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Although the prevalence of heart failure with preserved ejection fraction

(HFpEF) is increasing, evidence-based therapies for HFpEF remain limited,

likely due to an incomplete understanding of this disease. This study sought

to identify the cardiac-specific features of protein and phosphoprotein

changes in a murine model of HFpEF using mass spectrometry. HFpEF

mice demonstrated moderate hypertension, left ventricle (LV) hypertrophy,

lung congestion and diastolic dysfunction. Proteomics analysis of the LV

tissue showed that 897 proteins were differentially expressed between HFpEF

and Sham mice. We observed abundant changes in sarcomeric proteins,

mitochondrial-related proteins, and NAD-dependent protein deacetylase

sirtuin-3 (SIRT3). Upregulated pathways by GSEA analysis were related to

immune modulation and muscle contraction, while downregulated pathways

were predominantly related to mitochondrial metabolism. Western blot

analysis validated SIRT3 downregulated cardiac expression in HFpEF vs. Sham

(0.8 ± 0.0 vs. 1.0 ± 0.0; P < 0.001). Phosphoproteomics analysis showed

that 72 phosphosites were differentially regulated between HFpEF and Sham

LV. Aberrant phosphorylation patterns mostly occurred in sarcomere proteins

and nuclear-localized proteins associated with contractile dysfunction and

cardiac hypertrophy. Seven aberrant phosphosites were observed at the

z-disk binding region of titin. Additional agarose gel analysis showed that

while total titin cardiac expression remained unaltered, its stiffer N2B

isoform was significantly increased in HFpEF vs. Sham (0.144 ± 0.01 vs.

0.127 ± 0.01; P < 0.05). In summary, this study demonstrates marked
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changes in proteins related to mitochondrial metabolism and the cardiac

contractile apparatus in HFpEF. We propose that SIRT3 may play a role in

perpetuating these changes and may be a target for drug development in

HFpEF.

KEYWORDS

HFpEF – heart failure with preserved ejection fraction, proteomics,
phosphoproteomics, titin, mitochondria, metabolism, SIRT3

Introduction

Heart failure (HF) is a clinical syndrome caused by
abnormalities in the heart that limit its ability to fill or
eject blood (1). Heart failure with preserved ejection fraction
(HFpEF) is symptomatic clinical HF where left ventricular
(LV) ejection fraction (EF) is preserved (LVEF ≥ 50%), and
presently accounts for about 50% all HF clinical presentations.
However, unlike HF with reduced EF (HFrEF), where LVEF
is < 50%, there are limited evidence-based therapies for
HFpEF (2–4). In addition to its escalating prevalence, HFpEF
morbidity (5) and mortality (6) continues to increase. Central
to HFpEF is the involvement of both cardiac and extra-cardiac
abnormalities (7, 8). In contrast to HFrEF, HFpEF is highly
associated with comorbidities and as such is a heterogenous
multisystem disorder involving the heart, pulmonary, renal,
adipose tissue, skeletal muscle, immune/inflammatory signaling
and the vascular system (9, 10). Patients with HFpEF are
generally older, more often female and have a predominance
of comorbidities, such as hypertension, obesity, type 2 diabetes,
atrial fibrillation, renal dysfunction, etc. (11, 12). However,
the specific etiologies by which patients develop HFpEF are
variable. Thus, a precision-based approach is needed to identify
pathogenic mechanisms in HFpEF (10, 13).

Proteomic studies are powerful tools that allow for large-
scale characterization of the entire protein phenotype in a
biological system (14). Alterations in proteome patterns, such
as global changes in protein expression and post-translational
modifications (PTMs), are often indicative of marked changes in
functional stages in health and disease (15). Thus, investigating
the varying patterns of the proteome may provide insights into
pathogenic pathways (16) and these protein signatures may

Abbreviations: ACTA1, skeletal alpha-actin; EF, ejection fraction; GLUT1,
glucose transporter 1; GLUT4, glucose transporter 4; HF, heart failure;
HFpEF, heart failure with preserved ejection fraction; HFrEF, heart
failure with reduced ejection fraction; IVST, interventricular septum wall
thickness; LV, left ventricle; LVEF, left ventricle ejection fraction; LVEDD,
left ventricle end diastolic diameter; LVESD, left ventricle end systolic
diameter; MFN1, mitofusin 1; MS/MS, tandem mass spectrometry;
MYH7, beta-myosin heavy chain; MYH9, myosin heavy chain 9; OXCT1,
succinyl-CoA:3-ketoacid coenzyme A transferase 1; PM1, tropomyosin
alpha-1 chain; PTM, post-translational modification; RWT, relative wall
thickness; SLC16A1, monocarboxylate transporter 1; SIRT3, sirtuin-3;
TFAM, transcription factor A mitochondrial; TWT, total wall thickness.

facilitate rapid screening of the efficacy of novel treatments and
aid in drug development (17, 18).

Previous proteomic studies have identified protein changes
in dilated cardiomyopathy, atherosclerosis, and atrial fibrillation
(19–23) and these types of studies likely provided a deeper
mechanistic understanding of the molecular pathways in
HF. For example, cardiac tissue from patients with HFrEF
demonstrated protein modifications associated with cardiac
metabolism, cardiac remodeling, and impaired cardiac
contractility (24–27). Additionally, differentially regulated
pathways by proteomic signatures were observed in HFrEF vs.
HFpEF patients, which is consistent with the predominant view
that the underlying pathophysiology in these two diseases are
largely different, and thus the variable response to therapies.
This difference is exemplified by Adamo et al., where blood
samples from both HFrEF and HFpEF patients demonstrated
increased growth factor signaling and increased angiogenesis
markers, while proteomic signatures from only HFpEF patients
showed increased humoral immunity and those from HFrEF
patients showed increased extracellular matrix remodeling
markers, consistent with active cardiac remodeling (28). These
findings underscore the potential that high-performance
proteomics, in combination with clinical assessment, may
identify unique targets in specific groups of HF patients.

Although HFpEF is greatly impacted by the obesity and
diabetes pandemic, hypertension remains the most prevalent
and modifiable risk factor in HFpEF and is implicated in
both its pathogenesis and prognosis (12, 29). Hypertensive
HFpEF pathophysiology extends beyond the emphasis on LV
hypertrophy development and diastolic dysfunction to impaired
myocardial contractility, left atrial myopathy, cardiomyocyte
remodeling, macro- and microvascular dysfunction, to systemic
inflammation, fibrosis, and collagen deposition. However,
despite this knowledge a paucity of therapies exists for
HFpEF. Here, we applied a deep quantitative proteomics and
phosphoproteomic profiling approach to identify molecular
protein signatures that are altered in HFpEF in a well
characterized murine model of hypertension-associated
HFpEF, the SAUNA model (SAlty drinking water/Unilateral
Nephrectomy/Aldosterone), which recapitulates the human
HFpEF phenotype (30–37) (Supplementary Figure 1).
Using an unbiased and comprehensive analysis, we report
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a systematic, large-scale study of pathway, metabolic and
organelle level changes that occur in the left ventricle of this
HFpEF murine model.

Material and methods

All procedures related to the handling and surgery of the
mice conformed to the Guide for the Care and Use of Laboratory
Animals published by the United States National Institutes of
Health and were approved by the Institutional Animal Care and
Use Committee at Boston University School of Medicine.

SAUNA model of HFpEF

As previously described (30–33, 35–37), eight-week-
old male C57BL/6J mice (Jackson Laboratories) were
anesthetized with 80–100 mg/Kg ketamine and 5–10 mg/Kg
xylazine intraperitoneally. Mice (20–25 g) then underwent
uninephrectomy, received either a continuous infusion of saline
(Sham) or d-aldosterone (0.30 µg/h, Sigma-Aldrich, St. Louis,
MO, United States; HFpEF) for 4 weeks via osmotic minipumps
(Alzet, Durect Corp., Cupertino, CA, United States) and were
maintained on 1% sodium chloride drinking water.

Physiological measurements

Blood pressure and echocardiographic measurements were
performed at the end of the 4 weeks. Systolic blood pressure was
measured using a non-invasive tail-cuff blood pressure analyzer
(BP-2000 Blood Pressure Analysis System; Visitech Systems
Inc., Apex, NC, United States). Transthoracic echocardiography
was performed using a Vevo770 High-Resolution in vivo
Micro-Imaging System and a Real-Time Micro Visualization
707B Scanhead (VisualSonic Inc., Toronto, ON, Canada) as
previously described (33). Briefly, interventricular septum wall
thickness (IVST), left ventricle (LV) posterior wall thickness
(LVPWT), LV end-diastolic diameter (LVEDD), LV end-systolic
diameter (LVESD), and LV ejection fraction (LVEF) were
measured. As a measure of systolic function and cardiac
contractility fractional shortening (FS) was calculated as
follows (LVEDD-LVESD/LVEDD) × 100. Total wall thickness
(TWT) was derived from an average of the IVST and
LVPWT. Relative wall thickness (RWT) was calculated as 2×
LVPWT/LVEDD. LV mass was calculated using the formula
described by Kiatchoosakun et al. (38). As diastolic function
is sensitive to heart rate (HR) and loading conditions, HR
was maintained at ∼350 bpm during these measurements (39).
Pulse wave measurements were then recorded and analyzed
blinded to group.

Histopathological analyses

Paraffin-embedded sections (5 µm) of the mid-LV were
stained with hematoxylin and eosin (H&E, Sigma-Aldrich) to
measure LV cardiac myocyte cross-sectional area. Microscopy
images (BZ-9000 BioRevo microscope, Keyence Corp. of
America, Itasca, IL, United States) were analyzed blinded to
group identity using ImageJ measuring software (National
Institutes of Health, Bethesda, MD, United States).

Tissue sample preparation for
proteomics and phosphoproteomics

Left ventricle samples from 4 mice/group were processed
as previously described (22, 40–42). Briefly, freshly thawed
samples were homogenized on ice in with a mixer mill
MM 400 (Retsch USA Verder Scientific Inc., Newtown, PA,
United States) in 10 volumes of 8 M urea, 50 mM ammonium
bicarbonate, 2 mM dithiothreitol, and protease and phosphatase
inhibitor cocktails (Roche Applied Science, Indianapolis,
IN, United States). Tissue homogenate was then sonicated
with a probe sonicator (Branson Ultrasonics Corporation,
North Billerica, MA, United States) and centrifuged. After
centrifugation, supernatant was decanted and total protein
in each sample was determined using a modified “microtiter
plate” version of the Bradford assay (Sigma-Aldrich). For
phosphoproteomics experiments, aliquots containing 300 µg of
protein were alkylated with 5 mM iodoacetamide for additional
45 min at room temperature in the dark. Samples were then
diluted eight-fold with 50 mM ammonium bicarbonate and
digested overnight with sequencing-grade trypsin (#90057,
Thermo Fisher Scientific Inc., Waltham, MA, United States).
Digestion was stopped by acidification to a final concentration
of 1% (v/v) formic acid and the peptide solutions were desalted
using disposable C18 Sep-Pak syringes (Waters Corporation,
Milford, MA, United States) and lyophilized to dryness
following manufacturer’s instructions.

Tandem mass tag (TMT) labeling

Peptide concentrations were determined by a colorimetric
peptide assay kit (Thermo Fisher Scientific Inc., Waltham,
MA, United States) and an aliquot of 100 µg was placed in
100 µl of 100 mM triethylammonium bicarbonate. Peptides
were labeled with 0.4 mg of TMT label (TMT10plexTM Isobaric
Label Reagent Set, Thermo Fisher Scientific Inc., Waltham, MA,
United States). All samples were labeled in the same TMT-batch,
representing reporter tags 126C, 127N, 127C, 128C, 129N, 129C,
130N, and 131N. Labeled samples were pooled, and 95% was
set aside for phosphopeptide enrichment. The remaining 5% of
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labeled peptides and the phosphopeptide enriched samples were
analyzed separately by mass spectrometry.

Phosphopeptide enrichment

Phosphopeptides were selectively enriched by binding to
titanium dioxide (TiO2) beads (Titansphere Phos-TiO Bulk
10 µm, GL Sciences, Tokyo, Japan) (43). Briefly, peptides were
resuspended in 200 µl 80% acetontirile, 6% trifluoroacetic acid
and incubated for 10 min with 10 µl of slurry containing
TiO2 beads. Unbound peptides and supernatant were decanted,
and the beads were washed three times with a wash buffer
containing 50% acetonitrile and 1% trifluoroacetic acid. After
final decanting, the beads were incubated for 10 min with
elution solution containing 25% ammonium hydroxide and 50%
acetonitrile and the eluate was carefully removed and dried prior
to mass spectrometry analysis.

Mass spectrometry analysis

Tryptic peptide mixtures and enriched phosphopeptides
were analyzed by nano-scale high-performance liquid
chromatography (Proxeon EASY-Nano system, Thermo
Fisher Scientific Inc., Waltham, MA, United States) and online
nano electrospray ionization tandem mass spectrometry (Q-
Exactive HF-X mass spectrometer; Thermo Fisher Scientific
Inc., Waltham, MA, United States). Briefly, samples were
loaded in aqueous 0.1% (v/v) formic acid via a trap column
(75 µm i.d. × 2 cm, Acclaim PepMap100 C18 3 µm, 100 Å,
Thermo Fisher Scientific) and peptides were resolved over an
Easy-Spray analytical column (50 cm × 75 µm ID, PepMap
RSLC C18, Thermo Fisher Scientific) by an increasing mobile
phase B. Mobile phase A consisted of 2% acetonitrile and 0.1%
formic acid, and organic phase B contained 80% acetonitrile
and 0.1% formic acid. Reverse phase separation was performed
over 120 min at a flow rate of 300 nl/min. Eluted peptides
were ionized directly into the mass spectrometer using a
nanospray ion source. The mass spectrometer was operated
in positive ion mode with a capillary temperature of 300 C,
and with a potential of 2,100 V applied to the frit. Tandem
mass spectrometry (MS/MS) was performed using high-energy
collision-induced disassociation and 10 MS/MS data-dependent
scans (45,000 resolution) were acquired in profile mode
alongside each profile mode full-scan mass spectra (120,000
resolution) as reported previously (44). The automatic gain
control (AGC) for MS scans was 1 × 106 ions with a maximum
fill time of 60 ms. The AGC for MS/MS scans was 3× 104, with
80 ms maximum injection time, 0.1 ms activation time, and
33% normalized collision energy. To avoid repeated selection
of peptides for MS/MS a dynamic exclusion list was enabled to
exclude all fragmented ions for 60 s.

Protein identification

Data files (RAW format) were searched using the
standard workflow of MaxQuant (version 1.3.0.5)1 under
standard settings using the entire Swiss-Prot mouse database2

downloaded January 24, 2019, allowing for two missed trypsin
cleavage sites, carbamidomethylation of cysteine (fixed)
and variable oxidation of methionine, protein N-terminal
acetylation and phosphorylation of STY residues. Precursor ion
tolerances were 20 ppm for first search and 4.5 ppm for a second
search. The MS/MS peaks were de-isotoped and searched
using a 20-ppm mass tolerance. A stringent false discovery rate
threshold of 1% was used to filter candidate peptide, protein,
and phosphosite identifications. The datasets generated for this
study have been deposited and publicly available at the PRIDE
Archive, proteomics data repository (European Bioinformatics
Institute, European Molecular Biology Laboratory) with the
data set identifier PXD033501.

Bioinformatics analysis

The searched intensity data were filtered, normalized, and
clustered using Omics Notebook (45). Filtering was performed
to remove any proteins or phosphopeptides not quantified in
at least 70 percent of samples, with 2,905 and 281 proteins and
phosphopeptides passing the filter, respectively. After filtering,
both datasets showed low levels of sparsity and no missing value
imputation was performed. The LIMMA R package was used
for LOESS normalization and differential expression analysis
(46). A combined ranked list for both sets was generated where
duplicate gene entries were removed to keep the entry with the
highest absolute rank value.

GSEA analysis

Gene Set Enrichment analysis (GSEA) software from the
fgsea R package was used to compute gene set enrichment
after ranking proteins by differential expression in HFpEF
vs. Sham (45, 47, 48). Briefly, GSEA was used in rank
mode along with gene sets downloaded from the Bader Lab
(Mouse_GOBP_AllPathways_no_GO_iea_October_01_2018_
symbol.gmt)3 (49, 50). GSEA results were visualized using the
Enrichment Map app (Version 3.1) in Cytoscape (Version 3.6.1)
and highly related pathways were grouped into a theme and
labeled by AutoAnnotate (version 1.2). For the merged gene set
analyses, we applied an enrichment P < 0.01 and FDR ≤ 0.1
cutoffs and calculated overlap between gene set annotations

1 http://maxquant.org/

2 www.uniprot.org/taxonomy/10090

3 https://baderlab.org/GeneSets
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using a combination of Jaccard and overlap coefficients with a
cutoff of 0.375.

Titin isoform analysis

Additional studies were performed to investigate changes
in titin isoforms in HFpEF. Briefly, LV protein lysates from
Sham (N = 7) and HFpEF (N = 11) mice were extracted and
electrophoresed in 1% agarose gels using a SE600X vertical gel
system (Hoefer Inc., Holliston, MA, United States) as previously
described (51). Gels were run at 15 mA constant current,
stained with Neuhoff’s Coomassie (52), and then scanned using
Epson Perfection V750 PRO scanner (Epson America Inc.,
Los Alamitos, CA, United States) and analyzed using One-
D scan EX analysis software (Scanalytics Inc., Rockville, MD,
United States). The integrated optical density of titin and total
myosin heavy chain (MHC) was determined as a function of
the slope of the linear range between integrated optical density
and loaded volume (53). The expression of compliant N2BA
titin, stiffer N2B titin and total titin (TT) was normalized to
the expression of total MHC. The expression of titin degraded
product (T2) was normalized to the TT expression.

SIRT3 immunoblotting analysis

Protein lysates were extracted from LV tissue using in
ice-cold RIPA buffer as previously described (54). Equal
amounts of protein were then subjected to electrophoresis
in SDS-polyacrylamide gel under reducing conditions and
blotted to polyvinylidene difluoride (PVDF) membranes using
the Bio-Rad Transblot Turbo Transfer System (Hercules,
CA, United States). The membranes were blocked in 5%
BSA, 0.1% Tween-20 in tris-buffered saline for 1 h at
room temperature and then incubated overnight at 4◦C with
rabbit anti-SIRT3 antibody (Cell Signaling Technology, Inc.,
Danvers, MA, United States, #5490; 1:1.000). Membranes were
then washed with tris-buffered saline and incubated with
respective horseradish peroxidase (HRP)-conjugated secondary
antibodies for 1 h in room temperature: anti-rabbit antibody
(R&D system, HAF008; 1:5,000). Immune complexes were
detected with the enhanced chemiluminescence ECL detection
system (Bio-Rad, #1705060) in the ImageQuant LAS 4000
biomolecular imaging system (GE Healthcare, Pittsburgh, PA,
United States). The intensity of bands for each protein was
normalized to the loading control mouse anti-GAPDH (Abcam,
Ab8245; 1:10.000).

Statistical analysis

Proteomics and phosphoproteomics differential analysis
were based on a moderated t-test and performed using R:

A language and environment for statistical computing (R
Foundation for Statistical Computing, Vienna, Austria) (45,
55). For histology analysis, titin isoform studies and SIRT3
expression, data are shown as mean ± SEM and statistical
significance of differences was assessed using the Student’s t-test
(two sided). In those cases when data were not sampled as
a normal distribution, non-parametric Mann–Whitney U test
was used. P ≤ 0.05 values were considered significant. These
statistical tests were performed using GraphPad Prism software
(GraphPad Software Inc., La Jolla, CA, United States).

Results

Mouse model of HFpEF

As previously described (30–33, 35–37), salty drinking
water, unilateral nephrectomy, and chronic exposure to
aldosterone (SAUNA) induced hypertension associated HFpEF
in mice. Compared to Sham, HFpEF mice demonstrated a
moderate increase in systolic blood pressure (137.8± 7.0 mmHg
vs. 115.4 ± 6.0 mmHg; P < 0.05), lung congestion (4.5 ± 0.1
vs. 4.0 ± 0.1 P < 0.01), and LV hypertrophy, measured by
the LV weight-to-total body weight ratio (3.7 ± 0.1 mg/g vs.
3.3 ± 0.1 mg/g; P < 0.05). Additionally, cardiomyocyte size
was increased 1.2-fold in HFpEF mice vs. Sham; P < 0.05
(Supplementary Figure 2).

Echocardiography demonstrated preserved LVEF and
increased LV mass (107.5 ± 4.9 mg vs. 78.2 ± 7.9 mg in Sham;

TABLE 1 Characteristics and echocardiographic parameters of HFpEF
(SAUNA) mice 4 weeks after d-Aldosterone or saline (Sham) infusion.

HFpEF Sham

Systolic blood pressure (mmHg) 137.8± 7.0* 115.4± 6.0

Wet-to-dry lung ratio 4.5± 0.1** 4.0± 0.1

Heart weight-to-body weight (mg/g) 3.7± 0.1* 3.3± 0.1

Left ventricle structure and function

LV mass (mg) 107.5± 4.9* 78.6± 7.9

Total wall thickness (mm) 1.0± 0.0*** 0.8± 0.1

Posterior wall thickness (mm) 1.0± 0.1* 0.8± 0.1

Relative wall thickness 0.7± 0.1*** 0.5± 0.0

LV end-systolic diameter (mm) 1.1± 0.2* 1.6± 0.1

LV end-diastolic diameter (mm) 3.0± 0.2 3.3± 0.1

LV ejection fraction (%) 91.1± 1.3 83.1± 3.0

LV fractional shortening 62.1± 2.3 52.0± 3.5

E/A 1.9± 0.2 1.7± 0.2

Early filling deceleration time (ms) 21.0± 3.0 17.6± 2.6

Isovolumetric relaxation time (ms) 24.3± 2.6* 14.4± 1.6

Data are expressed as mean ± SEM. A, peak late transmitral flow velocity; E, peak early
transmitral flow velocity; LV, left ventricular (N = 5 mice/group), *P < 0.05 vs. Sham;
**P < 0.01 vs. Sham; ***P < 0.005 vs. Sham. Statistical analysis by two-tailed Student’s
t-test.
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P < 0.05; Table 1). Wall thickness was significantly increased in
HFpEF and there was evidence of concentric hypertrophy, as
demonstrated by the increased relative wall thickness (0.7 ± 0.1
vs. 0.5 ± 0.0 in Sham; P < 0.005). As previously shown (33),
LV end-systolic dimensions and end-diastolic dimensions were
also decreased in HFpEF (Table 1). HFpEF mice had impaired
diastolic function, characterized by an increase in isovolumetric
relaxation time (24.3 ± 2.6 ms vs. 14.4 ± 1.6 ms in Sham;
P < 0.05).

Comparison to human HFpEF: Recently, two clinical scores
(HFA-PEFF and H2FPEF) were developed to standardize the
clinical diagnosis of human HFpEF. However, a discrepancy
exists between these scores (56). The H2FPEF score largely
includes clinical parameters whereas the HFA-PEFF score
includes predominantly echocardiographic measures and
natriuretic peptides. The HFA-PEFF score can rule in human
HFpEF with high specificity (93%) and positive predictive
value (98%) when the score is high (5–6 points) (57). As such,

the translational utility of the HFpEF SAUNA mouse model
was demonstrated in the context of this HFpEF score with a
HFA-PEFF score of ≥ 6 as described by Withaar et al. (58),
where a score of ≥ 5 is a high probability of clinical HFpEF.

Proteome profile of the left ventricle in
HFpEF

To achieve comprehensive evaluation of the cardiac
signaling that is seen in HFpEF, a global quantitative proteome
and phosphoproteome profile was performed in LV cardiac
tissue obtained from HFpEF mice and their respective Shams
(N = 4 mice/group; Figure 1).

Proteomics analysis found a total of 2,905 identified proteins
that were then used for comparative analysis (Supplementary
Table 1). Among them, 897 proteins were differentially
expressed between HFpEF and Sham LV, with 19% of these

FIGURE 1

General proteomics and phosphoproteomics workflow. The figure was partly generated using Servier Medical Art, provided by Servier, licensed
under a Creative Commons Attribution 3.0 unported license.
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being predominantly higher in HFpEF than in Sham (P < 0.05;
Figures 2A,B).

Systematic evaluation of the datasets revealed abundant
changes in sarcomeric proteins, namely skeletal alpha (α)-
actin (ACTA1; P = 0.000039), beta (β)-myosin heavy chain
(MYH7; P = 0.006963), myosin heavy chain 9 (MYH9;
P = 0.000408), tropomyosin alpha (α)-1 chain (TPM1;
P = 0.048698); the mitochondria-related proteins mitofusin 1
(MFN1; P = 0.001059), mitochondrial dynamin like GTPase
(aka optic atrophy protein 1, OPA1; P = 0.046441) and
transcription factor A mitochondrial (TFAM; P = 0.005837);
and the NAD-dependent protein deacetylase sirtuin-3 (SIRT3;
P = 0.000914), recently implicated in cardiac function and
cardiac stress responsiveness in HFpEF (59, 60) (Figure 2B and
Supplementary Table 1).

Impaired mitochondrial function and
oxidative metabolism of energy
substrates in HFpEF

There was an extensive reduction in the abundance of
proteins involved in cardiac metabolism in the LV of HFpEF
mice, including the oxidation of free fatty acid (FFA), pyruvate,
and ketone bodies. Significant changes are summarized in
Figure 3. These include:

(I) β-oxidation related enzymes, implicated in FFA
metabolism to acetyl-CoA, such as acyl-CoA dehydrogenase

(ACAD) family member 11 (ACAD11; P = 0.00002), long-
chain specific ACAD (ACADL; P = 0.00449), short-chain
specific ACAD (ACADS; P = 0.00896), short-branched chain
specific ACAD (ACADSB; P = 0.011317), 3-ketoacyl-CoA
thiolase (ACAA2, P = 0.00609), enoyl-CoA hydratase (ECHS1,
P = 0.02647), hydroxyacyl-CoA dehydrogenase trifunctional
multienzyme complex (HADH) beta (β)-subunit (HADHB,
P = 0.00729) and HADH alpha (α)-subunit (HADHA,
P = 0.03235).

(II) the pyruvate oxidation enzyme pyruvate dehydrogenase
X component (PDHX, P = 0.00961), which is part of the
pyruvate dehydrogenase complex that catalyzes pyruvate to
acetyl-CoA; and

(III) the ketone metabolism enzyme succinyl-CoA:3-keto-
acid coenzyme A transferase 1 (OXCT1, P = 0.01237), which
catalyzes ketone bodies and produces acetyl-CoA for the
tricarboxylic acid (TCA) cycle.

These cumulative results suggest that the energy substrates
for mitochondrial oxidative metabolism may be inefficient
in HFpEF. Interestingly, although there were no significant
alterations in the protein signature of fatty acid and glucose
transporters (CD36 and GLUT1 and 4, respectively) in HFpEF,
there was an upregulation of the ketone bodies transporter
monocarboxylate transporter 1 (SLC16A1, P = 0.00376) in
the LV of HFpEF.

Additional analysis revealed that the mitochondrial
proteins involved in the TCA cycle were also significantly
decreased in the LV of HFpEF mice. These mitochondrial
enzymes, namely citrate synthase (CS, P = 0.008068),

FIGURE 2

Proteomics analysis. (A) Heatmap of the differentially expressed proteins. (B) Volcano plot presenting log-transformed p-values (t-test)
associated with individual significantly altered proteins plotted against log-transformed fold change in abundance between the left ventricles in
Sham and HFpEF mice. Blue and red dots represent up-regulation and down-regulation in HFpEF (N = 4) vs. Sham (N = 4), respectively.
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FIGURE 3

Schematic overview of identified metabolic and mitochondrial related targets in HFpEF mice in the proteome dataset. Blue and red represent
significant (P < 0.05) up-regulation and down-regulation in HFpEF vs. Sham, respectively. Black targets are unchanged.

succinyl-CoA ligase beta subunit (SUCLA2, P = 0.02523),
isocitrate dehydrogenase (IDH1, P = 0.00105) and pyruvate
carboxylase (PC, P = 0.00206), are required to catalyze acetyl-
CoA and produce essential intermediates for the biosynthesis
process, and most importantly, high energy molecules such as
nicotinamide adenine dinucleotide (NADH) and flavin adenine
dinucleotide (FADH2) for the electron transport chain (ETC).
Subsequent analysis then showed that 27 proteins involved
in the ETC (namely the respiratory complex I, III, IV, and V)
were also differentially expressed between HFpEF and Sham. Of
these 27 proteins, 19 proteins were significantly reduced in the
HFpEF, suggesting impaired ETC, which was consistent with
an additional reduction of the uncoupling protein 3 (UCP3,
P = 0.02765).

Lastly, additional proteins involved in mitochondrial
biogenesis (transcription factor A, TFAM, P = 0.00584) and
fusion (mitofusin-1, MFN1, P = 0.001056 and dynamin-like
120 kDa protein, OPA1, P = 0.04644) were similarly decreased
in the LV tissue from HFpEF mice.

These findings (Figure 3) suggest that mitochondrial
dysfunction may lead to inefficient metabolism of energy
substrates, possibly contributing to an energy deficit and thus
affecting cardiac function in HFpEF.

Pathway enrichment analysis

Pathway enrichment analyses of the proteomics and
phosphoproteomics combined datasets were performed by
means of GSEA, which detects biology-driven gene sets of
canonical pathways from databases of molecular signatures
(61). These analyses revealed that the most relevant and
over-represented (enriched) biological annotations in the
LV from HFpEF to be: (I) processes involving immune
system modulation, (II) cardiac muscle cell development
and differentiation, and (III) muscle contraction (Table 2).
These processes included positive regulation of cytokine
production (GO:0001819; P = 0.0000), striated muscle
contraction (Wikipathway; P = 0.0000), positive regulation
of adaptive immune response (GO:0002821; P = 0.00578),
cardiac muscle cell development (GO:0055013; P = 0.03158)
and cardiac muscle cell differentiation (GO: 0055007;
P = 0.03571). In contrast, the downregulated pathways
were related to a multitude of GO terms associated with
cellular metabolism (Table 3). This is consistent with the earlier
data from Figure 3, where pathways and processes involving
acetyl-CoA metabolic process (GO:0006084, P = 0.00000),
fatty acid metabolic process (GO:0006631, P = 0.00000),
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TABLE 2 Biological annotations terms enriched in significantly up-regulated proteins of the proteome dataset.

Name Group P-value Size ES

Positive regulation of cytokine production GO:0001819 0.00000 57 −0.34

Pallium development GO:0021543 0.00000 32 −0.38

Platelet degranulation Reactome pathway 0.00000 56 −0.33

Response to elevated platelet cytosolic ca2 + Reactome pathway 0.00000 58 −0.33

Signaling by ROBO receptors Reactome pathway 0.00000 98 −0.26

Striated muscle contraction Wikipathway 0.00000 30 −0.42

Positive regulation of adaptive immune response GO:0002821 0.00578 18 −0.47

Regulation of adaptive immune response based on somatic recombination of
immune receptors built from immunoglobulin superfamily domains

GO:0002822 0.00585 18 −0.47

Positive regulation of wound healing GO:0090303 0.00595 16 −0.51

Intrinsic pathway for apoptosis Reactome pathway 0.00633 15 −0.54

Positive regulation of response to wounding GO:1903036 0.00671 20 −0.44

Integrin pathway Biocarta pathway 0.00690 23 −0.39

Nucleus organization GO:0006997 0.00893 31 −0.36

Foxo pathway PID pathway 0.01500 16 −0.48

G2 m checkpoints Reactome pathway 0.01754 52 −0.28

Coagulation Hallmark Pathway 0.01818 54 −0.29

Complement and coagulation cascades Wikipathway 0.01829 21 −0.45

Cerebral cortex development GO:0021987 0.02143 27 −0.39

Rho GTPases activate PKNs Reactome pathway 0.02158 25 −0.40

Positive regulation of adaptive immune response based on somatic recombination of
immune receptors built from immunoglobulin superfamily domains

GO:0002824 0.02222 17 −0.47

Regulation of adaptive immune response GO:0002819 0.02367 19 −0.46

Spermatid development GO:0007286 0.02717 16 −0.44

Spermatid differentiation GO:0048515 0.02924 16 −0.44

Fc epsilon receptor signaling Reactome pathway 0.02985 50 −0.27

Cardiac muscle cell development GO:0055013 0.03158 38 −0.31

Regulation of production of molecular mediator of immune response GO:0002700 0.03550 17 −0.42

Cardiac muscle cell differentiation GO:0055007 0.03571 41 −0.30

Activation of MAPK activity GO:0000187 0.03593 21 −0.38

Cardiac cell development GO:0055006 0.03659 38 −0.31

Regulation of blood coagulation GO:0030193 0.04380 25 −0.35

Regulation of expression of SLITS and ROBOS Reactome pathway 0.04762 82 −0.25

ES, enrichment score. Results are sorted by the nominal P-value in an ascending order.

acyl-CoA biosynthesis process (GO:0071616, P = 0.0000),
fatty acid oxidation (GO:0019395, P = 0.00111), coenzyme
metabolic process (GO:0006732, P = 0.01015) were significantly
reduced in HFpEF.

Phospho-proteome profile of the left
ventricle in HFpEF

We next investigated the phosphoproteomics dataset.
Phosphoproteomics analysis profiled 281 mouse reference
protein sequences, of which 240 mapped to serine, 37 mapped to
threonine and 3 mapped to tyrosine residues, consistent with the
expected 90:9:1 cellular distribution ratio (22). The abundance
of 72 phosphosites was differentially altered (elevated or
reduced) between HFpEF and Sham (P < 0.05; Figures 4A,B).

Aberrant phosphorylation patterns occurred on proteins
linked to disparate subcellular compartments, ranging
from sarcomeric proteins (LIM domain-binding protein
3, LDB3; myozenin 2, MYOZ2; titin, TTN), to nuclear-
localized proteins (BAG family molecular chaperone regulator
3, BAG3; high mobility group protein HMG-I/HMG-Y,
HMGA1) with established links to cardiac contractile function,
cardiac hypertrophy and/or cardiomyopathy (Figure 4B and
Supplementary Table 2).

Left ventricular titin expression and
phosphorylation in HFpEF

Despite global proteomics not showing a significant change
in total titin in the LV between HFpEF and Sham mice,
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TABLE 3 Biological annotations terms significantly enriched in down-regulated proteins of the proteome dataset.

Name Group P-value Size ES

Regulation of tp53 activity Reactome pathway 0.00000 23 0.60

Purine nucleoside bisphosphate metabolic process GO:0034032 0.00000 43 0.51

Acetyl-coA metabolic process GO:0006084 0.00000 16 0.64

Negative regulation of lipid metabolic process GO:0045833 0.00000 17 0.63

Ribonucleoside bisphosphate metabolic process GO:0033875 0.00000 43 0.51

Monocarboxylic acid catabolic process GO:0072329 0.00000 46 0.53

Nucleoside bisphosphate metabolic process GO:0033865 0.00000 43 0.51

Fatty acid metabolic process GO:0006631 0.00000 91 0.48

Carboxylic acid catabolic process GO:0046395 0.00000 78 0.46

Monocarboxylic acid metabolic process GO:0032787 0.00000 138 0.45

Organic acid catabolic process GO:0016054 0.00000 78 0.46

Acyl-CoA biosynthetic process GO:0071616 0.00000 15 0.67

Thioester biosynthetic process GO:0035384 0.00000 15 0.67

Sulfur compound metabolic process GO:0006790 0.00000 99 0.44

Carboxylic acid metabolic process GO:0019752 0.00000 259 0.41

Oxoacid metabolic process GO:0043436 0.00000 264 0.41

Organic acid metabolic process GO:0006082 0.00000 268 0.41

Cellular monovalent inorganic cation homeostasis GO:0030004 0.00000 17 0.66

Response to nitrogen compound GO:1901698 0.00000 196 0.39

Small molecule metabolic process GO:0044281 0.00100 463 0.34

Thioester metabolic process GO:0035383 0.00109 39 0.53

Fatty acid oxidation GO:0019395 0.00111 38 0.52

Positive regulation of ion transmembrane transporter activity GO:0032414 0.00111 34 0.51

Cilium assembly GO:0060271 0.00115 22 0.59

Protein trimerization GO:0070206 0.00121 17 0.66

Sulfur compound biosynthetic process GO:0044272 0.00229 26 0.58

Protein dephosphorylation GO:0006470 0.00231 25 0.59

Protein localization Reactome pathway 0.00310 84 0.42

Acyl-CoA metabolic process GO:0006637 0.00327 39 0.53

Fatty acid catabolic process GO:0009062 0.00328 39 0.51

Activation of GTPase activity GO:0090630 0.00362 16 0.61

Response to oxygen-containing compound GO:1901700 0.00400 256 0.35

Fatty acid beta-oxidation GO:0006635 0.00439 31 0.54

Lipid oxidation GO:0034440 0.00443 38 0.52

Monovalent inorganic cation homeostasis GO:0055067 0.00473 20 0.62

Laminin interactions Reactome pathway 0.00486 15 0.63

Small molecule catabolic process GO:0044282 0.00509 110 0.40

Lipid modification GO:0030258 0.00536 45 0.50

Dephosphorylation GO:0016311 0.00553 34 0.52

Ion channel transport Reactome pathway 0.00553 34 0.51

Metabolism of water-soluble vitamins and cofactors Reactome pathway 0.00559 32 0.54

Response to organonitrogen compound GO:0010243 0.00604 178 0.38

Cellular amino acid metabolic process GO:0006520 0.00609 98 0.41

Positive regulation of transporter activity GO:0032411 0.00661 37 0.51

Cilium organization GO:0044782 0.00685 23 0.58

Nucleoside bisphosphate biosynthetic process GO:0033866 0.00823 19 0.56

Neurotransmitter transport GO:0006836 0.00894 27 0.54

Positive regulation of ion transmembrane transport GO:0034767 0.00966 49 0.46

(Continued)
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TABLE 3 (Continued)

Name Group P-value Size ES

Cell projection assembly GO:0030031 0.00968 49 0.46

Long-chain fatty acid metabolic process GO:0001676 0.00980 17 0.60

Response to drug GO:0042493 0.01006 137 0.38

Cell projection organization GO:0030030 0.01006 155 0.37

Coenzyme metabolic process GO:0006732 0.01015 126 0.38

Fatty acid metabolism Reactome pathway 0.01053 72 0.42

Mitochondrial fatty acid beta-oxidation Reactome pathway 0.01114 28 0.52

Cellular response to hormone stimulus GO:0032870 0.01148 75 0.43

Pyrimidine-containing compound metabolic process GO:0072527 0.01214 17 0.59

Cellular response to oxygen levels GO:0071453 0.01350 26 0.52

Plasma membrane bounded cell projection assembly GO:0120031 0.01609 47 0.46

Purine nucleoside bisphosphate biosynthetic process GO:0034033 0.01667 19 0.56

Negative regulation of cellular response to TGFbeta stimulus GO:1903845 0.01914 15 0.58

Ribonucleoside bisphosphate biosynthetic process GO:0034030 0.01932 19 0.56

Transmission across chemical synapses Reactome pathway 0.01967 45 0.45

Nephron development GO:0072006 0.01975 15 0.59

Cellular response to endogenous stimulus GO:0071495 0.02018 163 0.35

Positive regulation of transmembrane transport GO:0034764 0.02030 62 0.42

Plasma membrane bounded cell projection organization GO:0120036 0.02113 149 0.36

Cellular response to organic substance GO:0071310 0.02200 323 0.33

Response to organic substance GO:0010033 0.02200 448 0.32

Branched-chain amino acid catabolism Reactome pathway 0.02241 21 0.54

Regulation of coenzyme metabolic process GO:0051196 0.02281 18 0.56

Neuronal system Reactome pathway 0.02318 59 0.42

Cellular response to inorganic substance GO:0071241 0.02341 34 0.48

Negative regulation of transmembrane receptor protein serine/threonine kinase signaling pathway GO:0090101 0.02392 19 0.55

FCgamma receptor dependent phagocytosis Reactome pathway 0.02540 25 0.51

Fatty acid biosynthetic process GO:0006633 0.02549 23 0.52

Cellular response to nitrogen compound GO:1901699 0.02554 108 0.38

Negative regulation of TGFbeta receptor signaling pathway GO:0030512 0.02599 15 0.58

Positive regulation of cation transmembrane transport GO:1904064 0.02612 46 0.45

Negative regulation of organelle organization GO:0010639 0.02764 87 0.39

Regulation of muscle organ development GO:0048634 0.02772 34 0.46

Dicarboxylic acid metabolic process GO:0043648 0.02793 42 0.46

Positive regulation of striated muscle tissue development GO:0045844 0.02818 21 0.52

Positive regulation of muscle tissue development GO:1901863 0.02904 21 0.52

Cellular amino acid biosynthetic process GO:0008652 0.03012 17 0.56

Positive regulation of muscle organ development GO:0048636 0.03030 21 0.52

Signal release GO:0023061 0.03111 26 0.49

Heterotrimeric G-protein signaling pathway-GI alpha and GS alpha mediated pathway Panther pathway 0.03222 22 0.50

Response to endogenous stimulus GO:0009719 0.03307 215 0.33

Protein complex oligomerization GO:0051259 0.03313 163 0.36

Neurotransmitter secretion GO:0007269 0.03410 16 0.57

Signal release from synapse GO:0099643 0.03431 16 0.57

Regulation of transporter activity GO:0032409 0.03434 71 0.40

Regulation of transmembrane transporter activity GO:0022898 0.03441 68 0.40

Cellular response to lipid GO:0071396 0.03470 67 0.40

Regulation of TGFbeta receptor signaling pathway GO:0017015 0.03477 21 0.52

(Continued)
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TABLE 3 (Continued)

Name Group P-value Size ES

Regulation of transmembrane receptor protein serine/threonine kinase signaling pathway GO:0090092 0.03528 35 0.46

NABA basement membranes MSIGDB 0.03534 19 0.53

Coenzyme biosynthetic process GO:0009108 0.03560 67 0.40

Cellular response to chemical stimulus GO:0070887 0.03600 417 0.31

Response to organic cyclic compound GO:0014070 0.03858 123 0.36

Transition metal ion transport GO:0000041 0.03943 19 0.54

Regulation of striated muscle tissue development GO:0016202 0.04013 34 0.46

Response to ammonium ion GO:0060359 0.04152 23 0.49

Positive regulation of ion transport GO:0043270 0.04280 73 0.39

Opioid signaling Reactome pathway 0.04282 22 0.52

Cell-cell adhesion GO:0098609 0.04366 66 0.40

Positive regulation of sodium ion transport GO:0010765 0.04380 16 0.55

Regulation of muscle tissue development GO:1901861 0.04402 34 0.46

Blood vessel morphogenesis GO:0048514 0.04516 48 0.42

Regulation of NIK/NF-kappaB signaling GO:1901222 0.04535 19 0.52

Regulation of response to drug GO:2001023 0.04642 15 0.55

Alpha-amino acid metabolic process GO:1901605 0.04674 55 0.41

Negative regulation of cell proliferation GO:0008285 0.04689 84 0.37

Activation of cysteine-type endopeptidase activity involved in apoptotic process GO:0006919 0.04711 20 0.50

Integrin signaling pathway MSIGDB 0.04718 26 0.48

Cooperation of PDCL (PHLP1) and TRIC CCT in G-protein beta folding Reactome pathway 0.04785 15 0.54

Response to peptide GO:1901652 0.04876 84 0.37

Glutamine family amino acid metabolic process GO:0009064 0.04901 20 0.50

ES, enrichment score. Results are sorted by the nominal P-value in an ascending order.

FIGURE 4

Phosphoproteomics analysis. (A) Heatmap of the differentially expressed phosphosites. (B) Volcano plot presenting log-transformed p-values
(t-test) associated with individual significantly altered phosphosites plotted against log-transformed fold change in abundance between the left
ventricles in Sham and HFpEF mice. Blue and red dots represent up-regulation and down-regulation in HFpEF (N = 4) vs. Sham (N = 4),
respectively.
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extensive phosphorylation changes across titin were observed
in HFpEF vs. Sham. We identified 22 titin phosphosites
(including 76% serines, 19% threonines, and 4% tyrosines) in
the phospho-dataset, and among them, seven phosphosites were
P < 0.05, all considered class 1 (localization probability 0.75–
1.00) (Table 4). Interestingly, five of these were located at the z
disk binding region (S262, S264, T266, S1411, and S1415) while
the remainder were residues in the C-terminal region (S34464,
T34467), suggesting changes in the mechano-sensing activity of
titin. These regions are known to act as titin “hotspots,” which
respond to mechanical stress and regulate specific actions such
as activating the hypertrophic gene program or interacting with
the protein quality control machinery (62, 63).

Additionally, high-resolution gel electrophoresis was
performed to further examine other potential switches in
titin isoform expression which may affect titin stiffness,
i.e., to quantitatively detect changes in the stiffer N2B
or the compliant N2BA isoforms of titin (Figure 5A).
As expected, there were no changes in total titin (TT)
expression between HFpEF and Sham mice. However, as
previously described (64), N2B expression was significantly
increased in the LV from HFpEF compared to Sham mice
(0.144 ± 0.010 vs. 0.127 ± 0.010; P < 0.05). Neither
N2BA expression, N2BA/N2B ratio nor titin degradation
were differentially altered between HFpEF and Sham
mice (Figure 5B).

Left ventricular expression of SIRT3 in
HFpEF mice

Accumulating evidence suggests that SIRT3 plays a critical
role in the development of HF (65), particularly in HFpEF (60,
66, 67). As the global proteomics dataset showed a decreased in
SIRT3 in the LV from HFpEF mice vs. Sham (P = 0.000914), we
thus performed additional immunoblot analysis to validate these
findings. Indeed, SIRT3 expression was significantly decreased
in the LV from HFpEF mice vs. Sham (0.8 ± 0.0 vs. 1.0 ± 0.0;
P < 0.001; Figure 6A).

Discussion

Heart failure with preserved ejection fraction is a
complex disease involving several sub-phenotypes within
a heterogeneous HFpEF syndrome (10, 13, 68). Of all the
comorbidities in HFpEF, hypertension remains the most
common, and is implicated in both the pathogenesis and the
prognosis of the disease (12, 29). However, the exact biological
mechanisms that underlie hypertension associated HFpEF
remain largely unclear. In this study, we investigated the
proteomic and phosphoproteomics profile underlying HFpEF
in a clinically relevant murine model of hypertension associated
HFpEF. The SAUNA model of HFpEF model fulfils the

TABLE 4 Significantly changed titin phosphosites.

Feature Log FC (Sham/HFpEF) P value Position Site probability (%) Peptide sequence

Ttn_A2ASS6.55 −1.01327 0.00203 S262 0.99876 QLPHKTPPRIPPKPKSRSPTPPSIAAKAQLA

Ttn_A2ASS6.56 −1.01327 0.00203 S264 0.99836 PHKTPPRIPPKPKSRSPTPPSIAAKAQLARQ

Ttn_A2ASS6.60 −1.01327 0.00203 T266 0.99033 KTPPRIPPKPKSRSPTPPSIAAKAQLARQQS

Ttn_A2ASS6.36 −0.96294 0.03670 S34464 0.96352 VTSPPRVKSPEPRVKSPETVKSPKRVKSPEP

Ttn_A2ASS6.40 −0.96294 0.03670 T34467 0.81504 PPRVKSPEPRVKSPETVKSPKRVKSPEPVTS

Ttn_A2ASS6.29 −0.54438 0.04350 S1411 0.79632 PTPEAVSRIRSVSPRSLSRSPIRMSPAMSPA

Ttn_A2ASS6.30 −0.54438 0.04350 S1415 0.96095 AVSRIRSVSPRSLSRSPIRMSPAMSPARMSP

Ttn_A2ASS6.27 −0.41168 0.05240 S283 0.89160 PSIAAKAQLARQQSPSPIRHSPSPVRHVRAP

Ttn_A2ASS6.28 −0.41168 0.05240 S290 0.95098 QLARQQSPSPIRHSPSPVRHVRAPTPSPVRS

Ttn_A2ASS6.23 0.42746 0.06498 S34451 0.82907 TLTVQKARVIEKAVTSPPRVKSPEPRVKSPE

Ttn_A2ASS6.24 0.42746 0.06498 S34457 0.98108 ARVIEKAVTSPPRVKSPEPRVKSPETVKSPK

Ttn_A2ASS6.38 0.31502 0.10499 T33859 0.99883 LTQDDLEMVRPARRRTPSPDYDLYYYRRRRR

Ttn_A2ASS6.31 −0.31311 0.19004 S34107 0.99068 DAERRSPTPERTRPRSPSPVSSERSLSRFER

Ttn_A2ASS6.32 −0.33175 0.22516 S34109 0.76541 ERRSPTPERTRPRSPSPVSSERSLSRFERSA

Ttn_A2ASS6.25 1.12758 0.27026 S1406 1.00000 APTYMPTPEAVSRIRSVSPRSLSRSPIRMSP

Ttn_A2ASS6.26 1.12758 0.27026 S1408 1.00000 TYMPTPEAVSRIRSVSPRSLSRSPIRMSPAM

Ttn_A2ASS6.41 0.46224 0.28856 Y33864 0.93320 LEMVRPARRRTPSPDYDLYYYRRRRRSLGDM

Ttn_A2ASS6.33 −0.27602 0.31791 S34112 0.88295 SPTPERTRPRSPSPVSSERSLSRFERSARFD

Ttn_A2ASS6.22 0.19164 0.43120 S307 0.93434 VRHVRAPTPSPVRSVSPAGRISTSPIRSVKS

Ttn_A2ASS6.42 −0.06749 0.79212 S301 0.99417 RHSPSPVRHVRAPTPSPVRSVSPAGRISTSP

Ttn_A2ASS6.43 −0.06749 0.79212 S307 0.93434 VRHVRAPTPSPVRSVSPAGRISTSPIRSVKS

Ttn_A2ASS6.58 −0.06749 0.79212 T299 0.99713 PIRHSPSPVRHVRAPTPSPVRSVSPAGRIST

Results are sorted by the nominal P-value in an ascending order. Highlighted values indicate significantly regulated phosphorylation between Sham and HFpEF.
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FIGURE 5

Titin isoform expression. (A) Representative image of 1% agarose gel for titin analysis. (B) Quantitative analysis of total titin (TT) and titin isoforms
N2BA and N2B relative to total myosin heavy chain (MHC), the ratio of N2BA to N2B, and titin degradation product (T2) relative to TT, in the left
ventricles from Sham (N = 7) and HFpEF mice (N = 11). Data are presented as mean ± SEM. Unpaired T-test was performed, *P < 0.05 vs. Sham
mice. (C) Overview of the titin molecule structure.

criteria for a “high probability of HFpEF” based on HFA-PEFF
diagnostic algorithm for human HFpEF (58, 69).

In the present study, extensive proteomics and
phosphoproteomics analysis permitted in-depth screening
of the changes in protein expression, post-translational
modifications (i.e., phosphorylation), and pathway alterations
in HFpEF. These included but were not limited to: (I) changes
in cardiac metabolism, where the predominant components
were the mitochondrial metabolic processes and mitochondrial
dysfunction; (II) alteration in cardiac contractile function-
related proteins; (III) overexpression of pathways related to
immune modulation; and (IV) a significant decrease in SIRT3
expression, that was validated by immunoblotting.

We found marked changes in signatures of protein
expression related to mitochondrial function and oxidative
metabolism of energy substrates in HFpEF. There was a
significant decrease in targets related to mitochondrial substrate
oxidation, suggesting that cardiac mitochondrial metabolic
function is impaired in HFpEF. Interestingly, there was
an upregulation of the ketone bodies transporter SLC16A1
in the LV of HFpEF, but this was not accompanied by
comparable changes in ketone metabolism enzymes. Although
not investigated in this study, these findings may contribute
to the metabolic impairment seen in HFpEF by increasing the
transport of ketone bodies into the mitochondria, but without
a compensatory catabolic response. We hypothesize that this
mismatch in mitochondrial substrate intake and utilization
results in mitochondrial ketone bodies accumulation which may
detrimentally affect cardiac function (70). Ketone bodies are

thought to be a relevant energy source in both preclinical HFrEF
models (71) and advance HFrEF patients (72). Additionally, it
has been shown that HFpEF patients have significantly higher
circulating ketone levels than HFrEF patients (73) suggesting
that some of the beneficial effects of SGLT2 inhibitors in HFpEF
may be due to enhanced ketone bodies availability and cardiac
utilization (74–76), a process known as “thrifty substrate/fuel
hypothesis” (77). We also observed decreased OXCT1 (aka
SCOT, succinyl-CoA:3-ketoacid CoA transferase) expression in
HFpEF hearts (Figure 3). OXCT1 allows cells to utilize energy
stored in ketone bodies thus its decrease in HFpEF hearts
supports a role for ketone body cardiac metabolism. Similarly,
others have shown worse HF in pre-clinical models with cardio-
specific deletion of OXCT1 (78).

Proteomic evaluation of PTMs is essential to understand
the function of many proteins in physiological and
pathophysiological settings. PTMs are regulators of protein
structure and function and, in the heart the predominant PTM
is phosphorylation, followed by acetylation (79), and it is also
recognized that many proteins are regulated by phosphorylation
independently of their expression (80).

Titin is a major cardiac protein regulated by
phosphorylation and facilitates myocardial passive tension
by conditioning cardiomyocyte-derived stiffness (81). Titin
regulates cardiomyocyte stiffness both at the transcriptional
and post-transcriptional level. At the transcriptional level,
titin shifts from its compliant isoform N2BA toward its stiff
isoform N2B, which contributes to the impaired diastolic
function that is seen in HFpEF (33, 64, 82). In the present study,
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translational and PTMs in titin are apparent in the LV of HFpEF
hearts. The stiffer N2B isoform was significantly increased in
HFpEF mice. However, it is notably that the N2B isoform is
also the predominant isoform expressed in the LV of rodents
(83). At the post-transcriptional level, despite comparable
global proteomics expression between HFpEF mice and Sham,
phosphoproteomics analysis showed that titin was one of
the proteins with the greatest alterations in phosphorylation
in HFpEF mice. Similar to a Dahl salt-sensitive rat study
(84), in these SAUNA HFpEF mice most of the significantly
hyper-phosphorylated titin residues were located at the Z-disk
binding region of the titin protein (Figure 5C). Interestingly,
it has been suggested that titin may be part of a Z-disk
macromolecular machinery acting as a node for hypertrophic
signaling (85). As such, our findings that the myofilament and
myofilament-associated proteins viz. ACTA1, MYH7, MHY9,
TPM1, and MYOZ2 were differentially expressed in both
global and phosphoproteomics dataset, support the premise
that alterations in sarcomeric and myofilament regulating
proteins play a central role in HFpEF. Of these proteins, MYH7,
TPM1 and MYOZ2 are known to be important in hypertrophic
cardiomyopathy (86–88), and may play a similar role in HFpEF.
However, although their function in muscle contraction is well
known (89, 90), their role in cardiac hypertrophy and adverse
cardiac remodeling remains elusive. It has been hypothesized
that changes in cardiac architecture may be a compensatory
response that eventually fails, resulting in a re-induction of
fetal genes, fibrosis replacing necrotic and apoptotic cardiac
cells, and a shift in metabolic substrates (91). However,
additional studies are warranted to identify the precise role
these myofilament-associated proteins play in HFpEF.

Because of its size, titin has more phosphorylation sites
than other smaller proteins and hundreds of phosphorylation
sites have been predicted based on proteomic analysis (83),

Z-disk Similarly, multiple kinases are also involved in titin
phosphorylation (92), representing more opportunities for
the regulation of the cardiomyocyte structure and function.
However, the effect that a specific phosphorylation pattern has
on the function of titin is largely dependent on the specific
structural domain which is modified within the protein (93).
For example several studies have focused on the “spring-like”
I-domain, including the N2bus and PEVK regions, likely due
to the mechanically active nature of this specific domain, where
phosphorylation may modulate passive and active tension of the
sarcomere (85, 92–94). Conversely, the proline-directed kinases,
including extracellular signal-regulated kinase-1/-2 (ERK1/2)
and cyclin-dependent protein kinase-2 (Cdc2) were able to
regulate the phosphorylation status of non-extensible Z-disk
(95, 96) and C-terminal (M-band) (97) regions (98). Although
additional studies using site-specific methods are needed (92), it
has been suggested that changes in the phosphorylation status of
these regions may have an important function, not only during
developmental stages, but also regulating the binding of titin to
other and M-band proteins, as well as the assembly and turnover
of these binding partners (99, 100).

In addition to phosphorylation, HFpEF is also associated
with hyperacetylation of mitochondrial proteins in the
myocardium (101, 102). In the mitochondria, the acetylation
state of key enzymes involved in mitochondrial metabolism,
oxidative stress defense and mitochondrial dynamics is
regulated by the mitochondrial, NAD-dependent protein
deacetylase SIRT3 (103–106). SIRT3 interacts with at least
84 mitochondrial proteins involved in many aspects of
mitochondrial biology, such as maintaining mitochondrial
integrity and function (67, 106). In the present study, the
global proteomics data set showed decreased expression of
SIRT3 in the LV of HFpEF mice, which was also confirmed
by immunoblotting. Others have shown that reduced SIRT3

FIGURE 6

SIRT3 regulation in HFpEF. (A) SIRT3 protein expression in the left ventricles from HFpEF mice (N = 11) and Sham (N = 7). Data are presented as
mean ± SEM. Statistical analysis by two-tailed Student’s t-test. (B) Overview of proposed SIRT3 regulatory system in HFpEF.
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expression is related to reduced NAD+ bioavailability in
HFpEF, and that cardiomyocyte specific SIRT3 knockout
mice developed worse diastolic dysfunction in HFpEF (60).
Additional studies using whole-body knockout or transgenic
mice similarly showed that SIRT3 is required to maintain
cardiac contractile function under pro-hypertrophic or
ischemic stress (107–110). A recent study showed that a deficit
of cardiac NAD+ exists not only pre-clinical HFpEF models but
also in patients with HFpEF, and that increasing NAD+ levels
with nicotinamide improved diastolic dysfunction (111). The
authors hypothesized the beneficial effects were mediated,
partly by increasing deacetylation of proteins that regulate the
mechano-elastic properties of cardiac myocytes such as titin
and sarco/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a).
Although not investigated in the present study, SIRT3 may also
play a role in cardiomyocyte stiffness and impaired diastolic
function in HFpEF, possibly by titin acetylation (59). SIRT 3
may be a future target since, compared to younger subjects,
exercise increases SIRT3 protein expression in muscle, which
is decreased in older sedentary individuals (112). Interestingly,
of the 7 mammalian sirtuins described, SIRT3 is the only
analog whose increased expression associates with longevity
in humans (113–115). Since HFpEF is highly associated with
aging, and exercise training is effective in improving the
quality of life in HFpEF patients (116), future studies are
warranted to explore the role of SIRT3 expression in muscle in
patients with HFpEF.

In conclusion, untargeted proteomics have demonstrated a
key role of protein PTMs in metabolism, cell preservation and
sarcomere function in the heart (117). In the present study
marked proteomics and phosphoproteomics changes occurred
in the heart in HFpEF mice which were related to altered
mitochondrial metabolism and sarcomere contractility. It is
possible that SIRT3 plays a pivotal role in HFpEF, by regulating
mitochondrial metabolism and titin stiffness but this requires
further study (Figure 6B).
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