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Disease modeling using human-induced pluripotent stem cell-derived

cardiomyocytes (hiPSC-CMs) has both challenges and promise. While

patient-derived iPSC-CMs provide a unique opportunity for disease modeling

with isogenic cells, the challenge is that these cells still demonstrate distinct

properties which make it functionally less akin to adult cardiomyocytes.

In response to this challenge, numerous innovations in di�erentiation and

modification of hiPSC-CMs and culture techniques have been developed.

Here, we provide a focused commentary on hiPSC-CMs for use in disease

modeling, the progress made in generating electrically and metabolically

mature hiPSC-CMs and enabling investigative platforms. The solutions are

bringing us closer to the promise of modeling heart disease using human cells

in vitro.

KEYWORDS
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Introduction

Before the discovery of human pluripotent stem cells (hPSCs), including human

embryonic stem cells (hESCs) first isolated by Dr. James Thomson (UW–Madison)

(1) and human-induced pluripotent stem cells (hiPSCs) created by both Dr. Shinya

Yamanaka (Japan) and the Thomson group (2, 3), disease modeling had been limited

to transgenic animal models and heterologous expression studies. These cells presented

many advantages such as unlimited proliferation, the potential to differentiate to any cell

types of the human body, and the generation of patient-specific isogenic cells for disease

modeling. For the first time, we could generate human cardiac cells from healthy donors

and patients following a skin biopsy or blood draw to reprogram the somatic cells to

iPSCs which can be differentiated to cardiac cells (4). However, initial enthusiasm was
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tempered by the realization that the differentiated hPSC-

cardiomyocytes (hPSC-CMs) did not quite resemble the adult

cardiomyocytes physically, electrically, and functionally. To

improve this powerful model system, extensive work has been

done to promote hPSC-CMs maturation and differentiate to

chamber-specific cardiomyocytes. In this focused commentary,

we will discuss the benefits of this model and the challenges and

creative technologies that have ushered in the next phases in

utility for cardiac disease modeling.

Human pluripotent stem
cell-derived cardiomyocytes

Using hiPSCs has enabled the investigation of patient-

specific conditions in a lab environment (4). Methods and

protocols to differentiate hPSC-CMs have been significantly

advanced in the past two decades, particularly in the past

10 years. From the beginning of the inductive co-culture

and the embryonic body (EB) method, which mimic the

formation of the three germ layers of ectoderm, mesoderm

(from which CMs are derived), and endoderm, and spontaneous

differentiation in undefined conditions, to the monolayer-

based directed differentiation driven by growth factors or small

molecules using defined media, the differentiation efficiency

has been dramatically improved. By the EB spontaneous

differentiation in undefined condition, only 5% hPSC-CMs

could be obtained, but now to the monolayer-based, small

molecule-directed differentiation of 95% hPSC-CMs can be

generated in a cost-effective way (5–7). Differentiation of

hPSC-CMs is guided by mammalian heart development

from the generation of mesoderm, cardiac mesoderm, and

heart field progenitors to differentiation of embryonic-like

cardiomyocytes. Although with the significantly improved

differentiation efficiency, the differentiation protocols we have

developed and by other laboratories could generate still

immature cardiomyocytes like in the fetal heart, and a mixture

of ventricular, atrial, and nodal cells (4, 6, 8–11). However,

great effort has been made to promote the maturation of hPSC-

CMs (12–16) in recent years, which we will discuss in the

later sections.

Different forms of heart disease target different regions

and CM subtypes in the heart; e.g., long QT syndrome

(LQTS) primarily targets on the left ventricle (LV), while

Brugada syndrome (BrS) and arrhythmogenic right ventricular

cardiomyopathy (ARVC) mainly affect right ventricle (RV), and

atrial fibrillation impacts on atria. Therefore, the generation

of chamber-specific hPSC-CM subtypes is needed to model

specific heart disease and to develop novel therapies and

precisionmedicine. The hPSC-CMdifferentiation protocols that

have been used in many labs primarily generated majority of

ventricular CMs (6, 8, 9). However, it has shown variations

from lab to lab and from line to line, which is the challenge

we face. Pacemaker cells shown could be differentiated using

the EB protocol developed in Keller’s lab (17). Lee et al. have

also shown that human ventricular and atrial cardiomyocytes

were derived from different mesoderm populations based on

CD235a and RALDH2 expression in the early stage of hPSC

differentiation, which could be further directed to differentiate

to ventricular and atrial hPSC-CMs (18). However, how these

mesodermal progenitors were specified to first heart field

(FHF) and second heart field (SHF), and how the CD235a

mesoderm progenitors contribute to FHF-derived left ventricle

(LV) or SHF-derived right ventricle (RV) CMs or both were

not clear (18). In one of our recent studies to differentiate

hPSCs to cardiac fibroblasts, we found that FHF and SHF

progenitors were differentiated in the early stage of either

the biphasic Wnt signaling (GiWi) or the FGF signaling

(GiFGF) protocols (19). More recently, Zhang et al. and

Pezhouman et al. both created a hiPSC TBX5Clover2/NKX2-

5TagRFP and hES3-TBX5TdTomato/W /NKX2-5eGFP/W double

reporter line, respectively, for isolation of FHF- and SHF-

derived hPSC-CMs (20, 21). However, delineating FHF and

SHF lineages based on only the two transcription factors of

NKX2.5 and TBX5 is not sufficient. Furthermore, different

regions of SHF, anterior SHF (aSHF) and posterior (pSHF),

contribute to different CM subtypes, in which aSHF gives

rise to RV and outflow track (OFT) and pSHF contributes to

atria (22–25).

To realize the full potential of using hPSC-CMs for disease

modeling, drug screening, precision medicine, and cardiac

regeneration largely rely on our ability to differentiate them

to the ideal, specific, and closely akin to adult CMs. Since

significant advancement and great progress have been achieved

in the past 10 years, we have hope to make it even closer to the

goal in the next 10 years.

Modeling cardiac arrhythmia using
HiPSC-CMs

Arguably, the most powerful modeling aspect of iPSCs is

the capability of modeling human cardiac disease with human

cardiac cells. This is a significant advance over animal models

which have their unique physiology and cellular regulation. For

example, resting heart rate in mice is 8–10 times faster than

human, and ventricular repolarization is carried by potassium

current (IKto and IKur) rather than delay rectifier channels

Ikr or Iks as in human (26, 27). The Ca2+ handling kinetics

and myofilament proteins are also differentially expressed

between human and mice. These features limit the capability

of animal models to mimic human disease particularly when

these currents are directly involved in the disease process

or arrhythmogenesis.

Inherited arrhythmic syndromes are a broad disease

category that implicate that abnormalities in cardiac ion
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channel α1-subunits, and proteins that associate with ion

channels, are involved in contraction or are components of

structural makeup (28). These diseases primarily involve ion

channels, occur in otherwise healthy children and younger

adults with structurally normal hearts, and present with a

range of symptoms from palpitations to syncope to sudden

death (29). The most common is LQTS with an incidence

of about 1 of 2,000. LQTS cellular mechanism is due to ion

channel dysfunction directly by mutations of ion channel α1-

subunit, or ion channel associated proteins that alter channel

function, or indirectly by mutations in protein structure that

disrupts normal protein membrane trafficking. Other inherited

cardiac arrhythmia syndromes known to involve ion channels

include Brugada syndrome (30), cardiac conduction disease

(31), catecholaminergic polymorphic ventricular tachycardia

(CPVT) (32), calcium release disorder syndrome (CRDS) (33),

and short QT syndrome (SQTS) (34). CPVT is linked to

mutations in the ryanodine receptors (RYR2) and calsequestrin

(CASQ2) genes that encode intracellular proteins involved in

intracellular Ca2+ regulation (32). Many genes are implicated

in several phenotypes including SCN5a that encodes for

the α1-subunit for the cardiac sodium channel (Brugada

syndrome, cardiac conduction disease, and LQTS), RYR2

(CPVT and CRDS), and hERG1 (LQTS and SQTS), which

highlights the need for functional characterization combined

with deep clinical phenotype assessment. Other non-ion

channel-inherited arrhythmogenic syndromes can involve genes

encoding structural and contractile elements in the heart,

including arrhythmogenic cardiomyopathy (ACM) (includes

ARVC) and laminopathy, and can first present with arrhythmia

prior to structural remodeling likely related to the interplay of

ion channel regulation with these proteins (35).

Several cardiac disease models have been developed to

date using patient-specific iPSCs. These include LQTS (36),

Brugada (37), CPVT (38), ARVC (39), dilated cardiomyopathy

(40), hypertrophic cardiomyopathy (41), Andersen–Tawil

syndrome (42), and Timothy syndrome (43) and have been

recently reviewed (26). These initial studies were basic proof of

principle exercises but have ushered in the capability of more

complex disease investigation going forward. For example,

genome editing technology with utilizing CRISPR/Cas9 system

allows for the generation of isogenic lines (correction of the

specific mutation site only) and allows for direct comparison

excluding other genetic modifiers or epigenetic factors that

may influence the cellular phenotype (44). Our group studied

iPSC-CMs from a LQT2 patient with a hERG1 mutation

H70R and compared it to both a control cell line and isogenic

CRISPR- “corrected” iPSC-CMs (45). This methodology

enabled us to identify a complex and unexpected cellular

phenotype of hERG1a and hERG1B ratio imbalance in

addition to mutant channel trafficking abnormality. These

important physiologic nuances are not apparent in heterologous

channel expression studies and highlight the strength of the

iPSCs model.

Patient-specific genetic and transcriptional variation can

manifest in iPSCs for more representative disease modeling,

while non-human in vivo models (46–48) or other human cell

models (i.e., HEK) unable to do so. Moreover, while most

investigations of disease have been focused on studying iPSC-

CMs, other cell types such as cardiac fibroblasts may also

modulate disease features (19). Therefore, modeling the disease

with patient-specific iPSC-CMs and iPSC-CFs that carry all the

genetic variations and transcriptional regulation will provide

us more comprehensive and in-depth understanding of human

disease and the development of the model for drug screening

and precision medicine.

Challenges of the iPSC-CMs investigation including the

electrical, morphologic, and metabolic functionality are barriers

to appropriate disease modeling. In the remainder of this

commentary, we will summarize the progress made to overcome

those challenges.

Electrical maturity of IPSC-CMs

The rationale behind the use of iPSC-CMs is that

they are human cells, patient-specific and can function as

cardiomyocytes. Although advances have been made in the

differentiation of iPSC-CMs, several features of electrical

immaturity can manifest and limit their use for modeling

cellular arrhythmia mechanisms and inherited arrhythmias.

Experimentally, iPSC-CMs exhibit a depolarized resting

membrane potential and spontaneous automaticity due to

small IK1and unchecked pacemaker If (49, 50). Kir2.1 is the

dominant molecular component of IK1 that completes phase

3 repolarization and maintains resting membrane potential. In

addition to electrophysiological functions, Kir2.1 is important

for fetal mouse cardiomyocyte maturation (51) and important

for facial muscular/skeletal development and growth (52). We

and others have increased IK1 (Kir2.1 enhancement or current

injection) in iPSC-CMs which results in control of cellular

pacing and AP restitution, in agreement with most mammalian

models (53–55). Additionally, increasing IK1 density establishes

a more negative membrane potential, which increases the

availability of sodium and L-type calcium channels, reflected

in dV/dt values in the range of adult myocytes (55), as

shown in Figures 1A–C, from Vaidyanathan et al. Additionally,

action potential duration (APD) was more ventricular-like

and exhibited rate adaptation in response to increased

pacing frequency, typical of adult cardiomyocytes (Figure 1D).

This also caused larger calcium transients compared to

controls without changes in basal calcium levels or rate of

decay of the transient. IK1-enhanced cells were not only

more electrically mature but also induced maturation of
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other properties. Interestingly, unlike injection of current,

enhancement of IK1 by expression of Kir2.1 resulted in an

increase in capacitance and an increase in DNA synthesis,

suggesting a larger role for channel expression beyond

creating membrane polarization. Further, expression of the

LQT9-associated mutation, Cav3-F97C, resulted in prolonged

APD, and upon bradycardic pacing, EADs were observed

(Figures 1E–G).

Several innovations have been developed to improve

structural maturity and calcium handling (56). Prolonged

culture time resulted in more mature phenotypes with respect

to myofibril density, visible sarcomeres, calcium handling, and

β-adrenergic response (57). Additionally, prolonged culture

time allowed for upregulation of maturation-related genes.

Increased gene expression of IK1 was reported; however, the

increase is modest and remains several levels below what

is observed in adult cardiac myocytes. Furthermore, the use

of hormones, such as thyroid hormone and glucocorticoids,

was reported to promote the development of t-tubules and

larger calcium transients (12, 14). The combination of T3 and

dexamethasone (a glucocorticoid analog) resulted in excitation–

contraction coupling gain (12). Co-culture with human

mesenchymal cells or treatment of iPSC-CMs with a collection

of “paracrine factors” (including fibroblast growth factor,

stromal cell-derived factor-1, and granulocyte–macrophage

colony-stimulating factor) that in physiological conditions

are secreted by neighboring cells shows some effects on

markers of metabolism that resembles more mature cells

(58, 59). Mechanical stress combined with pacing has been

demonstrated to increase contractility, cell size, and RyR2 and

SERCA2 expression (Ca2+ handling), pushing the cells to more

mature excitation–contraction coupling (54, 55). Some exciting

work has evolved in which the engineering of the culture

substrate stiffness can yield more structurally mature iPSC-

CMs (56, 57). The combination of both substrate stiffness

and plating cell density functionally improves AP upstroke

velocity, Kir2.1 expression, andmarkers of maturemyofilaments

(60). Harnessing the concept of neighboring cell cues growing

in a syncytium has also been demonstrated to improve IK1

density (61). These important steps and technological advances

continue to evolve and further iterations with a combination of

methodologies are most likely needed to reach a truly electrical

mature cell. Some of these will be discussed below in the section

“Investigative Platforms.”

Testing of potential clinical pharmaceuticals for cardiac

arrhythmogenesis is another use for iPSC-CMs. Drugs are

routinely screened for their ability to produce Torsade de

Pointes (TdP) in patients via preclinical and clinical trials and

largely focus on blockade of hERG1 channel (62). Despite

this screening, some drugs are excluded despite having no

obvious ability to produce TdP and some are passed through

but still can cause TdP. As a result, The Comprehensive

in vitro Proarrhythmia Assay (CiPA) is being developed to

allow an integrated, mechanistic risk assessment with strong

evidence to inform regulatory decision-making and efficiency

for drug discovery (62). Shortcomings of this approach abound,

specifically since IK1 is largely absent from most iPSC-CM

preparations and Kir2.1 is known to be blocked by numerous

FDA-approved drugs (63–66). Further, TdP induction occurs

with bradycardia/pause or with long–short cycles; thus,

arrhythmia induction requires control of automaticity to

provoke bradycardia or pace with long–short cycles (67).

CiPA is an important step in the use of iPSC-CMs for drug

safety; however, the lack of normal electrical physiology could

overinflate some findings or miss key, potentially problematic

effects on other ion channels. One workaround for this has

been to inject IK1when assessing the AP characteristics (68). The

utility of this approach is somewhat limited as the biological and

regulatory aspects of Kir2.1 are missing from the model system.

Another separate approach to this challenge is the emerging

technology of human heart slices and recent developments

that allow for mini-tissue-level drug toxicity studies. This

multicellular approach poses some advantage for drug screening

but is limited in scope by the availability of whole organs and

limitations in culture and analytic outputs; for review, see Meki

et al. (69).

Cardiac metabolism in culture

Understanding iPSC-CM metabolism is key to generating

a more mature cell for the study of human disease. One such

approach is long-term culture of iPSC-CMs. In a pivotal study,

Ebert et al. demonstrated that long-term culture (>200 days)

results in divergent control of mitochondrial metabolism,

regulated by PKA and proteasome-dependent signaling events

(70). Additionally, heat shock protein 90 (Hsp90) worked

downstream to regulate mitochondrial respiratory chain

proteins and their metabolic output. This process increased

iPSC-CM metabolism, resulting in increased cell contractility

(70). Indeed, transitional states during development have

provided insights into the role of mitochondria and metabolic

transitions in iPSC-CMs. Future work demonstrating how

long-term culture influences signaling cascades that control

metabolic output and cellular homeostasis will further advance

this work.

Developed mitochondria are central to cardiac metabolism,

as they progress from small, fragmented mitochondria to

large organelles that can produce enough ATP to sustain the

contractile function of the heart (71). Mitochondria in immature

iPSC-CMs are small and found throughout the cytoplasm

with concentration in the perinuclear space, whereas mature

mitochondria are larger and found betweenmyofibrils and in the

subsarcolemmal space (72). As the heart develops early during

embryonic development, it can utilize a variety of substrates to

meet its energy requirements as the embryo continues to develop
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FIGURE 1

IK1 enhancement of iPS-CMs results in improved action potential (AP) characteristics. (A) Representative AP from IK1-enhanced iPS-CMs, paced

at 0.5-3Hz at physiological temperature. (B) Resting membrane potential from IK1-enhanced iPS-CMs at di�erent pacing frequencies. (C)

dV/dTmax of iPS-CMs at di�erent pacing frequencies. (D) Action potential duration (APD) at 10% (APD10), 50% (APD50), 70% (APD70) and 90%

(APD90) at pacing frequencies 0.5Hz (black), 1Hz (dark grey), 2Hz (light grey), and 3Hz (white). (E) APD at APD10, APD50, APD70 and APD90 at

0.5Hz pacing from IK1 -enhanced iPS-CMs infected with WT Cav3 or LQT9-associated Cav3 mutation, F97C. (F) APD from IK1 -enhanced

iPS-CMs expressing WT-Cav3 or F97C-Cav3 at 1Hz pacing. (G) Bradycardic pacing induced EADs in IK1-enhanced iPS-CMs expressing

F97C-Cav3. Modified from (55).
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(71). A key switch that is made during the perinatal transition is

switching from glycolysis to oxidative phosphorylation to meet

metabolic demands (73). Thus, developed mitochondria with

active oxidative phosphorylation and the main energy driver for

the cardiomyocyte are both a feature of metabolically mature

iPSC-CMs and a key factor in initiating maturation (16, 74, 75).

The switch from glycolysis to mitochondrial oxidation

in iPSC-CMs is vastly different from undifferentiated iPSCs,

progenitors, and iPSC-derived non-CMs (74). Exploiting this

difference is a major pathway to purifying iPSC-CMs following

differentiation. Depriving glucose from differentiating iPSCs

and iPSC-derived non-CMs leads to cell death, as they

rely on glucose and glutamine metabolism. Using lactate

supplementation, iPSC-CMs can survive without glucose

and glutamine, thus allowing for their purification (76–78).

However, the use of lactate was recently found to generate

iPSC-CMs that have a similar phenotype to what is known

to occur in ischemic heart failure (79). Therefore, simply
replacing glucose with lactate in the culture media may not
generate healthy iPSC-CMs during differentiation. Further

exploiting metabolism to influence cell properties, glucose-
deprived and fatty acid-supplemented culture media can

facilitate the maturation of iPSC-CMs (80, 81). With the use

of fatty acids, there is a risk for lipotoxicity, which can be

avoided using galactose supplementation (82). The inclusion
of glucose in the culture medium upregulates HIF1α-lactate

dehydrogenase A axis and led to active glycolysis. Therefore,

inhibition of HIF1α or lactate dehydrogenase A resulted in
structural, metabolic, and electrophysiological maturation (82).

It has also been reported that high-glucose culture conditions
inhibit the maturation of iPSC-CMs via the pentose phosphate
pathway (83).

Mitochondria also regulate micro-RNA (miRNA) levels

that are involved in cardiomyocyte differentiation and

maturation (84, 85). Time-dependent changes in miR-1
regulate electrophysiological maturity as iPSC-CMs mature
(86). Therefore, it is possible that mitochondrial dynamics

regulates this transition in vivo. It has been demonstrated that
fluctuations in the redox state of a cell due to metabolism
can impact membrane current in iPSC-CMs (87, 88).

Additionally, downregulation of Opa1 resulted in increased
mitochondrial fission, lower metabolic demand, and smaller,

globular mitochondria in neonatal rat ventricular myocytes

reprogrammed into pacemaker cells with TBX18 (89). Further,

deletion of hydratase subunit A (HADHA) resulted in immature

iPSC-CMs with fragmented mitochondria, accumulation of

long-chain fatty acids, and prolonged action potential duration

with no change in resting membrane potential (90). It appears

that mitochondria can affect the electrical maturation of

cardiomyocytes, but electrical stimulation of neonatal rat

cardiomyocytes was demonstrated to regulate mitochondrial

function by upregulating nuclear respiratory factor 1 (NRF-1),

cytochrome oxidase, and carnitine palmitoyltransferase I

(CPT-1) (91).

Investigative platforms both 2D and
3D

Various techniques have been developed to culture iPSC-

CMs in multidimensional constructs to achieve organizational

and structure–function relationships that mimic native

heart cells.

Utilizing advancements of the 2D platform is enticing as

these are relatively cost-effective with reagents and techniques

that are accessible. Such approaches can provide insight into

cell function at molecular level, and 2D formats enable

rapid perfusion with drugs for high-throughput screening

and mechanical readouts or various imaging and optical

mapping techniques. In traditional 2D formats, iPSC-CMs

are grown as monolayers on glass or plastic substrates that

have Young’s modulus in the gigapascal (GPa) range. These

conditions even with metabolic enhancements can result in

less mature phenotypes in terms of structure, function, and

gene expression response with limited ability to reflect in

vivo dynamics of cardiac tissues (92). In contrast, iPSC-

CMs cultured on physiologic soft substrate stiffness (93, 94)

have improved contractile mechanics (95) with improved

action potential and calcium-transient assessments (60). Using

polydimethylsiloxane (PDMS) of the elasticity of normal

adult myocardium can increase cell conduction velocity and

contractile function.

Unique engineered substrates have also advanced 2D culture

for iPSC-CMs. Micropatterns offer a mechanism to create a

platform for cell connectivity and native sarcomere morphology

(96). We and our collaborators have used micropatterning

to create PDMS-stamped platforms for iPSC-CMs with

highly aligned myofibrils (Figure 2A) (97). This powerful

combination allowed for the formation of cellular syncytia with

aligned myofibrils and demonstrated anisotropic conduction

(Figures 2B,C) (97). Moreover, the recorded contractile strength

was improved, and conduction velocities were 2x faster than

in cells grown on PDMS as monolayers, likely due to the

aligned cells and myofibrils in the patterned 2D monolayer.

Disease models can also be created with patient-derived iPSC-

CMs. In recent work, we show that the mechanical behavior of

cardiomyocytes derived from a patient with CVPT and cultured

on a micropatterned substrate is distinctly different from that of

a familial control in both spontaneous rate of contraction and

amplitude of contractile strain (98).

In the native heart, cardiomyocytes make up only

part of the heterocellular composition. With the recent

capability to create iPSC-cardiac fibroblasts (4), we have

also coupled the 2D micropatterned platform with co-

culture of iPSC-CMs and iPSC-CFs (Figures 2D–F) (99).

The co-culture results in remodeling of the extracellular

matrix (ECM) and improves calcium dynamics and

contractile strain compared to iPSC-CMs on pattered

substrate alone.
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FIGURE 2

Micropattern culture of iPS-CMs results in anisotropic conduction and improved myofibril alignment, which is maintained in coculture with CFs.

(A) Percent of myofibrils aligned within 10 degrees of the primary axis significantly di�erent in monolayers vs micropatterned. (B,C) Optical

mapping of (B) monolayer and (C) micropatterned iPS-CMs. Ansiotropic conduction in patterned determined by comparison of the longitudinal

(CVL) and transverse (CVT) conduction velocities. (D) iPS-CMs cultured on micropattern alone. Scale bar 200µM. (E) Aligned myofibrils of

iPS-CMs seeded on micropatterned substrate maintained in co-culture with CFs at 18 days. Inset shows myofibrils with 79% of sarcomeres

within 10 degrees of the superior angle. Scale bar 200µM. (F) Quantification of the percent of myofibrils aligned within 10 degrees of the

superior angle at 18 days for the three conditions: iPS-CMs cultured alone, iPS-CMs co-cultured with CFs from Day 0 seeding, iPS-CMs

co-cultured with CFs from Day 4 of seeding. (A–C) modified from (97), (D,E) unpublished data, and (F) modified from (99).

Beyond 2D culturing and planting platform advances,

innovative 3D constructs have distinct advantages of cellular and

structural heterogeneity to more closely mimic native cardiac

tissue. Some examples include engineered heart tissue (EHT)

cardioids, 3D bioprinting, biometric scaffolds such as biowires,

bioreactors, and organ-on-a-chip microphysiological system

(100, 101). Highlighting the strength of 3D systems to mimic

cardiac contraction, several genetic disorders have beenmodeled

using EHT including hypertrophic cardiomyopathy (102), left

ventricular hypertrophy (103), dilated cardiomyopathy (104),

and muscle dystrophy (105). Cardioids are sphere-shaped

mini-organs that demonstrate self-organization, renewal, and

differentiation abilities and are suitable to study early human

cardiogenesis, injury regeneration (106), and congenital cardiac

malformation (107). Though 3D platforms can yield interesting.

results (13), drawbacks include the large number of required

cells with lengthy and technical setup time. One alternative is

the use of microtissues which are formed by mixing various

cell types: cardiac fibroblast (CFs), endothelial cells (ECs), and

cardiomyocytes (108). These more simplified constructs require

considerably less start-up costs but lack more complex structural

relationships between cells.

Going forward, the development of live-cell imaging

techniques of intercellular Ca2+, sarcomere lengths, and

membrane potential will help the functionality of 3D platform

(109). Furthermore, development of methods allowing exposure

of all cell layers to therapeutics or toxins will be instrumental to

increasing the functionality of 3D platforms.

Conclusion

Over the last two decades, substantial progress has been

made in generation, culture, and application of iPSC-CMs.

Using iPSC-CM model to recapitulate the complex genetic

background of disease entities provides an indispensable

platform to study protein–protein and structure–function

relationships. Furthermore, the use of human cells and
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the development of techniques to model the physiological

environment may even someday eliminate the need for animal

models. As we push the boundaries of iPSC-CM technology, we

come closer to a better understanding of human cardiac disease

toward refined approaches to therapeutics.
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