
resuspended in 96.25/3.75 (v/v) water/acetonitrile and 0.1%
formic acid, containing 19 internal standard peptides. Mass
spectrometry analysis was performed by nanoflow reversed
phase liquid chromatography (NanoAcquity UPLC, Waters),
coupled by electrospray (Michrom ADVANCE CaptiveSpray
MS Source) to a high-resolution mass spectrometer (Q
Exactive, ThermoScientific) in liquid chromatography mass
spectrometry (LC-MS) and liquid chromatography/tandem
mass spectrometry (LC-MS/MS) mode. The LC column was
used at a flow rate of 1.8 µl/min (Waters nanoAcquity UPLC
column BEH130 C18, 150 µm × 100 mm, 1.7 µm). Each of
the 6 fractions was run as a separate set of 338 samples plus
control samples.

Intensity data files for each LC-MS run within a SCX fraction
were aligned using Elucidator (Rosetta Biosoftware). Peak
intensities for each peptide ion were then extracted across all
files. LC-MS/MS files were analyzed by Mascot (Matrix Sciences)
and the Uniprot human protein database (version 2013_08)
to assign high confidence peptide sequences to the observed
peptide ions. All sequenced peptides were then clustered by their
parent proteins. Potential intensity bias introduced by sample
processing and/or loss of sensitivity of the mass spectrometer
over the time of the experiment was corrected by normalization.
The normalization procedure was based on a regression model,
which predicted log-intensity level on a per-peptide basis. First,

the mean raw log-intensity for each peptide was calculated. Then
the regression model (linear regression or natural cubic spline
smoothing) for sample processing variables was fit to the data.
Finally, the normalized log-intensity was computed as the raw
log-intensity minus the regression-predicted log-intensity plus
the mean raw log-intensity.

The statistical significance of the intensity differences
between the various clinical groups was assessed using a
paired t test, which was performed independently on each
peptide and each protein, for the matched case and control
samples. An analysis of variance model was also used to
compare the same two groups to account for dyslipidemia,
hypertension, and diabetes status covariates, which were not
matched between sample pairs. All statistical test P values were
adjusted for multiple testing by conversion to Q values using
Storey’s method.

Metabolomics and lipidomics methods
by mass spectrometry

Sample preparation for global metabolomics
Samples were stored at –70◦C until processed. Sample

preparation was carried out as described previously (15) at
Metabolon, Inc. Briefly, recovery standards were added prior
to the first step in the extraction process for quality control
purposes. To remove protein, dissociate small molecules bound
to protein or trapped in the precipitated protein matrix,
and to recover chemically diverse metabolites, proteins were
precipitated with methanol under vigorous shaking for 2 min
(Glen Mills Genogrinder 2000), followed by centrifugation. The
resulting extract was divided into 4 fractions: 1 for analysis by
ultra-high performance liquid chromatography tandem mass
spectrometry (UPLC-MS/MS; positive mode), 1 for analysis
by UPLC-MS/MS (negative mode), 1 for analysis by gas
chromatography–mass spectrometry (GC-MS), and 1 sample
was reserved for backup.

Three types of controls were analyzed in concert with
the experimental samples: samples generated from a pool
of human plasma (extensively characterized by Metabolon,
Inc.) served as technical replicates throughout the data set;
extracted water samples served as process blanks; and a cocktail
of standards spiked into every analyzed sample allowed for
instrument performance monitoring. Instrument variability
was determined by calculating the median relative standard
deviation (RSD) for the standards that were added to each
sample prior to injection into the mass spectrometers (median
RSD = 5%; n = 30 standards). Overall process variability was
determined by calculating the median RSD for all endogenous
metabolites (i.e., non-instrument standards) present in 100%
of the pooled human plasma samples (median RSD = 11%;
n = 610 metabolites). Experimental samples and controls were
randomized across the platform run.
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Mass spectrometry analysis
Non-targeted MS analysis was performed at Metabolon,

Inc. Extracts were subjected to either GC-MS (16) or UPLC-
MS/MS (15). The chromatography was standardized and, once
the method was validated, no further changes were made. As
part of Metabolon’s general practice, all columns were purchased
from a single manufacturer’s lot at the outset of the experiments.
All solvents were similarly purchased in bulk from a single
manufacturer’s lot in sufficient quantity to complete all related
experiments. For each sample, vacuum-dried samples were
dissolved in injection solvent containing 8 or more injection
standards at fixed concentrations, depending on the platform.
The internal standards were used to assure both injection
and chromatographic consistency. Instruments were tuned and
calibrated for mass resolution and mass accuracy daily.

The UPLC-MS/MS platform utilized a Waters Acquity
UPLC with Waters UPLC BEH C18-2.1 × 100 mm,
1.7 µm columns and a Thermo Scientific Q-Exactive high
resolution/accurate mass spectrometer interfaced with a heated
electrospray ionization source and Orbitrap mass analyzer
operated at 35,000 mass resolution. The sample extract was
dried and then reconstituted in acidic or basic LC-compatible
solvents, each of which contained 8 or more injection standards
at fixed concentrations to ensure injection and chromatographic
consistency. One aliquot was analyzed using acidic, positive
ion–optimized conditions, and the other using basic, negative
ion–optimized conditions in 2 independent injections using
separate dedicated columns. Extracts reconstituted in acidic
conditions were gradient eluted using water and methanol
containing 0.1% formic acid, while the basic extracts, which
also used water/methanol, contained 6.5 mM ammonium
bicarbonate. The MS analysis alternated between MS and
data-dependent MS2 scans using dynamic exclusion, and the
scan range was from 80 to 1,000 m/z.

The samples destined for analysis by GC-MS were dried
under vacuum desiccation for a minimum of 18 h prior to
being derivatized under dried nitrogen using bistrimethyl-
silyltrifluoroacetamide. Derivatized samples were separated on
a 5% phenyldimethyl silicone column with helium as carrier
gas and a temperature ramp from 60 to 340◦C within a 17-min
period. All samples were analyzed on a Thermo-Finnigan Trace
DSQ MS operated at unit mass resolving power with electron
impact ionization and a 50–750 atomic mass unit scan range.

Compound identification, quantification, and
data curation

Metabolites were identified by automated comparison of
the ion features in the experimental samples to a reference
library of chemical standard entries that included retention
time, molecular weight (m/z), preferred adducts, and in-source
fragments as well as associated MS spectra and curated by
visual inspection for quality control using software developed
at Metabolon. Identification of known chemical entities was

based on comparison to metabolomic library entries of
purified standards. Over 2,500 commercially available purified
standard compounds have been acquired and registered into the
Laboratory Information Management System for distribution
to both the LC-MS and GC-MS platforms for determination
of their detectable characteristics. An additional 250 mass
spectral entries have been created for structurally unnamed
biochemicals, which have been identified by virtue of their
recurrent nature (both chromatographic and mass spectral).
These compounds have the potential to be identified by future
acquisition of a matching purified standard or by classical
structural analysis. Peaks were quantified using area-under-the-
curve. Raw area counts for each metabolite in each sample were
normalized to correct for variation resulting from instrument
inter-day tuning differences by the median value for each run-
day; therefore, the medians were set to 1.0 for each run. This
preserved variation between samples but allowed metabolites
of widely different raw peak areas to be compared on a similar
graphical scale. Missing values were imputed with the observed
minimum after normalization.

TrueMass R© lipomic panel
Lipids were extracted in the presence of authentic

internal standards by the method of Folch et al. (17) using
chloroform:methanol (2:1 v/v). For the separation of neutral
lipid classes [FFA, TAG, DAG, CE], a solvent system consisting
of petroleum ether/diethyl ether/acetic acid (80:20:1) was
employed. Individual phospholipid classes within each extract
[PC, PE] were separated using the Agilent Technologies 1100
Series LC. Each lipid class was transesterified in 1% sulfuric
acid in methanol in a sealed vial under a nitrogen atmosphere
at 100◦C for 45 min. The resulting fatty acid methyl esters
were extracted from the mixture with hexane containing 0.05%
butylated hydroxytoluene and prepared for GC by sealing the
hexane extracts under nitrogen. Fatty acid methyl esters were
separated and quantified by capillary GC (Agilent Technologies
6890 Series GC) equipped with a 30 m DB 88 capillary column
(Agilent Technologies) and a flame ionization detector.

Evaluation of associations between
low density lipoprotein triglycerides
and plasma lipoproteins

For a confirmatory study, eight hundred and six
subjects were included from the National Institutes of
Health CT study. The cohort included both males and
females that were at least 18 years of age and with clinical
indication for a coronary CT angiography. There were
no additional inclusion criteria. Exclusion criteria were
current pregnancy and severely decreased renal function
(estimated glomerular filtration rate < 30 mL/min/1.73m2
body surface area). The study protocol was approved by
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the National Heart, Lung, and Blood Institute’s Institutional
Review Board and all subjects provided informed consent
at enrolment. ClinicalTrials.gov identifier: NCT01621594.
Plasma LDL-TG was determined by homogeneous assay
(Denka Seiken Co., Ltd., Tokyo, Japan), and subjects were
divided according to LDL-TG terciles. Fasting lipid panel
was determined by standard enzymatic methods on a
Cobas 6000 analyzer (Roche Diagnostics, Indianapolis, IN,
USA). LDL cholesterol and very low-density lipoprotein
(VLDL) cholesterol were calculated using Sampson’s
formula (18). Small dense LDL cholesterol was measured
by a homogeneous assay (Denka Seiken Co, Ltd., Tokyo,
Japan). Lipoprotein subclass profile was determined in
Vantera Clinical NMR Analyzer (Labcorp, Burlington,
NC, USA). The LipoProfile-3 or 4 algorithm was used to
determine the particle number of lipoprotein subclasses:
Number of triglyceride-rich lipoprotein particles (TRL-
P) and the following subclasses: very small-, small-,
medium- and large-TRL-P; LDL particle number (LDL-P),
and its subclasses: small-, medium-, large-LDL-P; HDL
particle number (HDL-P), as well as HDL subclasses:
small-, medium-, and large-HDL-P. GlycA levels were
determined in a Vantera Clinical NMR Analyzer (Labcorp,
Burlington, NC, USA). Plasma high sensitivity (hs-CRP) was
measured on the Cobas 6000 analyzer (Roche Diagnostics,
Indianapolis, IN, USA).

Results

Demographic features and
atherosclerosis in the patient
population

A total of 665 patients were included in our analysis;
general demographic features are shown in Supplementary
Table 1. Typical angina (62 vs. 64%) and atypical angina
(36.5 vs. 36%) were similar in cases and controls. In general,
the mean ± SD age in the overall study population was
56 ± 11 years, 47% of patients were male, and the mean
Diamond-Forrester score was 26% (range, 0–94%). LDL-C,
high-density lipoprotein cholesterol (HDL-C), and triglycerides
in cases and controls are also shown in Supplementary
Table 1. The prevalence of atherosclerosis (i.e., cases) was
52% in the overall cohort. Seven percent of patients had
a coronary calcium score of zero but had a non-calcified
plaque. Predominantly non-calcified, partially calcified, and
calcified plaques were present in 7, 36, and 57% of cases,
respectively. Napkin ring sign, a high-risk feature by CT,
was observed in 10% of patients. Moderate stenosis (50–
69%) was the highest degree of stenosis in 7% of patients,
and 16% of patients had moderate-to-severe stenosis (≥50%
luminal stenosis). Mean ± SD segment involvement score

and segment involvement score index were 2.2 ± 3.1 and
2.4± 3.3%, respectively.

Biomarker associations with
atherosclerosis

In a preliminary coarse filter of the biomarkers, nominal
univariate associations (raw P < 0.05) with atherosclerosis were
identified for 30 of the 99 conventional biomarkers; these are
illustrated in a heatmap in Figure 1. The dendrogram on the
left of the plot was generated by unsupervised hierarchical
clustering and indicates four (4) clusters. Cluster 1 included
total plasma triglycerides and LDL-TG, as well as fatty acids and
measures of endothelial dysfunction, inflammation, and fibrosis.
Cluster 2 included ApoB-containing lipoprotein measurements,
lipoprotein(a), and measures of insulin resistance. Cluster 3
included hepatic measurements of bilirubin metabolism and
a marker of cholesterol biosynthesis. Cluster 4 contained
vitamin D alone.

The thirty biomarkers identified by univariate analysis were
further subjected to gradient boosting analysis to identify the
strongest predictors of atherosclerosis Figure 2A indicates
the relative influence of the eight biomarkers ranked most
highly. Interleukin-6 [IL-6], symmetric dimethylarginine, and
LDL-TG emerged as the top 3 predictors of case-control
status, with a relative influence of over ∼30% for IL-
6 and symmetric dimethylarginine and ∼15% for LDL-
TG. As described below, of these eight (8) biomarkers
strongly associated with atherosclerosis, only LDL-TG was
directly connected to atherosclerosis in the Bayesian network
analysis.

Bayesian network analysis using
reverse engineering with forward
simulation

The primary result and output from the hypothesis-free
Bayesian network analysis is shown in Figure 2B. The ensemble
of Bayesian networks identified consisted of 24,929 nodes
and 110,350 edges, which occurred in >5% of the models
in the ensemble. LDL-TG was the only biomarker directly
upstream from the presence of atherosclerotic CAD (ASCAD),
which occurred in 95% of networks in the ensemble. This
suggests a potential causal role of triglyceride-rich LDL particles,
as measured by LDL-TG levels, in the development and
progression of atherosclerosis. Given the central role of LDL-
TG in the Bayesian networks, we further explored the potential
contribution of LDL-TG to atherosclerosis. It is important to
point out that clinical features, such as age and gender, were also
included in the Bayesian analysis and therefore, the Bayesian
findings do normalize our findings for age and gender.
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FIGURE 2

Gradient boosting analysis identified the strongest predictors of atherosclerotic coronary artery disease. Hypothesis-free Bayesian network
analysis using reverse engineering with forward simulation (REFSTM) Suggests a potential causal role of triglyceride-rich LDL particles, as
measured by LDL-TG levels, in the development and progression of atherosclerosis. (A) Out of the 30 conventional biomarkers included in the
multivariate analysis, the top 8 analytes are shown in the bar graph. The length of the bar corresponds to the relative influence the biomarker in
predicting atherosclerotic coronary artery disease. The biomarkers include IL-6 (inflammation), symmetric dimethylarginine (endothelial
dysfunction), and LDL-TG (ApoB-containing lipoprotein cluster). (B) This figure is not an illustration; it is an actual output from the
hypothesis-free Bayesian network analysis. A total of 24,929 nodes and 110,350 edges were discovered in more than 5% of the networks in the
ensemble; shown is the subnetwork of measurements with 1 degree of separation from LDL-TG. Arrow thickness indicates the fraction of
networks in which the causal edge appears; different colored boxes represent different types of measurements (yellow:
mass-spectrometry–based lipidomics; pink: mass-spectrometry–based metabolomics; green: gene expression [mRNA]; gray: conventional
biomarker measurements). Notably, among all of the biomarkers that were measured and included in the model, LDL-TG was the only
biomarker with a direct connection to ASCAD (see blue arrows pointing to the edge connecting LDL-TG to ASCAD). This suggests that
triglyceride-rich lipoprotein particles, as measured by LDL-TG levels, may have a causal role in atherosclerosis. Interestingly, in this causal
model, sd-LDL, ApoB, and C-reactive protein are downstream from LDL-TG, while palmitoleic acid and total triglyceride levels appear upstream
from LDL-TG. Fibrinogen and galectin-3 are downstream from C-reactive protein. ADMA, asymmetric dimethylarginine; ALP, alkaline
phosphatase; ApoB, apolipoprotein B; IL-6, interleukin-6; LDL-TG, low-density lipoprotein-triglycerides; SDMA, symmetric dimethylarginine,
ASCAD, atherosclerotic coronary artery disease; CAD, coronary artery disease; CRP, C-reactive protein; POA, palmitoleic acid; sd-LDL, small,
dense low-density lipoprotein; TG, triglycerides.
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Low density lipoprotein triglycerides
and atherosclerosis

As an independent biomarker, LDL-TG levels were
significantly higher in cases versus controls (mean ± SE,
20.19 ± 0.93 vs 17.21 ± 0.40 mg/dL; P < 0.001). The
four quartiles of LDL-TG measurements were examined; odds
ratios in the second, third, and fourth quartiles were 1.38
(95% CI, 0.86–2.24), 1.43 (95% CI, 0.89–2.31), and 2.84
(95% CI, 1.75–4.64), respectively, compared to the first (i.e.,
reference) quartile (Table 1). Adjusting the model for age,
sex, LDL-C and ApoB levels demonstrated that the association
of LDL-TG with atherosclerosis was independent of these
well-known factors.

Cumulative incidence curves

To examine the relative contribution of each key biomarker
to atherosclerosis, we constructed cumulative incidence curves
for ApoB, LDL-C, and LDL-TG levels against the cumulative
incidence of atherosclerosis in all patients and in patients
who were not on statins (Figure 3). Our data confirmed
the well-described relationship between LDL-C levels and
the incidence of atherosclerosis, which was most apparent
in patients who were not on statin therapy (Figure 3E).
A similar pattern was also observed for ApoB (Figure 3D).
It is acknowledged that the left tails of the cumulative
incidence curves are likely to be highly influenced by patients
with known ASCAD whose LDL-C and ApoB levels were
likely lowered by recent statin therapy. Importantly, statin
therapy appears to have little influence on the cumulative
incidence of ASCAD as a function of LDL-TG measurements
(Figures 3C,F).

Hepatic lipase (LIPC), low density
lipoprotein triglycerides and
atherosclerosis

Since previous publications (19–21) have demonstrated
an association between hepatic lipase (encoded by the LIPC
gene), LDL-TG and atherosclerosis, we performed a genomic
screen of the LIPC gene region. The SNP rs261336 was
associated with both higher levels of LDL-TG and higher odds
of atherosclerosis, while rs12898984, rs12900448, rs4774301,
rs4775064 and rs4775065 were associated with lower circulating
levels of LDL-TG and lower odds of atherosclerosis (Table 2 and
Figure 4).

In addition, LIPC gene expression in circulating
mononuclear cells was significantly lower in Cases than
in Controls (mean expression: 1.20 (0.08) vs. 1.49 (0.07);
p = 0.015).

Associations of low density lipoprotein
triglycerides with other known risk
markers

We analyzed lipid panel test results and lipoprotein subclass
profile, determined by proton nuclear magnetic resonance
(1H-NMR) spectroscopy, in 800 patients from the National
Institutes of Health CT cohort, subdivided by LDL-TG terciles
(Supplementary Table 3). Total Cholesterol and LDL-C
increased from low to high LDL-TG terciles (p < 0.0001 for
trend). The same trend was observed for triglycerides and
calculated VLDL-C (18). Small dense LDL (sd-LDL) cholesterol
as measured by Denka assay increased along the LDL-TG
tertials. Lipoprotein subclass analysis by 1H-NMR spectroscopy
revealed that total, large, medium, and very small triglyceride-
rich lipoprotein (TRL) particle number increased from low to
high LDL-TG terciles (p < 0.0001 for trend). Furthermore, the
number of LDL particles was higher in high LDL-TG terciles at
the expense of smaller LDL particles (p < 0.0001), probably due
to the poorer sdLDL recognition by LDL receptor (22), leading
to its accumulation in the plasma.

Finally, LDL-TG was positively associated with GlycA
(p < 0.0001 for trend), a recently identified systemic
inflammation marker derived from the 1H-NMR signal of
N-acetyl groups on the glycan portion of acute-phase proteins in
plasma (23). Overall, these results suggest that increased LDL-
TG is linked to a more pro-inflammatory and pro-atherogenic
phenotype and are, therefore, aligned with the findings from the
Bayesian Network Analysis.

Discussion

Our results suggest that, while several serum biomarkers
are associated with human ASCAD, triglyceride-rich LDL
particles, as measured by LDL-TG levels, may have an important
central role, potentially as a result of abnormal hepatic lipase
function. Our study design provided a unique opportunity
to assess biomarker associations in the context of the impact
of genetic predisposition on atherosclerosis. We completed
precise and detailed quantitative phenotyping measurements
of human coronary arterial atherosclerosis in a prospective
study using comprehensive cardiac CT, analyzed in a central
core laboratory. This precision phenotyping was coupled
with measuring and ranking 99 circulating biomarkers and
37,000 “omics” measurements. We built hypothesis-free, causal
Bayesian networks of biological pathways to examine the
potential role of serum biomarkers in a comprehensive manner.

Our initial analysis identified four main biomarker clusters,
thus providing unique high-level insights into the pathogenesis
of ASCAD (Figure 1). The content of these clusters is
consistent with prevailing hypotheses of the development
of atherosclerosis as a result of atherogenic lipoproteins,

Frontiers in Cardiovascular Medicine 10 frontiersin.org

https://doi.org/10.3389/fcvm.2022.960419
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-960419 December 20, 2022 Time: 12:20 # 11

Voros et al. 10.3389/fcvm.2022.960419

TABLE 1 Odds ratios (95% CI) for atherosclerosis against the lowest quartile of LDL-TG.

Quartile 1
[8.5–14.1 mg/dl]

Quartile 2
[14.1–16.9 mg/dl]

Quartile 3
[16.9–22.1 mg/dl]

Quartile 4
[22.1–45.7 mg/dl]

P-value versus
fourth quartile

P-value for
trend

LDL-TG
Unadjusted

Reference 1.38
(0.86–2.24)

1.43
(0.89–2.31)

2.84
(1.75–4.64)

2.67e-05 5.35e-05

LDL-TG
Model 1a

Reference 1.31
(0.80–2.13)

1.39
(0.86–2.27)

3.00
(1.84–4.95)

1.38e-05 2.50e-05

LDL-TG
Model 2b

Reference 1.43
(0.88–2.33)

1.56
(0.95–2.56)

3.36
(1.95–5.85)

1.50e-05 3.88e-05

LDL-TG
Model 3c

Reference 1.34
(0.82–2.20)

1.48
(0.89–2.46)

3.37
(1.94–5.91)

1.86e-05 4.49e-05

LDL-TG
Model 4d

Reference 1.44
(0.89–2.35)

1.56
(0.94–2.60)

3.42
(1.88–6.29)

6.31e-05 1.99e-04

LDL-TG
Model 5e

Reference 1.34
(0.82–2.20)

1.46
(0.87–2.47)

3.32
(1.81–6.16)

1.19e-04 3.55e-04

CI, confidence interval; LDL-TG, low-density lipoprotein–triglycerides.
aAdjusted for age and gender.
bAdjusted for LDL-C.
cAdjusted for age, gender, and LDL-C.
dAdjusted for APOB.
eAdjusted for age, gender, and APOB.

FIGURE 3

Cumulative incidence curves for the presence of coronary atherosclerosis as a function of ApoB, LDL-C, and LDL-TG. Cumulative incidence
curves demonstrate the well-described relationship between ApoB and LDL-C levels and the incidence of atherosclerosis, which is primarily
apparent in the ApoB range of 50–150 mg/dl and in the LDL-C range of 60–200 mg/dl. The left tails of the curves are distorted by statin-treated
patients (A,B), in which you see a high cumulative incidence of atherosclerosis despite very low levels of ApoB (panel A) and LDL-C (B). This
likely represents patients with known ASCAD whose LDL-C and ApoB levels have been lowered by aggressive statin therapy. The sigmoid
relationship for ApoB and LDL-C is more apparent when statin-treated patients are excluded (D,E). On the other hand, a clear, near-exponential
relationship is seen for the incidence of atherosclerosis as a function of serum LDL-TG levels, with no apparent effect of statin therapy (C,F).
ApoB, apolipoprotein B; LDL, low density lipoprotein.

inflammation, and endothelial dysfunction, in some instances
in the context of insulin resistance and diabetes (24–26).

Furthermore, in univariate (Figure 1) and multivariable
analyses (Figure 2A), we also found that ApoB-containing

lipoproteins, insulin resistance, endothelial dysfunction,
inflammation, and fibrosis are all strongly associated with
human coronary atherosclerosis, consistent with decades of
hypothesis-driven data.
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TABLE 2 Genetic association between LIPC gene variants, LDL-TG and atherosclerosis.

Variant (SNP) LDL-TG ASCAD (“Case”)

Beta SE CI P-value OR Ln(SE) CI P-value

rs261336 0.07 0.0297 0.01_0.13 0.0223 1.5 0.2011 1.01_2.23 0.0434

rs12898984 −0.06 0.0285 –0.11 to 0.00 0.0424 0.67 0.1899 0.46_0.97 0.0342

rs12900448 −0.06 0.0285 –0.11_–0.00 0.0424 0.67 0.1899 0.46_0.97 0.0342

rs4774301 −0.06 0.0285 –0.11_–0.00 0.0424 0.67 0.1899 0.46_0.97 0.0342

rs4775064 −0.06 0.0285 –0.12_–0.00 0.0386 0.67 0.1899 0.46_0.98 0.0374

SNP, single nucleotide polymorphism. LDL-TG, low density lipoprotein triglycerides; ASCAD, atherosclerotic coronary artery disease; SE, standard error; CI, confidence interval;
Ln, natural log.

FIGURE 4

Genetic variants in the LIPC Gene, Circulating Levels of LDL-TG and Atherosclerosis. The genetic variant rs4774301 in the LIPC genomic region is
associated with significantly lower circulating levels of LDL-TG (A) and simultaneously, with significantly lower prevalence of atherosclerosis (B).
Jitter plot (C) demonstrates the same concept in a single graph, demonstrating that the number of the “T” alleles at rs4774301 is associated with
lower circulating levels of LDL-TG and with lower prevalence of ASCAD. LIPC: hepatic lipase gene; LDL-TG: low density lipoprotein triglycerides.

A key finding was that, out of tens of thousands of
blood-based molecules and biomarkers, LDL-TG emerged with
a potential central role in human coronary atherosclerosis,
potentially as a function of abnormal hepatic lipase activity.
This was seen in our hypothesis-free, causal, Bayesian network
analysis, which included 24,929 variables and 110,350 significant
edges in the models. LDL-TG was directly connected to human
coronary atherosclerosis in 95% of the models in the ensemble.
The output of the Bayesian network analysis shown in Figure 2B
(not an illustration) indicates the potential central role of
triglyceride-rich LDL particles, as measured by LDL-TG levels.
In this model, triglyceride levels and palmitoleic acid were
upstream from LDL-TG, while small, dense LDL (sd-LDL)
inflammatory markers (e.g., C-reactive protein, fibrinogen,
and lipoprotein-associated phospholipase A2), and fibrosis
markers (e.g., galectin-3) were downstream. In addition to these
potentially “positive” controls, the absence of HDL-C, ApoAI,
CETP and vitamin-D may serve as relevant “negative controls”
in the Bayesian networks.

The hierarchal organization of the lipid/lipoprotein-related
biomarkers, inflammatory biomarkers and fibrosis-related
biomarkers in the Bayesian networks are consistent with a
mechanistic hypothesis in which triglyceride-rich LDL particles

drive downstream inflammation and a fibrotic response, directly
contributing to the initiation and progression of human
coronary atherosclerotic plaques (Figure 2B). It is important
to emphasize, however, that our findings do not suggest that
triglyceride-rich LDL particles themselves physically localize in
the coronary vessel wall to initiate the atherosclerosis process.
The overall lipoprotein milieu in patients with elevated LDL-TG
may lead to the increased formation of sd-LDL particles, which
then may physically localize to the arterial wall.

Our panomic dataset offers a unique and unprecedented
opportunity to assess causality of certain biomarkers, as we
can assess simultaneous associations between genotypes, gene
expression levels, circulating biomarkers and the atherosclerotic
phenotype via comprehensive cardiovascular CT. Overall, our
data is consistent with the potential central hypothesis that
loss-of-function variants in the hepatic lipase gene may be
associated with lower hepatic lipase activity, higher LDL-
TG levels resulting in atherosclerosis. In our data, LIPC
gene expression levels were significantly lower and LDL-TG
levels were significantly higher in patients with atherosclerosis.
Furthermore, single nucleotide polymorphisms (SNP’s) in the
LIPC gene that were associated with elevated LDL-TG levels
were simultaneously associated with increased prevalence of
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atherosclerosis, suggesting the potential role of LDL-TG based
on the principles of natural randomization (Figure 4) (27). Our
data is consistent with historical findings that polymorphisms in
the LIPC gene are associated with circulating levels of LDL-TG
(28–30).

From a mechanistic point of view, our results are consistent
with a potential hypothesis whereby lower hepatic lipase activity
may result in decreased lipolysis, decreased remodeling, and
decreased initial clearance of TRL’s, such as very low-density
lipoprotein (VLDL) particles. The increased residence time
of TRL’s may lead to prolonged exposure of TRL’s to CETP
activity, resulting in more TG-rich IDL and LDL particles,
as reflected in elevated LDL-TG levels. The presence of TG-
rich IDL and LDL particles favor the generation of sd-LDL
particles, which physically may localize to the arterial wall,
resulting in the retention of these atherogenic lipoprotein
particles, triggering an inflammatory reaction and endothelial
dysfunction, culminating in the initiation and propagation of
atherosclerosis.

In general, our findings are consistent with the literature
but also add to those findings by demonstrating a possible
central role of LDL-TG, potentially as a function of abnormal
hepatic lipase activity, as revealed by our unique causal Bayesian
network analysis and through genetic validation. A large
epidemiologic study has examined the association of LDL-TG
with angiographic ASCAD (31). In that study, LDL-TG levels
were measured by the ultracentrifugation-precipitation method
(“beta-quantification”), a cumbersome reference procedure not
used for routine diagnostic testing. The main finding was
that LDL-TG was a stronger predictor of ASCAD compared
to LDL-C and was independent of LDL-C, with an overall
odds ratio of 1.3 (95% CI, 1.19–1.43; P < 0.001). Although
consistent with our findings, the odds ratio in our study
was much higher at 3.41 (95% CI, 1.94–6.01), likely due
to the use of precision phenotyping in our approach. Also
consistent with our findings, they also identified significant
correlations between LDL-TG and IL-6 and between LDL-
TG and C-reactive protein. In a smaller more mechanistic
sub-study of 114 patients, it has also been reported that in
patients with high LDL-TG levels, LDL particles are enriched in
triglycerides and depleted in cholesterol esters. VLDL particles
showed the opposite trend; they were enriched in cholesterol
esters and depleted in triglycerides. These observations are
in line with the association of LDL-TG with very small TRL
particle number that we observed. It is also consistent with our
mechanistic hypothesis on the central role of the remodeling
of apoB-containing lipoprotein particles in the development
of atherosclerosis.

Several other large clinical trials have also provided
important information related to the association of LDL-TG
with atherosclerosis. Albers et al. examined the potential role
of LDL-TG, sd-LDL and HDL subclasses in 3,094 subjects in
the AIM-HIGH clinical trial (19), which was evaluating the

effect of extended-release niacin in a secondary prevention
population on statin background. The primary endpoint was
the composite of death from coronary artery disease, non-
fatal myocardial infarction, ischemic stroke, hospitalization
for acute coronary syndrome or symptom-driven coronary
or cerebrovascular revascularization. In their study, sd-LDL
and LDL-TG were not event related. The advantage of our
study is a very clear phenotype of coronary atherosclerosis
based on comprehensive cardiovascular CT. In addition, the
AIM-HIGH study was a secondary prevention population
on the background of statin therapy, different from our
patient population.

Saeed et al. also examined the potential role of LDL-TG
in 9,334 subjects without prevalent CAD the ARIC study (20),
using a direct homogenous assay that can be routinely applied in
clinical laboratories. They found that LDL-TG were significantly
associated with cardiovascular disease, even after adjusting for
traditional risk factors, including lipids. This is consistent with
our own findings in a similar patient population. Similarly, the
authors also found that variants in the promoter region of the
LIPC gene were associated with lower hepatic lipase activity,
consistent with our own findings.

Finally, Silbernagel et al. (21) demonstrated that LDL-
TG was associated with cardiovascular mortality in 3,140
subjects. Genome-wide association study in this cohort
demonstrated that variants in the LIPC gene were significantly
associated with circulating LDL-TG levels, consistent with
our own findings. Furthermore, in a two-sample Mendelian
randomization analysis, the authors found that low hepatic
lipase activity may be the causal factor behind elevated LDL-TG
levels, driving atherosclerotic cardiovascular risk. The authors
suggested that LDL-TG may be on the causal pathway related to
cardiovascular disease. Our combined unbiased, causal Bayesian
network analysis and genomic analysis is consistent with
these findings and propose a more detailed biological network
explaining the hepatic lipase/LDL-TG axis of atherosclerosis
(Figure 5).

In summary, we performed an unbiased, causal Bayesian
network analysis to identify potential novel causal factors in
human coronary atherosclerosis, revealing the potential key role
of TG-rich lipoprotein particles. We then used our panomic
data, including genetic validation, to further explore the
potential central role of LDL-TG, demonstrating that the hepatic
lipase/LDL-TG axis may be an important pathway in ASCAD.

Limitations

Although this was a prospective, multicenter study with
central core laboratory analysis of all imaging and biochemical
measurements, it has some limitations. First, we only included
Caucasian subjects in our study, as it was powered for genome-
wide association analyses based on a single ethnic background,
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FIGURE 5

Central Illustration. Multiomic Validation of the Hepatic Lipase (LIPC)/LDL-TG Axis in Atherosclerotic CAD along the Central Dogma of Biology.
Gene expression levels of hepatic lipase (LIPC) are significantly lower (A) and circulating LDL-TG levels are significantly higher (B) in patients with
atherosclerotic CAD, presumably due to LOF variants in the LIPC gene (upper part of the Figure). On the other hand, GOF variants in the LIPC
gene are simultaneously associated with lower circulating LDL-TG (C) levels AND with lower prevalence of atherosclerotic CAD (D). Except for
hepatic lipase activity measurements (indicated by dotted line around hepatic lipase in the Figure), the GLOBAL study database contains all other
multiomic measurements along the hepatic lipase/LDL-TG/atherosclerosis axis. The overall data presented here is consistent with our
hypothesis that circulating triglyceride-rich LDL particles may have a potential causal role in atherosclerosis, due to abnormal hepatic lipase
activity. LIPC, hepatic lipase; LDL-TG, low density lipoprotein triglycerides; CAD, coronary artery disease; LOF, loss-of-function; GOF,
gain-of-function.

requiring at least 6,700 subjects (7). Second, we have limited
longitudinal follow-up of the patients. Nevertheless, a key
feature of Bayesian network analysis with the implementation
of REFS is its ability to generate causal biological models,
even in the absence of longitudinal outcomes. In addition,
since we had whole genome sequence data, we were also
able to demonstrate causality through genetic methods. Third,
although the genetic analysis is consistent with a potential
central role of the hepatic lipase/LDL-TG axis, we did not have
functional measurements of hepatic lipase. Finally, although
we had in a priori Discovery and Validation dataset in our
own GLOBAL clinical study, we did not validate our findings
in external datasets, technically limiting our findings to the
GLOBAL clinical study population.

Summary and conclusion

While ApoB-containing lipoproteins, inflammatory
biomarkers, and markers of endothelial dysfunction and fibrosis
were all associated with human coronary atherosclerosis,
triglyceride-rich LDL particles, as measured by LDL-TG levels,
emerged as a potentially key factor, within a sub-network
that includes apoB and LDL-C. Furthermore, genetic analysis
revealed the potential central role of the hepatic lipase/LDL-TG
axis in atherosclerosis. With the recent introduction of a
simple and fully automated method for the quantification of
LDL-TG levels (32), this biomarker may become an important
tool in the clinical assessment of patients at risk for, or with,
atherosclerosis. Furthermore, the results from this study have
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confirmed a possible role of hepatic lipase in human coronary
atherosclerosis, which in the future can be explored as a target
for drug development. It is also already known that several
approved lipid-lowering drugs, such as fibrates, and statins, have
a differential effect on LDL-TG versus LDL-C (33), which will
be useful to further investigate to better understand their overall
impact in cardiovascular event reduction.
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