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Background: Predictive models based on machine learning have been widely

used in clinical practice. Patients with acute myocardial infarction (AMI) are

prone to the risk of acute kidney injury (AKI), which results in a poor prognosis

for the patient. The aim of this study was to develop a machine learning

predictive model for the identification of AKI in AMI patients.

Methods: Patients with AMI who had been registered in the Medical

Information Mart for Intensive Care (MIMIC) III and IV database were enrolled.

The primary outcome was the occurrence of AKI during hospitalization. We

developed Random Forests (RF) model, Naive Bayes (NB) model, Support

Vector Machine (SVM) model, eXtreme Gradient Boosting (xGBoost) model,

Decision Trees (DT) model, and Logistic Regression (LR) models with AMI

patients in MIMIC-IV database. The importance ranking of all variables was

obtained by the SHapley Additive exPlanations (SHAP) method. AMI patients

in MIMIC-III databases were used for model evaluation. The area under

the receiver operating characteristic curve (AUC) was used to compare the

performance of each model.

Results: A total of 3,882 subjects with AMI were enrolled through screening

of the MIMIC database, of which 1,098 patients (28.2%) developed AKI. We

randomly assigned 70% of the patients in the MIMIC-IV data to the training

cohort, which is used to develop models in the training cohort. The remaining

30% is allocated to the testing cohort. Meanwhile, MIMIC-III patient data

performs the external validation function of the model. 3,882 patients and

37 predictors were included in the analysis for model construction. The top

5 predictors were serum creatinine, activated partial prothrombin time, blood

glucose concentration, platelets, and atrial fibrillation, (SHAP values are 0.670,

0.444, 0.398, 0.389, and 0.381, respectively). In the testing cohort, using top
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20 important features, the models of RF, NB, SVM, xGBoost, DT model, and

LR obtained AUC of 0.733, 0.739, 0.687, 0.689, 0.663, and 0.677, respectively.

Placing RF models of number of different variables on the external validation

cohort yielded their AUC of 0.711, 0.754, 0.778, 0.781, and 0.777, respectively.

Conclusion: Machine learning algorithms, particularly the random forest

algorithm, have improved the accuracy of risk stratification for AKI in AMI

patients and are applied to accurately identify the risk of AKI in AMI patients.

KEYWORDS

acute myocardia infarction, acute kidney injury, machine learning, random forest,
area under the receiver operating characteristic curve

Introduction

Ischemic heart disease is a significant contributor to
mortality in the global population, which is one of the leading
causes of disability-adjusted life years (DALYs) in middle-aged
and elderly patients (1). Acute myocardial infarction (AMI)
is the most serious type of ischemic heart disease, which is
one of the causes of Acute kidney injury (AKI) in patients.
AKI occurs in a certain proportion of hospitalized patients
with AMI. Studies have shown that the incidence of AKI
during hospitalization in AMI patients ranges from 7.1 to
29.3% (2–4). The occurrence of AKI during hospitalization was
independently associated with increased in-hospital mortality
and long-term mortality post AMI (5–13). Several studies have
also shown that AKI is associated with a significant increase
in in-hospital mortality. Because there is unexpected and life-
threatening characteristic of AMI, early identification of risk
factors for AKI in patients with AMI is critical to improving
overall prognosis, which can benefit patient management and
overall treatment planning (14).

Machine learning is an important supporting technology
for artificial intelligence. Machine learning is an algorithm
that allows computers to “learn” automatically, analyze and
construct models from data, and then use the models to
make predictions for new samples. Machine learning predictive
models are useful tools for identifying potential risk factors
and predicting the occurrence of adverse events (15). In recent
years, machine learning algorithms have been used increasingly
in cardiovascular diseases. Combination with clinical big data,
machine learning could help doctors predict risk accurately,
therefore choose personalized medical treatment for patients.
Than et al. developed a machine learning model and it could
provide an individualized and objective assessment of the
likelihood of myocardial infarction (16). Khera et al. reported
three machine learning models which was developed with
patients from the American College of Cardiology Chest Pain-
MI Registry. They found that XGBoost and meta-classifier

models offered improved prediction performance for high-risk
individuals (17). Advanced machine learning methods were
also used to predict the risk of tachyarrhythmia after AMI.
The artificial neural network (ANN) model reached the highest
accuracy rate, which is better than traditional risk scores (18).
These studies indicated that machine learning is a reliable novel
method for the clinic. Therefore, they broaden the new horizons
for clinical researches.

MIMIC is a large, single-center, open-access database.
MIMIC-III includes data on more than 58,000 admissions to
Beth Israel Deaconess Medical Center in Boston from 2001
to 2012, including 38,645 adults and 7,875 newborns (19, 20).
MIMIC-IV includes data from 524,740 admissions of 382,278
patients at the center from 2008 to 2019 (21, 22). The clinical
records include demographic data, vital signs, laboratory test
results, microbiological culture results, imaging data, treatment
protocols, medication records, and survival information were
recorded in MIMIC databases.

Due to the advantages of machine learning, we aim to
develop machine learning models with AMI patients from
Medical Information Mart for Intensive Care III and IV
(MIMIC-III v1.4 and MIMIC-IV v1.0) databases to predict
the risk of AKI.

Materials and methods

Data source

AMI patient data were extracted from the MIMIC-III v1.4
and MIMIC-IV v1.0 databases. The use of the MIMIC database
was approved by the Institutional Review Board of the Beth
Israel Deaconess Medical Center and Massachusetts Institute of
Technology. We have obtained permission after application and
completion of the course and test (record IDs: 44703031 and
44703032). Because all patient information in the database is
anonymous, so informed consent was not required (23).
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Patients enrollment and data collection

SQL (Structured Query Language) programming in Navicat
Premium (version 15.0.12) was used for data extraction. ICD-9
(International Classification of Diseases, Ninth Revision) codes
were used to identify patients with AMI, and Codes 41000–
41092 were used to identify the patients with AMI. Exclusion
criteria: (1) Patients who are younger than 18 years or older
than 90 years; (2) Patients with deficient test results of serum
creatinine and troponin; (3) Patients with missing data of
more than 5% were excluded from the analysis. (4) Patients
admitted to the hospital for a recurrent episode of AMI. We
randomly assigned 70% of the patients in the MIMIC-IV data
to the training cohort, which is used to develop models in
the training cohort. The remaining 30% is allocated to the
testing cohort. Meanwhile, MIMIC-III patient data performs the
external validation function of the model.

After identifying eligible subjects, we collected clinical
data including demographics, comorbidities, vital signs,
and laboratory parameters. Comorbidities include Atrial
Fibrillation (AF), Heart Failure (HF), Diabetes Mellitus (DM),
Hypercholesterolemia, Hypertriglyceridemia, Hypertension,
Respiratory Failure, Ventricular Tachycardia (VT), and
Cardiogenic Shock. Vital signs collect the first recorded results
at the time of hospitalization, including heart rate, respiratory
rate, body temperature, arterial systolic blood pressure, arterial
diastolic blood pressure, and mean blood pressure. Laboratory
parameters were also obtained for the first time after admission.
The research indicators are red blood cells (RBC), white
blood cells (WBC), platelets, hemoglobin, glucose, hematocrit,
blood urea nitrogen (BUN), creatinine, potassium, sodium,
chloride, calcium, phosphorus, magnesium, bicarbonate,
activated partial prothrombin time (APTT), prothrombin time
(PT), International Normalized Ratio (INR), Creatine Kinase
Isozyme-MB (CK-MB), Troponin-T (TNT).

Model construction and evaluation

Five machine learning models were constructed based on
the features selected by the training cohort. The models used
are: Decision Tree (DT) model, Support Vector Machine (SVM)
model, Random Forest (RF) model, Naive Bayes (NB) model,
and eXtreme Gradient Boosting (xGBoost) model. The 10-Fold
cross-validation was used for model training. Among the five
models, DT, SVM, RF, NB, and xGBoost are considered as the
most common machine learning algorithms. DT (24) is very
versatile machine learning model that can be used for both
regression and classification. A decision tree is a tree-shaped
structure in which each internal node represents a judgment on
an attribute, each branch represents the output of a judgment
result, and finally each leaf node represents a classification result.
SVM (25) is a fast and dependable classification algorithm

that performs very well with a limited amount of data. For
classification, SVM works by creating a decision boundary in
between our data points, that tries to separate it as best as
possible. NB (26) is a model in a Bayesian classifier that trains a
model with a dataset of known categories to achieve categorical
judgment on data of unknown categories. The theoretical basis
of NB is Bayesian decision theory. RF (27) is a kind of model
that can be used both for regression and classification. It is one
of the most popular ensemble methods, belonging to the specific
category of bagging methods. This method can be described
as techniques that use a group of weak learners together, in
order to create a stronger, aggregated one. In our case, RF is an
ensemble of many individual DT models. XGBoost (28) is an
optimized distributed gradient boosting library designed to be
highly efficient, flexible, and portable. It implements machine
learning algorithms under the Gradient Boosting framework.
The traditional logistic regression (LR) (29) model is also used
for model construction. The nomogram (30) is used visualize
regression models. and the calibration curve can be used as
one of the evaluation indicators of the model. The calibration
curve is used to evaluate the fit of the model (31). After the
model is developed, data from the test cohort and validation
cohort was used to further evaluate the performance of the
model. The area under the receiver operating characteristic
curve (AUC) and precision-recall curves was used to compare
the performance of each model.

Study endpoint

The study endpoint was AKI during hospitalization, which
is based on a comprehensive assessment by the glomerular
filtration rate to reflect renal function at admission and the
changes of serum creatinine levels after admission. Estimating
Glomerular filtration rate (eGFR) by Modification of Diet
in Renal Disease (MDRD) study equation at admission
was calculated from first serum creatinine level and age
(32). The calculation formula was showed as following:
(eGFR[mL/(min·1.73 m2) = 186·(Scr)−1.154

·(age)−0.203). The
diagnosis of AKI was based on the latest international AKI
clinical practice guidelines (33). The diagnostic criteria are
met in any of the following three criteria: (a) increase in
creatinine by ≥ 0.3 mg/dl (≥26.5 µmol/l) within 48 h; (b)
increase in creatinine to ≥ 1.5 times baseline, which is known
or presumed to have occurred within the prior 7 days; (c) urine
volume < 0.5 ml/kg/h for 6 h.

Statistical analysis

In order to avoid excessive bias, the missing ratio of
variables in this study was less than 5% and was imputed.
Multiple imputation to account for missing data. The principle
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of multiple imputation was roughly divided into several points.
First, several data sets containing all the missing variables
were generated. Second, these datasets were used to build
several complementary models, usually using generalized linear
models. Third, these models were integrated together and then
the performance of the multiple complementary models was
evaluated. Finally, the complete dataset was output (34, 35).

Frequency and percentage were used to describe the
categorical variables, and the chi-square test or Fisher’s exact test
was used to identify differences between groups. The Shapiro-
Wilk test was applied to continuous variables to confirm
that they conformed to a normal distribution. All continuous
variables in this study did not conform to a normal distribution
and were described using the median and interquartile range
(IQR), and the Mann–Whitney U-test was used to determine
differences between different groups.

The training cohort consisted of 2,624 patients, including
a heterogeneous sample of AKI and non-AKI patients, AKI
patients accounted for only 29.4% of the entire cohort, whereas
non-AKI patients accounted for 70.6% of the entire cohort.
The proportions of these two categories are quite different,
which may lead to lower prediction accuracy of the prediction
model. Therefore, to solve the problem of classification
imbalance, we used the synthetic minority oversampling
technique (SMOTE) (36). The SMOTE method is an effective
tool to solve the problem of data distribution imbalance. It is
used in the training cohort to preprocess the data before the
construction of the models.

The importance ranking of all variables was obtained by
the SHapley Additive exPlanations (SHAP) method. SHAP
could explain the output of any machine learning model. Its
name came from the SHapley Additive exPlanation, inspired
by cooperative game theory, SHAP constructed an additive
explanatory model in which all features were considered as
contributors. SHAP had a solid theoretical basis for achieving
both local and global interpretability. The advantage of SHAP
value was that it provided us not only SHAP values to evaluate
feature importance, and it also showed us the positive or
negative effects of the impact (37, 38).

R software (version 4.1.2) and Python software (version
3.10) were used for statistical analysis; GraphPad Prism (version
8.3.0) and Origin (version 9.1.0) was used to draw graphs; and
P < 0.05 was considered statistically significant.

Results

Baseline characteristics

After applying the inclusion and exclusion criteria, 1,258
and 2,624 AMI patients were extracted from the MIMIC-III
and MIMIC-IV database, respectively, and entered into the final
analysis (Figure 1). In patients with AMI, the incidence of AKI

was 25.8 and 29.4% in the MIMIC-III database and MIMIC-IV
database, respectively. In the MIMIC-III group, there was no
difference in the proportion of males in the AKI group and the
non-acute kidney injury (non-AKI) group (p = 0.79), while the
median age of the AKI group was significantly higher than that
of the non-AKI group (p < 0.001). The proportion of males and
median age in the AKI group were higher than those in the non-
AKI group (p < 0.05, p < 0.001, respectively). Other baseline
characteristics of the patients are shown in Table 1.

Feature selection for models

The SHAP graph group are shown in Figure 2, including
single-sample feature influence map, feature distribution
heat map under sample clustering, feature importance
histogram, and feature density scatter plot. SHAP gives
variables importance ranking, which relies on the xGBoost
classification algorithm, and provides an intrinsic measure
of the importance of each feature, called the Shap value (39).
The top 5 predictors were serum creatinine, activated partial
prothrombin time, blood glucose concentration, platelets, and
atrial fibrillation (SHAP values are 0.670, 0.444, 0.398, 0.389,
and 0.381, respectively). We then developed machine learning
models which included top 5 variables, top 10 variables, top 15
variables, top 20 variables, top 25 variables, and all variables,
respectively, according to the variable importance ranking.

Logistic regression model

A LR model was first developed that included the top 5 most
important variables, creatinine, activated partial prothrombin
time, glucose, platelets, and atrial fibrillation. The LR model
was plotted the receiver operating characteristic (ROC) curve
(Figure 3) in the training cohort, and the AUC was calculated
to be 0.615 (Figure 4). Meanwhile, the Nomogram and the
Calibration curves are shown in the training cohort, test cohort,
and validation cohort (Figure 3). The LR model with all
variables (LR-all) in training cohort achieved an AUC of 0.713,
(95% CI: 0.693∼0.732) (Figure 4). Meanwhile, the LR-all model
in test cohort, achieved an AUC of 0.694 (95% CI: 0.656∼0.733)
(Supplementary Figure 1). In the validation cohort, the AUC of
the LR model with top 20 variables (LR-20) performed best in
validation cohort (with an AUC of 0.686, 95%CI: 0.653∼0.720)
(Figure 5).

Machine learning models in the
training cohort

Five machine learning models including RF, NB, SVM,
xGBoost, DT were then developed. According to the order
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FIGURE 1

Flow diagram of the selection process of patients.

of variable importance, top 5 variables, top 10 variables, top
15 variables, top 20 variables, top 25 variables and models
including all variables were successively developed. The machine
learning models of using top 5 important features in training
cohort were as follows: the RF model (RF-5), with an AUC
of 1 (95% CI: 1); the NB model (NB-5), with an AUC of
0.744, (95% CI: 0.725∼0.763); the SVM model (SVM-5), with
an AUC of 0.750 (95% CI: 0.730∼0.769); the xGBoost model
(xGBoost-5), with an AUC of 1 (95% CI: 1); the DT model
(DT-5), with an AUC of 0.682 (95% CI: 0.662∼0.703). All
machine learning models outperformed the LR model in the
training cohort. The RF-5 model and xGBoost-5 performed
the best of all machine learning models. The DT-5 model
has the worst performance. NB-5 and SVM-5 perform well in
the training cohort. The SVM-5 model outperforms the NB-5
model. We gradually increased the number of included variables
to develop different machine learning models. The ROC curves
are shown for each model in the training cohort (Figure 4).
The performances of all of the models are shown in the training
cohort (Figure 4), and statistics for all models in the training

cohort are shown in Supplementary Tables 1–6. There are, as
the number of variables increased, dynamic plot of the area
under the ROC curve for all machine learning models in training
cohort (Figure 6).

Machine learning models in the test
cohort

The other 30% of the data in MIMIC-IV is used as a test
cohort to test the performance of each machine learning model.
The machine learning models of the variable importance top 5
in test cohort were as follows: the RF-5 model, with an AUC of
0.696 (95% CI: 0.658∼0.734); the NB-5 model, with an AUC of
0.724 (95% CI: 0.687∼0.762); the SVM-5 model, with an AUC
of 0.718 (95% CI: 0.680∼0.756); the xGBoost-5 model, with an
AUC of 0.666 (95% CI: 0.626∼0.706); the DT-5 model, with
an AUC of 0.663 (95% CI: 0.622∼0.704). The performance of
the five machine learning models in the test cohort is better
than that of the NB model, and the AUC of LR model with
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TABLE 1 Baseline characteristics.

MIMIC III
(n = 1,258)

MIMIC IV
(n = 2,624)

Non-AKI
(n = 933)

AKI
(n = 325)

P-value Non-AKI
(n = 1,851)

AKI
(n = 773)

P-value

Demographic

Male (n%) 639 (68.5%) 220 (67.7%) 0.79 1,164 (62.9%) 518 (67.0%) 0.045

Age (year) 65.1 [55.3,75.4] 69.2 [58.7,78.4] <0.001 67.0 [57.0,75.0] 71.0 [61.0,78.0] <0.001

Vital signs

Heart rate (min−1) 83.0 [72.0,95.0] 87.0 [73.0,100.0] <0.05 83.0 [73.0,95.0] 86.0 [74.0,100] <0.001

Temperature (◦C) 36.5 [36.0,36.8] 36.5 [35.9,37.1] 0.548 36.6 [36.4,36.8] 36.6 [36.3,36.9] 0.789

Respiratory rate (min−1) 17.0 [15.0,21.0] 19.0 [15.0,22.0] <0.05 18.0 [15.0,22.0] 19.0 [16.0,24.0] <0.001

ASP (mmHg) 119.8 [106.0,134.0] 116.0 [101.0,133.0] 0.055 118.0 [105.0,134.0] 113 [101.0,131.0] <0.001

ADP (mmHg) 61.0 [52.0,70.0] 59.0 [50.0,68.0] <0.05 66.0 [56.0,76.0] 61.0 [53.0,72.0] <0.001

MAP (mmHg) 78.0 [68.0,88.0] 75.0 [66.0,84.0] <0.05 80.0 [71.0,91.0] 77.0 [69.0,87.0] <0.001

Laboratory results

RBC (m/uL) 4.2 [3.8,4.7] 3.9 [3.4,4.5] <0.001 4.0 [3.4,4.5] 3.8 [3.2,4.3] <0.001

WBC (k/uL) 11.0 [8.7,14.7] 12.2 [8.4,15.2] 0.088 10.5 [8.0,13.7] 11.1 [8.0,15.8] <0.05

Platelet (k/uL) 239.0 [194.0,297.5] 222.0 [175.0,292.5] <0.05 211.0 [165.0,265.0] 197.0 [153.5,250.0] <0.001

Hemoglobin (g/dL) 13.0 [11.4,14.4] 12.1 [10.4,13.6] <0.001 12.0 [10.1,13.7] 11.2 [9.7,13.0] <0.001

Hematocrit (%) 37.8 [34.0,41.6] 36.0 [31.3,40.0] <0.001 36.5 [31.1,40.6] 34.9 [30.2,39.5] <0.001

Glucose (mg/dL) 140.0 [114.0,187.0] 155.0[118.0,230.5] <0.001 133.0 [109.0,178.0] 148.0 [113.0,203.0] <0.001

BUN (mg/dL) 18.0 [14.0,26.0] 25.0 [17.0,37.0] <0.001 19.0 [14.0,32.0] 25.0 [18.5,39.0] <0.001

Potassium (mEq/L) 4.1 [3.8,4.5] 4.3 [3.9,4.7] <0.001 4.2 [3.9,4.5] 4.3 [3.9,4.6] <0.05

Sodium (mEq/L) 139.0 [136.0,140.0] 138.0 [135.0,140.0] 0.083 138.0 [136.0,140.0] 138.0 [135.0,141.0] 0.858

Chloride (mEq/L) 103.0 [100.0,106.0] 102.0 [101.0,107.0] 0.353 103.0 [99.0,105.0] 103.0 [99.0,105.0] 0.613

Calcium (mg/dL) 8.6 [8.2,9.1] 8.4 [7.9,8.9] <0.001 8.7 [8.2,9.1] 8.5 [8.0,9.0] <0.001

Magnesium (mg/dL) 1.9 [1.7,2.1] 1.9 [1.7,2.1] 0.468 2.0 [1.8,2.1] 2.0 [1.8,2.2] 0.900

Phosphate (mg/dL) 3.4 [2.9,4.0] 3.6[3.0,4.5] <0.001 3.6 [3.0,4.2] 3.8 [3.2,4.6] <0.001

Bicarbonate (mEq/L) 23.0 [21.0,26.0] 23.0 [20.0,25.0] <0.05 23.0 [21.0,25.0] 22.0 [19.0,25.0] <0.001

APTT (s) 31.6 [26.1,55.4] 35.2 [27.6,59.2] <0.05 35.6 [28.8,55.5] 39.4 [29.4,65.2] <0.05

INR 1.2 [1.1,1.3] 1.2 [1.1,1.4] <0.05 1.2 [1.1,1.3] 1.2 [1.1,1.4] <0.001

PT (s) 13.4 [12.5,14.6] 13.5 [12.8,15.0] <0.05 12.7 [11.7,14.6] 13.3 [12.1,15.8] <0.001

CK-MB (ng/mL) 32.0 [8.0,94.5] 26.0 [8.0,97.0] 0.633 20.0 [6.0,71.0] 18.0 [5.0,69.1] 0.431

TNT (ng/mL) 1.0 [0.8,4.0] 1.5[0.2,5.5] <0.05 0.5 [0.1,2.3] 0.5 [0.1,2.3] 0.978

Creatinine (mg/dL) 1.0[0.8,1.3] 1.3 [0.9,1.6] <0.001 1.0 [0.8,1.5] 1.4 [1.0,1.9] <0.001

GFR [mL/(min·1.73 m2)] 74.8 [55.8,95.8] 56.3 [38.1,82.7] <0.001 72.0 [44.7,99.3] 52.1 [33.5,75.9] <0.001

Comorbidities (n%)

HF (n%) 327 (35.0%) 154 (47.4%) <0.001 218 (11.8%) 100 (12.9%) 0.407

Cardiogenic shock (n%) 132 (14.1%) 85 (26.2%) <0.001 85 (4.6%) 82 (10.4%) <0.001

Atrial fibrillation (n%) 189 (19.9%) 110 (33.8%) <0.001 501 (27.1%) 325 (42.0%) <0.001

Hypertension (n%) 467 (50.1%) 144 (44.3%) 0.074 339 (18.3%) 96 (12.4%) <0.001

Hyperlipidemia (n%) 273 (29.3%) 77(23.7%) 0.054 1,003 (54.2%) 339 (51.6%) 0.229

Hypercholesterolemia (n%) 154 (16.5%) 34 (10.5%) <0.05 90 (4.9%) 39 (5.0%) 0.843

Respiratory failure (n%) 107 (11.5%) 72 (22.2%) <0.001 70 (3.8%) 39 (5.0%) 0.162

DM (n%) 188 (20.2%) 86 (26.5%) 0.018 171 (9.2%) 77 (10.0%) 0.559

Ventricular tachycardia (n%) 119 (12.8%) 47 (14.5%) 0.434 90 (4.9%) 73 (9.4) <0.001

Continuous variables are presented as the median and interquartile range (IQR). Counting data are presented as numbers and percentages. ASP, arterial systolic pressure; ADP, diastolic
arterial pressure; MAP, mean arterial pressure; RBC, red blood cell; WBC, white blood cell; BUN, blood urea nitrogen; APTT, activated partial prothrombin time; INR, International
Normalized Ratio; PT, prothrombin time; CK-MB, Creatine Kinase Isozyme-MB; TNT, Troponin-T; GFR, Glomerular Filtration Rate; HF, Heart Failure; DM, Diabetes Mellitus.
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FIGURE 2

Single-sample feature impact map (A); heat map of feature distribution under sample clustering (B); histogram of feature importance (C);
scatter plot of feature density (D).

top 5 variables (LR-5) has only 0.652 in the test cohort. The
NB model is the best performer of all machine learning models
in the test cohort. The NB model performed best when the
variable importance top 20 variables were added to the model
(AUC for NB-20 model: 0.739, 95% CI: 0.702∼0.776). The
worst performing model is DT model with top 20 variables

(AUC for DT-20 model: 0.663, 95% CI: 0.622∼0.704). xGBoost
model performed general in the test cohort and their AUC
increased when more variables were added (AUC for xGBoost-
20 model: 0.689, 95% CI: 0.650∼0.728). But, the AUC of SVM
model not increased when more variables were added (SVM-
20 model: 0.687, 95% CI: 0.647∼0.727). And outperformed

Frontiers in Cardiovascular Medicine 07 frontiersin.org

https://doi.org/10.3389/fcvm.2022.964894
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-964894 August 30, 2022 Time: 17:36 # 8

Cai et al. 10.3389/fcvm.2022.964894

FIGURE 3

Logistic Regression model with different variables ROC curves; training cohort (A); test cohort (B); validation cohort (C). Logistic Regression
model calibration curve; training cohort (D); test cohort (E); validation cohort (F). Logistic Regression model Nomogram (G).

the RF-20 model (AUC for RF-20 model: 0.733, 95% CI:
0.695∼0.770). The ROC curves are shown for each model
(Supplementary Figure 1). The performances of all models are
shown in the test cohort (Supplementary Figure 1). Statistical
measures of the performance of all models in the test cohort are
shown in Supplementary Tables 7–12. There are, as the number
of variables increased, dynamic plot of the area under the ROC
curve for all machine learning models in test cohort (Figure 6).

Machine learning models in the
validation cohort

Externally validated in a validation cohort of 1,258 cases,
among all developed machine learning models, the RF model
performed the best, followed by xGBoost, and the worst
performing model was DT. The RF models were as follows in
the external validation cohort: the RF-5 model, with an AUC of
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FIGURE 4

The ROC curves for machine learning models and the performances of all models in test cohort. The X-axis in 4G-4L represents the AUC values
of each model. Top 5 variables (A,G); top 10 variables (B,H); top 15 variables (C,I); top 20 variables (D,J); top 25 variables (E,K); models for all
variables (F,L).

0.711 (95% CI: 0.678∼0.744); the RF model with top 10 variables
(RF-10), with an AUC of 0.754 (95% CI: 0.722∼0.786); the RF
model with top 15 variables (RF-15), with an AUC of 0.778,
(95% CI: 0.747∼0.808); the RF-20 model, with an AUC of 0.781,
(95% CI: 0.750∼0.811); the RF model with top 25 variables
(RF-25), with an AUC, 0.777 (95% CI: 0.746∼0.807); the RF
model with all variables (RF-all), with an AUC of 0.770 (95% CI:

0.740∼0.801). The AUC of DT model with all variables (DT-all)
in the validation cohort was 0.637 (95% CI: 0.602∼0.672). The
AUC of LR-all was 0.686 (95% CI: 0.653∼0.720) in the validation
cohort. The ROC curves are shown for each model (Figure 5).
The performances of all models are shown in the validation
cohort (Figure 5), and statistical measures of the performance
for the variable importance top20 models in the validation
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FIGURE 5

The ROC curves for machine learning models and the performances of all models in validation cohort. The X-axis in 5G-5L represents the AUC
values of each model. Top 5 variables (A,G); top 10 variables (B,H); top 15 variables (C,I); top 20 variables (D,J); top 25 variables (E,K); models for
all variables (F,L).

cohort (Table 2). Statistical measures of performance of other
models are shown in the validation (Supplementary Tables 13–
17). Meanwhile, there are, as the number of variables increased,
dynamic plot of the area under the ROC curve for all machine
learning models in validation cohort (Figure 6). Precision-recall
curves of the six models with different variables in the validation
cohort were showed in Supplementary Figures 2–7. The area

under the precision-recall curves of each model was calculated.
Consistent with the AUC values, it indicated that random forest
outperformed the other five models in the validation cohort.
Moreover, an application software program based on the top 20
predictors were developed for evaluating the risk of AKI. The
AKI probability of each patient could be calculated after the
patient was admitted to hospital (Figure 7).
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FIGURE 6

Dynamic plot of the area under the ROC curve for all machine
learning models; training cohort (A); test cohort (B); validation
cohort (C). The x-axis represents the number of variables
included in the model, the y-axis represents different kinds of
models, and the z-axis represents the AUC values of each
model.

Discussion

This study identified various clinical features associated with
the risk of AKI in patients with AMI. Using a sophisticated
machine learning approach, we found that creatinine, blood
urea nitrogen, atrial fibrillation, glucose and hemoglobin were
considered as the most important five features with AKI in
patients with AMI. Among the six models, the RF model has the

best performance with an AUC of 0.781 for the RF-20 model in
the external validation cohort. The results of this study showed
that the occurrence of AKI in patients with AMI was 28.2%.
Compared with previously reported studies, the incidence of
in-hospital AKI in patients with AMI reported in this study is
close to the upper limit of normal (2–4). The possible reasons
are follows; (a) firstly, we excluded patients with more than
5% missing data, which resulted in fewer hospitalizations for
AMI overall and ultimately led to a higher incidence of AKI;
(b) secondly, the median age of patients in each group was
high (>65 years) for both MIMIC-III and MIMIC-IV, which
suggest that general condition of our study population is not
very optimistic, and they have poor resistance to injury.

Early identification of AKI in patients admitted for AMI
improves overall outcomes (19). Therefore, identifying risk
factors for AKI in patients with AMI can help to identify
high-risk patients and to make appropriate clinical decisions.
With the development of machine learning algorithms, the
number of predictors that can be processed has largely been
enriched. Therefore, advanced machine learning techniques
allow researchers to develop more optimized models compared
to traditional models (40). With such a model, cardiologists
can be alerted in advance when a patient is admitted to the
hospital with an AMI.

Zhou et al. reported a risk model for AKI prediction in
AMI patients with LR analysis. The model calibrated well
and performed better than traditional risk scores (41). With
the development of concepts such as real-world research
and precision treatment, the demand for medical big data
processing by scientific researchers is increasing. Machine
learning technology had a unique advantage in processing
massive and high-dimensional data and conducting predictive
evaluation, so in recent years, the application of machine
learning method in the medical field had been deepening. Sun
et al. developed several machine learning models and found
that random forest model out performed outperformed LR in
every comparison (36). Random forest methods improved the
accuracy of AKI risk stratifying in AMI patients. The sample
size of this study was relatively small and this was a single-center
study, so we tried to explore a more robust AKI risk prediction
model with a larger sample size from another canter. This
study is an example of how machine learning methods works
for evaluating AKI risk in AMI patients. Similarly, machine
learning algorithms can be applied to other risk assessments of
AMI patients, such as the risk of all-cause mortality, the risk
of cardiac mortality and the incidence of major adverse cardiac
event (MACE). The association between the risk factors and the
risk of AKI is established by using artificial intelligence, and
indicators such as patients’ vital signs and laboratory test results
are matched with AKI risks, which helps to improve the risk
perception and recognition ability of the model. This innovative
approach to risk assessment helps clinicians benefit from better
individualized treatment decisions.
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TABLE 2 The performance of six models containing the top 20 importance variables.

Model AUC (CI 95%) Accuracy Sensitivity Specificity

Support Vector Machine 0.720 (0.687∼0.753) 0.684 0.697 0.646

Decision Trees 0.637 (0.602∼0.672) 0.670 0.716 0.538

Random Forests 0.781 (0.750∼0.811) 0.735 0.748 0.698

eXtreme Gradient Boosting 0.741 (0.708∼0.773) 0.682 0.678 0.695

Naive Bayes 0.716 (0.684∼0.749 0.628 0.582 0.763

Logistic regression 0.686 (0.653∼0.720) 0.694 0.743 0.550

FIGURE 7

An example of the application software for predicting AKI risk in AMI patients.

In the present study, we used advanced statistical methods
and specially processed data. The former includes five machine
learning algorithm development models and traditional LR
development models, with the 70% subset used for training
cohort, and the 30% subset used for internal testing. Meanwhile,
the data in MIMIC-III were used external validation and the
ROCs to evaluate the models (28). Although there are many
ways to filter the importance of variables, such as Boruta
Algorithm and LASSO Regression (36, 42), SHAP method was
used in the present study for feature selection. SHAP method
not only shows the contribution of all features to the model
output at the macro level with the feature density scatter plot,
feature importance SHAP value and feature distribution heat
map under sample clustering, but also shows the model output
at the micro level through a single sample feature influence map
(43, 44). Machine learning techniques help doctors analyze large
amounts of information and are critical in optimizing medical
practice. The latter is that we used the data in MIMIC-IV, the
training and test cohort, to create a new dataset with a 1:1 ratio
of AKI to non-AKI, addressing the imbalance of samples.

MIMIC, a high-quality database with a large sample size, was
used in this study. There are several advantages for using the
database. (a) Firstly, it is one of the few critical care databases
that is freely accessible. (b) Secondly, the dataset spans more
than a decade and contains a wealth of detailed information
on patient care. (c) Thirdly, once the data usage agreement is
accepted, the investigator’s analysis is not subject to limitations,
thereby enabling clinical research and education around the
world. (d) Finally, data can be downloaded from multiple
sources (45).

There are also some limitations in our study. Firstly, our
model was developed retrospectively based on a single-center
database. Missing data and input errors exist, such as C-reactive
protein and N-terminal pro-brain natriuretic peptide, despite
the very high quality of the MIMIC databases. Therefore,
prospective validation of our model in another cohort is still
required in the future (46, 47). Secondly, we trained the model
and tested it using synthetic datasets due to the severe class
imbalance of the extracted datasets, which could have led
to, in the training cohort, over fitting of models cannot be
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avoided and an overly optimistic assessment of its performance
(48). Thirdly, this study only focused on the incidence of
AKI during hospitalization, while other important prognostic
indicators such as long-term mortality after discharge still
require further investigation.

Conclusion

We have developed several machine learning prediction
models based on the MIMIC database. Among them, the
RF model has good performance and can be used to guide
clinical practice.
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