
fcvm-09-968752 August 3, 2022 Time: 14:53 # 1

TYPE Review
PUBLISHED 09 August 2022
DOI 10.3389/fcvm.2022.968752

OPEN ACCESS

EDITED BY

Xiaofeng Yang,
Temple University, United States

REVIEWED BY

Gelsomina Mansueto,
University of Naples Federico II, Italy
Vincenzo Quagliariello,
G. Pascale National Cancer Institute
Foundation (IRCCS), Italy

*CORRESPONDENCE

Yang Yang
princess_yanggirl@163.com
Chenglin Zhou
18762340015@126.com

SPECIALTY SECTION

This article was submitted to
Cardiovascular Therapeutics,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 14 June 2022
ACCEPTED 19 July 2022
PUBLISHED 09 August 2022

CITATION

Yang Y, Li W, You B and Zhou C (2022)
Advances in cell death mechanisms
involved in viral myocarditis.
Front. Cardiovasc. Med. 9:968752.
doi: 10.3389/fcvm.2022.968752

COPYRIGHT

© 2022 Yang, Li, You and Zhou. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Advances in cell death
mechanisms involved in viral
myocarditis
Yang Yang1,2*, Wang Li1,2, Benshuai You3 and
Chenglin Zhou1,2*
1Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China, 2Clinical
Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China, 3School of Medicine, Jiangsu
University, Zhenjiang, China

Viral myocarditis is an acute inflammatory disease of the myocardium.

Although many etiopathogenic factors exist, coxsackievirus B3 is a the leading

cause of viral myocarditis. Abnormal cardiomyocyte death is the underlying

problem for most cardiovascular diseases and fatalities. Various types of cell

death occur and are regulated to varying degrees. In this review, we discuss

the different cell death mechanisms in viral myocarditis and the potential

interactions between them. We also explore the role and mechanism of

cardiomyocyte death with severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) infection. Exploring the mechanisms may help in the early

identification and the development of effective treatments, thus improving the

quality of life of patients with viral myocarditis. We believe that the inhibition

of cardiomyocyte death has immense therapeutic potential in increasing the

longevity and health of the heart.

KEYWORDS

VMC, CVB3, apoptosis, autophagy, pyroptosis, ferroptosis, necrosis, SARS-CoV-2

Introduction

Myocarditis is the inflammation and injury of the myocardium and can be caused by
several viruses. However, coxsackievirus B3 (CVB3) is still considered the most common
etiological agent of viral myocarditis (VMC). In recent years, the novel severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been detected in the heart
muscle of infected patients during the outbreak of coronavirus disease 2019 (COVID-
19) (1). VMC is a serious immune-mediated clinical condition that is characterized by
excessive inflammatory lesions of the myocardium (2, 3). The observed pathology in
VMC results from interactions between viral processes and host immune responses at
various stages of disease, leading to non-specific myocardial interstitial inflammatory
lesions (4). Both innate and adaptive immune responses are crucial determinants of
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the severity of myocardial damage and contribute to
the development of chronic myocarditis and dilated
cardiomyopathy following acute VMC (5).

Viral myocarditis incidence has been increasing in
developing countries, especially China. According to the
available clinical evidence, VMC-associated mortality in young
people is as high as 21%, and sudden deaths due to VMC or fatal
ventricular arrhythmias in children account for approximately
20% of deaths (6). Animal models of VMC predict a maladaptive
postviral immune-mediated response, which leads to eventual
myocardial cell dysfunction and compromised contractility (7).
Patients with persistent viral infections in the myocardium are
likely to develop dilated cardiomyopathy and congestive heart
failure (8).

Cell death is a key component of the host defense against
microbial infection, which is critical to maintaining tissue
homeostasis and essential biological functions; changes in this
process have significant pathological implications. Cell death
includes apoptosis, autophagy, pyroptosis, ferroptosis, and
necrosis. VMC caused by CVB3 and SARS-CoV-2 is associated
with cell death. For CVB3 and SARS-CoV-2, NOD-, LRR- and
pyrin domain-containing protein 3 (NLRP3), in concert with
myeloid differentiation factor-88 (MyD88), drastically increased
the production of pro-inflammatory (9). NLRP3 inflammasome
being upstream of cytokine storm in CVB3 or SARS-CoV-2
caused VMC has been reported to be a considerable therapeutic
target (10). In addition, it has revealed that MyD88 is a
key contributor to cardiac inflammation, mediating cytokine
production (11). MyD88 inhibitors could also be useful for
myocarditis therapy. Here, we systematically review the cell
death mechanism of VMC and speculate on the potential
therapeutic options.

Viral myocarditis and apoptosis

Apoptosis is programmed cell death that is characterized
by the formation of apoptotic bodies. To initiate apoptosis,
cells activate caspase-3 through exogenous death receptors and
endogenous mitochondrial pathways. Apoptosis is required
for homeostasis maintenance and is involved in many
pathophysiological processes, including ischemia, hypoxic
injury, and viral pathogenesis (12, 13). Although no consensus
exists on the specific pathogenesis of VMC, myocardial
apoptosis plays an indispensable role in VMC pathogenesis
(14). In 1994, Kawano et al. (15) first reported the presence
of multifocal cardiomyocyte apoptosis by analyzing myocardial
biopsy samples of patients with chronic myocarditis. Henke
et al. (16) and Kyto et al. (17) have observed numerous apoptotic
cardiomyocytes and a significant increase in caspase-3 activity
in mice infected with CVB3, indicating that cardiomyocyte
apoptosis is involved in the pathogenesis of myocarditis.
Apoptosis is also related to VMC-induced heart damage and

leads to myocardial remodeling (18). Thus, apoptosis may play a
vital role in cardiomyocyte death in VMC and is associated with
the development of fatal heart failure (5).

Coxsackievirus B3 infection often markedly induces
myocardial apoptosis. The inhibition of histone deacetylase
(HDAC) activity increases CVB3 replication by enhancing
autophagosome formation and ensuring increased myocardial
apoptosis, resulting in aggravated VMC (2). CVB3 infection in
the heart activates cardiomyocyte apoptosis in both mice and
humans (19). Viral invasion of myocardial cells evokes many
host cell responses, such as persistent chronic inflammation,
subsequently resulting in myocardial cell hypertrophy,
myocardial apoptosis, and myocardial fibrosis, causing
tissue damage and virus dissemination through incompletely
characterized host cell signaling networks. Identifying and
suppressing the mechanisms of CVB3-mediated cardiomyocyte
apoptosis are critical (Figure 1).

Coxsackievirus B3 infection can markedly induce
myocardial apoptosis through death receptor-mediated
and mitochondrial-mediated signaling pathways, and apoptosis
is also often evidenced in patients with acute myocarditis (20).
A model analysis revealed that CVB3-stimulated cytotoxicity
was inhibited by kinase ERK5 coupled with p38 kinase activity.
By contrast, p38 indirectly promotes apoptosis through ERK1/2
inhibition but directly causes CVB3-induced necrosis (21). The
Fas antigen, an important protein product of the apoptosis-
promoting gene, initiates the cell death pathway by interacting
with its natural ligand FasL, eventually leading to the apoptosis
of target cells with positive expression of Fas (22). Viral
infection induces the abnormal expression of the Fas antigen
in the myocardium, and the antigen cross-links with FasL of
active cells. When activated cytotoxic T lymphocytes (CTLs)
bind to target cells through Fas/FasL, apoptotic signals can be
transferred to the latter, leading to the apoptosis of target cells
within several hours. Apoptosis induced by the Fas/FasL system
is associated with the development and progression of VMC.
Shenqi Fuzheng injection relieves VMC by downregulating Fas
and FasL protein expression and inhibiting cell apoptosis (23).

Activation of proapoptotic mediators may be another
mechanism of CVB3-induced apoptosis (24). PI3K and mTOR-
signaling pathways participate in CVB3-induced VMC by
mediating the proapoptosis factor Bim, Bax, caspase-9, caspase-
3, and viral replication (25). In myocardial I/R injury, IL-17A
induces cardiomyocyte apoptosis and neutrophil infiltration. An
in vitro study concluded that IL-17A mediated cardiomyocyte
apoptosis by regulating the Bax/Bcl-2 ratio (3). miRNA can
decrease cardiomyocyte apoptosis by mediating the expression
of apoptosis-related genes in the hearts of VMC mice (26).
miR-133 targets caspase-9 and promotes cardiac cell apoptosis
by interfering with the expression of mRNA (27). Tong et al.
reported that miR-15 dysregulation is closely associated with
VMC. They also demonstrated that miR-15 can suppress
cell viability and promote CVB3-induced apoptosis, and its
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FIGURE 1

Coxsackievirus B3 (CVB3) manipulates cell apoptosis. CVB3 infection can markedly induce myocardial apoptosis via death receptor–mediated
and mitochondrial-mediated signaling pathways. Viral infection induces abnormal expression of Fas antigen in the myocardium and cross-links
with FasL of active cells. Activated CTL binds to target cells via Fas/FasL and causes apoptosis. The PI3K and mTOR-signaling pathways
participate in the CVB3-induced VMC by mediating the proapoptosis factor Bim, Bax, caspase-9, caspase-3, and viral replication. The inhibition
of HDAC activity increases CVB3 replication by enhancing autophagosome formation and ensuing increased myocardial apoptosis. IL-17A
mediated cardiomyocyte apoptosis by regulating the Bax/Bcl-2 ratio. miR-133 targets caspase-9 and promotes cardiac cell apoptosis. miR-15
could suppress cell viability and promote CVB3-induced cell apoptosis by modulating the NLRX1-mediated NLRP3 inflammasome. miR-21
alleviates CVB3-induced myocarditis by protecting myocardial apoptosis and repressing PDCD4 expression. CVB3-stimulated cytotoxicity can
be inhibited by kinase ERK5, coupled with p38 kinase activity. However, p38 promotes apoptosis through ERK1/2 inhibition indirectly. c-Fos can
compose AP-1 with c-jun gene products that regulate the transcription of apoptosis-related genes. Picornavirus protease 2A in CVB3 induced
apoptosis through multiple converging pathways. ER-initiated apoptosis was induced by CVB3-infected cardiomyocytes and caused myocardial
apoptosis through ER stress by the PERK pathway. CP, which is located within the endoplasmic reticulum Ca2+ binding proteins, can relieve
ERS-initiated apoptosis in VCM. CVB3, coxsackievirus B3; CTL, cytotoxic T lymphocytes; ER, endoplasmic reticulum; Bcl-2, B-cell lymphoma 2;
Bax, Bcl-2-associated X protein; HDAC, histone deacetylase; NLRP3, NLR family pyrin domain containing 3; PDCD4, programmed cell death 4;
ER, endoplasmic reticulum; CP, calumenin protein.

inhibition protects against CVB3-induced myocardial cell injury
by modulating NLRX1-mediated NLRP3 inflammasomes (28).
miR-21 can alleviate CVB3-induced myocarditis by protecting
myocardial apoptosis by repressing programmed cell death 4
(PDCD4) expression (29).

In addition, c-fos plays a role in inducing apoptosis
(30). Abnormal expression of c-fos may play a role in
inflammatory diseases such as VMC. Its expression is increased
in the cardiomyocytes of VMC mice. However, c-fos can

compose AP-1 with c-jun gene products that modulate the
transcription of apoptosis-related genes, thereby indirectly
regulating cardiomyocyte apoptosis in VMC (31). Thus, c-fos
plays a vital role in myocardial lesions and is likely to be involved
in VMC pathogenesis (32).

The endoplasmic reticulum stress (ERS) reaction was
discovered to be a signal transduction pathway mediating
apoptosis. ER-initiated apoptosis was induced by CVB3-infected
cardiomyocytes and caused myocardial apoptosis through ER
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stress via the PERK pathway. Calumenin protein (CP), located
within the endoplasmic reticulum Ca2+ binding proteins, can
relieve ERS-initiated apoptosis in VCM (33).

Coxsackievirus B3 can also produce viral proteins, such
as protease 2A, that cause direct myocardial injury. Protease
2A inhibits host cell protein synthesis, cleaves host protein
dystrophin, and may induce cardiomyopathy (34–36) and
cardiomyocyte apoptosis. By transfecting individual protease
genes of CVB3 into HeLa cells, Chau et al. demonstrated that
protease 2A induced apoptosis through multiple converging
pathways that activate proapoptotic mediators and inhibit
translation and transcription (24).

Viral myocarditis and autophagy

Autophagy, or cellular self-digestion, is a significant cellular
catabolic pathway, especially for the degradation of proteins and
organelles by a lysosomal pathway for maintaining cytoplasmic
homeostasis (37). It plays a key role in cellular defense by
removing intracellular pathogens, such as viruses, bacteria,
and parasites (38). It was initially considered a primary
cell survival mechanism for supplying nutrients and energy
to prolong cell survival under stress conditions (38, 39).
It is now associated with human disease and physiology
(40). Autophagy primarily protects organisms against diverse
pathologies, including infection, cancer, neurodegeneration,
aging, and heart diseases (41). Thus, it is a critical cellular event
associated with VMC.

Autophagy prevents many infections by inducing
lysosomal-mediated degradation of invading pathogens.
However, previous in vitro studies have suggested that some
enteroviruses not only evade these protective effects but also
exploit autophagy to facilitate their replication (42). Various
viruses can stimulate the autophagic response to elevate their
replication (43). Autophagy is a “double-edged sword” for
CVB3. On the one hand, autophagy can clear a small portion
of CVB3 (44). However, the life cycle of CVB3 depends on
autophagy (45). CVB3 infection triggers the formation of
autophagosomes without promoting protein degradation by
the lysosome. However, enhanced autophagosomes acting as
viral RNA replication sites are exploited by CVB3 to facilitate
viral replication, leading to myocardial apoptosis (44, 46). The
autophagic response was induced by CVB3 infection in mouse
cardiac myocytes (47). Additionally, the interplay between
CVB3 and autophagy has been verified in an in vivo study. The
cell apoptosis rate of myocardial cell H9c2 was enhanced after
CVB3 infection, indicating reduced cell survival ability (48).
These data highlight the major impact of autophagy on CVB3
infection (Figure 2).

Types I and II angiotensin II receptors (AT1 and AT2,
respectively) regulate cardiomyocyte autophagy activity (49).
AT1 triggers autophagy in neonatal cardiomyocytes as well

as subsequent autophagic cell death, and AT2 counteracts the
process. These alterations may have a contrary effect on virus-
infected cardiomyocytes, as they propagate viral replication,
thus triggering autophagic cell death. CVB3 might directly
or indirectly induce autophagy in host cells through the
AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways,
representing a key mechanism by which CVB3 regulates the
number of autophagosomes (50).

In addition to the formation of autophagosomes, the
release of proinflammatory cytokines participates in the
activation of cardiac fibroblasts caused by CVB3 infection.
The cardiac fibroblasts not only support viral replication
but also participate in inflammation responses by expressing
proinflammatory cytokines. A significantly increased assembly
of autophagosomes was found in cardiac fibroblasts both in vitro
and in vivo after CVB3 infection. CVB3 infection increased
the release of proinflammatory cytokines, IL-6 and TNF-α,
and autophagy downregulation suppressed their expression in
cardiac fibroblasts (51).

Another mechanism is that CVB3 hijacks the autophagic
machinery to facilitate its own propagation. A series of
in vivo and in vitro experiments have demonstrated that
CVB3 inhibits autophagic flux by significantly limiting
the fusion of autophagosomes with lysosomes and/or late
endosomes. Furthermore, the loss of SNAP29/PLEKHM1
inhibits autophagic flux, resulting in increased viral replication.
CVB3 specifically targets the SNARE protein SNAP29 and
the adaptor protein PLEKHM1, both of which regulate
autophagosome fusion, for cleavage through the catalytic
activity of viral proteinase 3C, ultimately impairing the
formation of SNARE complexes (52). Microtubule-associated
protein light chain 3 (LC3) existing in autophagosomes is
essential for autophagosome formation and serves as an
autophagosome marker (53, 54). Calpains are calcium-activated
neutral cysteine proteases. CVB3 infection in cardiomyocytes
activates calpain and increases the calpain substrate spectrin
fragment. The inhibition of calpain activity both in vitro and
in vitro led to LC3-II protein accumulation, impairing the
autophagic flux, which may have increased viral replication
and exacerbated VMC symptoms in mice due to myocardial
inflammation and cardiac dysfunction. This may subsequently
reduce virus autolysosome degradation (55).

Viral myocarditis and pyroptosis

Pyroptosis is a unique inflammatory form of programmed
cell death. It involves gasdermin family–mediated membrane
pore formation and subsequent cell lysis, followed by the
secretion of a number of proinflammatory cytokines, mainly IL-
1β, IL-18, and HMGB1 (56, 57). Pyroptosis is involved in several
cardiovascular diseases, including atherosclerosis, myocardial
infarction, diabetic cardiomyopathy, and reperfusion injury. It
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FIGURE 2

Regulation of CVB3 and autophagy in VMC. CVB3 infection triggers the formation of autophagosomes and uses the autophagosomal pathway
for replication. CVB3 infection in cardiomyocytes activated calpain and increased. The inhibition of calpain activity led to the accumulation of
LC3-II protein expression, impairing the autophagic flux. AT1 and AT2 regulate cardiomyocyte autophagy activity by propagating viral
replication, thus triggering autophagic cell death. CVB3 might directly or indirectly induce autophagy via the AMPK/MEK/ERK and
Ras/Raf/MEK/ERK signaling pathways. CVB3 inhibits the fusion of lysosomes with autophagosomes. CVB3 specifically targets the SNARE protein
SNAP29 and the adaptor protein PLEKHM1, both of which regulate autophagosome fusion, for cleavage through the catalytic activity of viral
proteinase 3C; this process ultimately impairs the formation of SNARE complexes. The release of proinflammatory cytokines also participates in
the cardiac fibroblasts caused by CVB3 infection, and the downregulation of autophagy suppresses them. CVB3, coxsackievirus B3; VMC, viral
myocarditis; LC3, light chain 3; AT1 and AT2, Type I and II angiotensin II receptors.

is also associated with the pathogenesis of myocarditis (58).
Its morphological characteristics, occurrence, and regulatory
mechanisms differ from those of apoptosis and necrosis (59). It
is likely initiated by the canonical caspase-1-dependent and non-
canonical caspase-4/5/11-mediated (human caspase-4/5 and
murine caspase-11) pyroptosis pathways (60).

Pyroptosis most frequently occurs during the infection
of intracellular pathogens and may be a part of the defense
mechanisms of the host against infection (56). In this
process, cells recognize intracellular pathogens through many
pattern-recognition receptors (PRRs) and form a multiprotein
complex—the inflammasome—which activates caspase-1 (56).
Gasdermin D (GSDMD) is the executioner of proptosis, which
is the substrate of proinflammatory caspases (caspase-1, –11, –
4, and –5). The cleaved GSDMD forms non-selective pores in
the plasma membrane, leading to pyroptosis (61, 62). Activated
caspase-1 converts pro-IL-1β and pro-IL-18 to their mature
forms (63). The secretion of IL-1β and IL-18 and the release

of cellular content due to cell lysis promote the recruitment
of inflammatory cells, resulting in the activation of immune
cells and the further production of cytokines and subsequently
causing pathological consequences (64).

Coxsackievirus B3 infection can activate pyroptosis. Wang
et al. first reported that the activation of NLRP3 inflammasome
was involved in CVB3-induced myocarditis (65). Caspase-1
activation and the increased expression of IL-18 and NLRP3
were demonstrated in HeLa cells infected with CVB3 (66). The
suppressed pyroptosis alleviated the inflammatory response of
the virus-infected mice and reduced the replication of viruses in
the myocardium, suggesting that pyroptosis is involved in the
pathogenesis of CVB3 infections (Figure 3).

Calpain is activated in CVB3-infected mouse hearts,
accompanied by an increase in pyroptosis. It increases apoptotic
myocardial cell death and interferon (IFN)-γ and IL-17
production in the local myocardium of VMC mice (67).
Moreover, it drives pyroptotic vimentin cleavage, intermediate
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FIGURE 3

Gasdermin D (GSDMD) forms membrane pores to cause pyroptosis. CVB3 infection initiates pyroptosis by canonical caspase-1-dependent and
non-canonical caspase-4/5/11-mediated pyroptosis pathways. In the canonical pyroptosis pathway, cells recognize intracellular pathogens
through many PRRs and form NLRP3, which activates caspase-1. Caspase-1 processes and activates IL-1β and IL-18; it also cleaves GSDMD to
release the membrane pore-forming GSDMD-N domain. GSDMD-N pores promote the release of activated IL-1β and IL-18. In the
non-canonical pyroptosis pathway, cytosolic LPS binds to caspase-4/5/11 and triggers the cleavage of GSDMD but not of IL-1β and IL-18.
Calpain is activated after CVB3 infection, accompanied by an increase in pyroptosis by promoting the canonical NLRP3
inflammasome/caspase-1-mediated and non-canonical caspase-11-mediated pyroptosis pathways. CVB3 infection damages the lysosomes
and releases the lysosomal contents, including cathepsin B, into the cytosol. Cathepsin B exaggerates VMC by regulating the activation of
NLRP3. GSDMD, gasdermin D; CVB3, coxsackievirus B3; PRRs, pattern-recognition receptors; LPS, lipopolysaccharide; VMC, viral myocarditis.

filament loss, and cell rupture during pyroptosis (68). Its
inhibition attenuates VMC by suppressing the canonical NLRP3
inflammasome/caspase-1-mediated and non-canonical caspase-
11-mediated pyroptosis pathways (69).

Cathepsin B (CatB), an intracellular cysteine proteolytic
enzyme, is widely expressed in various cells and is located
mainly in the lysosomes. It is involved in viral infectious
diseases because of its relations with viral entry and replication
as well as virus-mediated cell apoptosis and immune responses
(70). It aggravates CVB3-induced VMC probably by activating
the inflammasome and promoting pyroptosis (58, 71).
Specifically, CVB3 infection can damage lysosomes and release

lysosomal contents, including CatB, into the cytosol. The
activated caspase-1 then cleaves gasdermin D, releasing its
N-terminal domain, which oligomerizes in the membranes
to form large pores, causing membrane rupture and cell
death (72). Thus, CatB may exaggerate VMC by regulating
inflammasome activation.

Viral myocarditis and necrosis

Necrosis was considered as an unregulated form of cell
death, but a growing number of studies have discovered that
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necrosis plays a vital role in cell death and that it is regulated
(59). Necroptosis is mediated by the ligands and stimuli of death
receptors and executed through induction of the RIP1–RIP3
(receptor-interacting proteins 1 and 3) necroptotic complex and
production of mitochondrial reactive oxygen species (ROS),
followed by depletion of cellular energy under apoptotic-
deficient conditions (73, 74). It is a caspase-independent
necrotic cell death program regulated by receptor-interacting
protein kinases, and it plays a prominent role in multiple human
diseases (75).

Necrosis may be the preferred outcome for CVB3, which
is counteracted by the host cell drive to die by apoptosis (21).
RIP1/RIP3 was highly expressed in cardiomyocytes in the acute
VMC mouse model, and downregulating its expression through
the necroptosis pathway-specific blocker Nec-1 markedly
alleviated myocardial damage. Thus, necroptosis plays a
significant role in cardiomyocyte death and is a major pathway
for cell death in acute VMC (76).

Viral myocarditis and ferroptosis

Ferroptosis is an emerging novel form of programmed cell
death, which is characterized by the production of cellular ROS
from accumulated iron and lipid peroxidation (77, 78). Ferritin
is the major intracellular iron storage protein complex, which
includes ferritin light polypeptide 1 (FTL1) and ferritin heavy
polypeptide 1 (FTH1) (79). Increased ferritin expression limits
ferroptosis (80).

Acyl-coenzyme A synthetase long-chain family member
4 (ACSL4), a key component of ferroptosis, is involved in
viral replication organelle formation. Enteroviruses can induce
ferroptosis through ACSL4. However, its inhibitors can reduce
enteroviral yields (81).

Severe acute respiratory syndrome
coronavirus 2 and viral myocarditis

Severe acute respiratory syndrome coronavirus 2, which
causes COVID-19, can also cause VMC, a rare cardiovascular
complication of COVID-19 (82–85). However, data on VMC
caused by SARS-CoV-2 remain scarce. In addition to the direct
presence of SARS-CoV-2 in the myocardium of patients with
COVID-19, SARS-CoV-2 can cause myocarditis through other
indirect mechanisms (86).

Similar to CVB3, SARS-CoV-2 inhibits apoptosis signaling
in the initial stage of viral infection for efficient replication, with
a shift to viral release in later stages; thus, enteroviruses induce
the host cell toward apoptosis (87, 88). Autophagosomes are
also manipulated in SARS-CoV-2 infection. Nsp3a of SARS-
CoV-2 can block autophagy and accumulate autophagosomes

by disrupting Rab7–HOPS complex formation to inhibit
lysosome–autophagosome fusion (89).

Histopathological analysis in a patient with COVID-19
revealed active myocarditis, and the immunohistochemical
marker (oxidized phosphatidylcholine) of ferroptosis was
positive in the myocardial tissue, indicating its involvement in
SARS-CoV-2 infection (82). Altered iron metabolism, depletion
of glutathione (GSH), inactivation of glutathione peroxidase 4
(GPX4), and upregulation of PUFA peroxidation by ROS are
crucial to ferroptosis; this indicates a relationship between them
and the proposed mechanisms of SARS-CoV-2 infection and
ferroptosis induction (90, 91).

Dysregulation of iron metabolism in
severe acute respiratory syndrome
coronavirus 2 infection

Optimal iron levels within host cells are necessary
for viral replication (92). VMC caused by SARS-CoV-
2 can cause a cytokine storm, especially IL-6, and alter
systemic iron metabolism (93, 94). The cytokine storm may
promote hyperferritinemia, which can further intensify the
inflammation. Moreover, elevated ferritin levels trigger nuclear
receptor coactivator 4 (NCOA4)-mediated ferritinophagy.
Overexpression of NCOA4 increases ferritin degradation and
promotes iron release. The increased iron converts phospholipid
LOOH to hydroxyl radicals through the Fenton reaction,
eventually inducing ferroptosis and promoting cellular damage
(90, 95–97).

Glutathione-glutathione peroxidase 4
axis in severe acute respiratory
syndrome coronavirus 2 infection

Glutathione deficiency plays a key role in SARS-CoV-2
infection (98). Moreover, the mRNA expression of ferroptosis-
associated GPX4, DNA synthesis–related thioredoxin reductase,
and endoplasmic reticulum-resident selenoproteins is
suppressed by SARS-CoV-2 (99). Thus, both a low GSH
pool and downregulation of GPX4 gene expression caused by
SARS-CoV-2 infection facilitate ferroptosis (90).

Reactive oxygen species generation
during severe acute respiratory
syndrome coronavirus 2 infection

Reactive oxygen species are considered to be key signals
in ferroptosis (100). A study revealed that SARS-CoV-2
affects mitochondrial ROS generation through the following
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mechanism: one of its accessory proteins, open reading frame-
9b (Orf9b), can modify mitochondrial morphology, interfere
with the mitochondrial antiviral signaling system, suppress IFN
production, and raise autophagy (101, 102) (Figure 4).

Discussion

Viral myocarditis typically results from infection by a
cardiotropic virus, followed by active inflammatory destruction
of the myocardium, which is an acute inflammatory disease
of the heart, and VMC is currently a principal cause of
sudden death in children and young adults (103). Some
viruses like enteroviruses, adenoviruses, parvovirus B19, human
herpesvirus 6, HIV, and SARS-CoV-2 were detected in
patients with VMC and their biopsy specimens often showed
myocarditis inflammatory (Table 1 and Figure 5) (104, 105).
Nevertheless, the specific pathogenetic mechanisms underlying
VMC remain unclear. Exploring these mechanisms may help in
the early identification of the disease and the development of

effective treatments, thus improving the quality of life of patients
with VMC and reducing mortality.

Three genetically defined cell death pathways exist:
apoptosis, necroptosis, and pyroptosis (106). Although research
on programmed cell death initially focused on apoptosis,
necrosis, pyroptosis, and other novel forms of programmed
cell death such as ferroptosis have been increasingly attracting
attention (107). The data showed that the expression of the
autophagic activation marker LC-3II, the apoptosis marker
caspase-3, and the necroptosis markers RIP1 and RIP3 was
increased in the heart tissue of CVB3-infected mice. Features of
all three pathways are concurrently observed in failing hearts,
implying their simultaneous involvement in the pathological
process of acute VMC.

The functional relationship between apoptosis and
autophagy is complex. Autophagy is a prosurvival response
against apoptosis. Under some conditions, autophagy can
exhibit a stress adaptation that prevents cell death and
suppresses apoptosis (108). The dysregulation of autophagy
may decrease the viability of virus-infected cardiomyocytes
because it cannot protect the host from virus-induced apoptosis.

FIGURE 4

Proposed mechanism of ferroptosis in SARS-CoV-2 infection. SARS-CoV-2-related increase in cytokines, especially IL-6 causing
hyperferritinemia, is characterized by the increase in intracellular iron and ferritin. This increased ferritin binds to NCOA4 and is delivered to
autophagosomes, causing ferritinophagy and triggering an increase in the labile iron pool, which induces OH through the Fenton reaction and,
eventually, through PL-PUFA peroxidation, which promotes ferroptosis. The expression of GSH and ferroptosis-associated GPX4 is suppressed
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Moreover, a low GSH pool and downregulation of GPX4 gene
expression caused by SARS-CoV-2 infection facilitate ferroptosis. Orf9b, one of the accessory proteins of SARS-CoV-2, increases ROS
generation by binding to TOM70 at the surface of the mitochondria membrane. O2- is produced by ETC on the internal membrane of the
mitochondria and then converted to further H2O2 by SOD and eventually, by Fenton reaction, transformed into ·OH, triggering LOOH
generation from PUFAs that promotes ferroptosis. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; IL-6, interleukin-6; NCOA4,
nuclear receptor coactivator 4; ·OH, hydroxyl radical; PL-PUFAs, phospholipid polyunsaturated fatty acids; PUFA-OH, phospholipid
polyunsaturated fatty acid alcohols; PL-PUFA-OOH, phospholipid polyunsaturated fatty acid peroxides; GSH, glutathione; GSSG, oxidized
glutathione; GPX4, glutathione peroxidase; Orf9B, open reading frame-9b; ROS, reactive oxygen species; TOM70, translocase of outer
membrane 70; O2-, superoxide; ETC, electron transport chain; H2O2, hydrogen peroxide; SOD, superoxide dismutase; LOOH, peroxides.
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TABLE 1 Main viruses and some microscopic characteristics of
myocardial damage.

Viral

Classification Description

RNA viruses Enteroviruses, HIV, SARS-CoV-2

DNA viruses Adenoviruses, parvovirus B19, human
herpesvirus 6

Microscopic characteristics of myocardial damage
Active myocarditis Inflammatory cellular infiltrate with

evidence of myocyte necrosis [Figure 5A
(122)]

Borderline myocarditis Inflammatory cellular infiltrate without
evidence of myocyte injury [Figure 5B
(123)]

Progressive inflammatory
infiltrate

Lymphocytic, eosinophilic, or
granulomatous [Figure 5C (124)]

However, an increase in polyubiquitinated proteins due to the
insufficient induction of autophagy in cardiomyocytes may
increase endoplasmic reticulum stress and apoptosis. Apoptosis
is long considered the principal process of cell death in
cardiomyocytes, but programmed necrosis or necroptosis may
play a vital role in cardiomyocyte cell death. Recently, caspase-8
was reported to cleave GSDMD, leading to caspase-8-mediated
GSDMD-dependent cell death in response to extrinsic triggers
of apoptosis (109). These examples illustrate that different forms
of pyroptotic cell death exist, and that these are interconnected
with apoptotic and necroptotic pathways (75).

Viruses are involved in various cell death mechanisms,
including apoptosis, necroptosis, and pyroptosis (110). They
activate many host cell signaling pathways, thereby evoking
many host cell responses. Coxsackie B viruses (most commonly
CVB3) are responsible for most VMC cases. Approximately 25%
cases of dilated cardiomyopathy and myocarditis in children
and young patients are caused by CVB3 (111). CVB3 is
a small, non-enveloped, single-strand plus RNA enterovirus
in the Picornaviridae family, and is considered the leading

cause of VMC because it has the strongest myocardial affinity
(25). A major component of CVB3 pathogenesis is the death
of infected cardiomyocytes, which damages myocardial cells
directly or indirectly through autoimmune reactions, leading
to their degeneration and necrosis or interstitial inflammatory
cell infiltration and fibrosis, which furthers cardiomyocyte
injury and loss and, thus, myocardial dysfunction (112, 113).
Throughout infection, CVB3 modulates various cell signaling
pathways that enable virus propagation (114). It can trigger
a direct cytopathic effect and induce apoptosis in HeLa
cells and mouse hearts (115). It uses different strategies,
including direct damage to host cells followed by a host
inflammatory response to CVB3 infection and cell death
to super-additively promote target organ tissue injury and
dysfunction (113). Notably, CVB3-induced acute myocarditis
is almost certainly the early effect of direct virus-induced
myocyte damage, followed by host immune and inflammatory
responses, the intensity of which is partly related to persistent or
chronic CVB3 infection.

Several programs of cell death for SARS-CoV-2 are similar
to well-known cardiogenic viruses CVB3. The incidence of
SARS-CoV-2–induced myocarditis remains unknown due to
insufficient data. SARS-CoV-2 appears to have analogous effects
on the heart as other myocarditis-causing viruses, but further
studies of the effects of SARS-CoV-2 on the heart are warranted.

In addition to the related mechanisms mentioned above,
non-pharmacological strategies aimed to treat myocarditis
should also be mentioned. Related studies have found that
natural compounds and herbal medicines have protective
effects against VMC (116). Some of the nutraceuticals, such as
medicinal mushrooms, ascorbic acid, quercetin, and polydatin
may play a role in the treatment of VMC (117, 118). For
example, some natural molecules such as berberine, quercetin,
and apigenin have been found to be effective in relieving
experimental autoimmune myocarditis, which may be related
to their mitigation of oxidative stress and inflammatory
cytokines (119, 120). Besides, some studies have indicated
that alkaloids such as berberine show benefits in myocarditis

FIGURE 5

The main characteristics of histology in VMC. (A) Active myocarditis is characterized by an inflammatory cellular infiltrate with numerous
necrotic myocytes. (B) Representative histopathology in a borderline myocarditis group. The inflammatory region is showed with several large
foci of cellular infiltrations. (C) Diffuse lymphocytic infiltration of myocardium is described as lymphocytic, eosinophilic, or granulomatous in
endomyocardial biopsy specimens. VMC, viral myocarditis.
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through modulating Th17 and Th1 cell differentiation (121).
Although these therapies show potential, additional efforts
for clinical trials are requested. In short, the combination
of non-pharmacological therapy and traditional therapy may
be an effective strategy for the treatment of VMC, especially
during the pandemic period when the risk of myocarditis is
higher in COVID-19.

Summary and future directions

Viral myocarditis usually affects children and young
adults, and its main long-term consequences are dilated
cardiomyopathy and chronic heart failure. Although the
pathophysiology of myocarditis has been well studied in
experimental animal models, few human studies have analyzed
the cellular processes contributing to myocardial damage in
myocarditis. In this review, we synthesized the data on how
viruses, especially CVB3 and SARS-CoV-2, manipulate several
cell death pathways, causing the myocardial effects observed
in VMC. The evidence indicates that these various forms of
cell death are interlinked to form a network to mediate cell
availability. Future studies should elucidate this association
and help develop novel treatment strategies directed toward
pathway-specific targets for improving the treatment outcomes
of patients with viral-induced myocarditis.
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