
TYPE Original Research

PUBLISHED 05 October 2022

DOI 10.3389/fcvm.2022.976769

OPEN ACCESS

EDITED BY

Jinwei Tian,

The Second A�liated Hospital of

Harbin Medical University, China

REVIEWED BY

Neal Yuan,

University of California, San Francisco,

United States

Shirin Jimenez,

Stanford University, United States

*CORRESPONDENCE

Shruti Siva Kumar

shruti.sivakumar1993@gmail.com

†These authors have contributed

equally to this work

SPECIALTY SECTION

This article was submitted to

General Cardiovascular Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

RECEIVED 23 June 2022

ACCEPTED 05 September 2022

PUBLISHED 05 October 2022

CITATION

Siva Kumar S, Al-Kindi S, Tashtish N,

Rajagopalan V, Fu P, Rajagopalan S and

Madabhushi A (2022) Machine learning

derived ECG risk score improves

cardiovascular risk assessment in

conjunction with coronary artery

calcium scoring.

Front. Cardiovasc. Med. 9:976769.

doi: 10.3389/fcvm.2022.976769

COPYRIGHT

© 2022 Siva Kumar, Al-Kindi, Tashtish,

Rajagopalan, Fu, Rajagopalan and

Madabhushi. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Machine learning derived ECG
risk score improves
cardiovascular risk assessment
in conjunction with coronary
artery calcium scoring

Shruti Siva Kumar1*†, Sadeer Al-Kindi2,3†, Nour Tashtish2,3,

Varun Rajagopalan2,3, Pingfu Fu4, Sanjay Rajagopalan2,3 and

Anant Madabhushi5

1Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH,

United States, 2Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH,

United States, 3School of Medicine, Case Western Reserve University, Cleveland, OH, United States,
4Department of Population and Quantitative Health Sciences, Case Western Reserve University,

Cleveland, OH, United States, 5Wallace H. Coulter Department of Biomedical Engineering,

Radiology and Imaging Sciences, Biomedical Informatics (BMI) and Pathology, Georgia Institute of

Technology and Emory University, Research Health Scientist, Atlanta Veterans Administration

Medical Center, Atlanta, GA, United States

Background: Precision estimation of cardiovascular risk remains the

cornerstone of atherosclerotic cardiovascular disease (ASCVD) prevention.

While coronary artery calcium (CAC) scoring is the best available non-invasive

quantitative modality to evaluate risk of ASCVD, it excludes risk related to prior

myocardial infarction, cardiomyopathy, and arrhythmia which are implicated

in ASCVD. The high-dimensional and inter-correlated nature of ECG data

makes it a good candidate for analysis using machine learning techniques

and may provide additional prognostic information not captured by CAC. In

this study, we aimed to develop a quantitative ECG risk score (eRiS) to predict

major adverse cardiovascular events (MACE) alone, or when added to CAC.

Further, we aimed to construct and validate a novel nomogram incorporating

ECG, CAC and clinical factors for ASCVD.

Methods: We analyzed 5,864 patients with at least 1 cardiovascular risk factor

who underwent CAC scoring and a standard ECG as part of the CLARIFY

study (ClinicalTrials.gov Identifier: NCT04075162). Events were defined as

myocardial infarction, coronary revascularization, stroke or death. A total of

649 ECG features, consisting of measurements such as amplitude and interval

measurements from all deflections in the ECG waveform (53 per lead and

13 overall) were automatically extracted using a clinical software (GE MuseTM

Cardiology Information System, GE Healthcare). The data was split into 4

training (Str) and internal validation (Sv) sets [Str (1): Sv (1): 50:50; Str (2): Sv (2):

60:40; Str (3): Sv (3): 70:30; Str (4): Sv (4): 80:20], and the results were compared

across all the subsets. We used the ECG features derived from Str to develop

eRiS. A least absolute shrinkage and selection operator-Cox (LASSO-Cox)

regularizationmodel was used for data dimension reduction, feature selection,

and eRiS construction. A Cox-proportional hazards model was used to assess

the benefit of using an eRiS alone (Mecg), CAC alone (Mcac) and a combination

of eRiS and CAC (Mecg+cac) for MACE prediction. A nomogram (Mnom) was

further constructed by integrating eRiS with CAC and demographics (age and

sex). The primary endpoint of the studywas the assessment of the performance
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of Mecg, Mcac, Mecg+cac and Mnom in predicting CV disease-free survival

in ASCVD.

Findings: Over a median follow-up of 14 months, 494 patients had MACE.

The feature selection strategy preserved only about 18% of the features that

were consistent across the various strata (Str). The Mecg model, comprising

of eRiS alone was found to be significantly associated with MACE and had

good discrimination of MACE (C-Index: 0.7, p = <2e-16). eRiS could predict

time-to MACE (C-Index: 0.6, p = <2e-16 across all Sv). The Mecg+cac model

was associated with MACE (C-index: 0.71). Model comparison showed that

Mecg+cac was superior to Mecg (p = 1.8e-10) or Mcac (p < 2.2e-16) alone.

The Mnom, comprising of eRiS, CAC, age and sex was associated with MACE

(C-index 0.71). eRiS had the most significant contribution, followed by CAC

score and other clinical variables. Further, Mnom was able to identify unique

patient risk-groups based on eRiS, CAC and clinical variables.

Conclusion: The use of ECG features in conjunction with CAC may

allow for improved prognostication and identification of populations at

risk. Future directions will involve prospective validation of the risk score

and the nomogram across diverse populations with a heterogeneity of

treatment e�ects.

KEYWORDS

machine learning, artificial intelligence, atherosclerotic cardiovascular diseases

(ASCVD), electrocardiogram (ECG), risk assessment/classification, nomogram

Introduction

Cardiovascular disease is the leading cause of death in

the United States, with significant morbidity and cost of care

(1). While cardiovascular mortality has declined in recent

decades, the rate of decline appears to be decelerating, thought

to be related to the increasing prevalence and exposure to

risk factors such as unhealthy diet, obesity, physical inactivity,

hyperlipidemia, hypertension and high alcohol use (2).

Therefore, primary prevention of atherosclerotic cardiovascular

disease (ASCVD) remains an important public health goal but

requires precise identification of at-risk individuals.

Current approaches for risk evaluation are dependent on

probabilistic risk scores, which are poorly calibrated, do not

perform well across populations and do not provide individual

risk assessment. The Pooled Cohort Equations (PCE) (1), which

is a sex- and race-specific tool for estimating 10-year absolute

rates of ASCVD is based on nine clinical variables. While PCE

is in routine clinical use in the U.S., its CV risk overestimation

(3, 4) and suboptimal calibration in specific patient populations

have been noted (5–9), leading to updated clinical practice

guidelines in 2019 (10, 11). While cardiac death was originally

defined in the PCE as only those related to coronary heart

disease, other types of cardiac death, such as those related to fatal

arrhythmias or heart failure, also occur and may not be captured

by the PCE (12–17) Coronary artery calcium (CAC), a marker

of atherosclerosis, is an essential predictor of coronary artery

disease, incident cardiovascular events and all-cause mortality

(18–21). CAC combined with traditional clinical risk factors in

anMLmodel, have been associated with superior risk prediction

when compared to PCE and CAC alone (22). Also, combining

CAC with traditional risk scores are better predictors of 1-year

MACE and early revascularization (23, 24). However CAC may

still not capture risk in the context of other indications such as

for arrhythmic events.

ECG features have been used to diagnose or predict

cardiovascular events. For instance, heterogeneity of R-wave and

T-wavemorphology and ST-segment elevation have been used to

diagnose ventricular arrhythmias (25, 26). ST-segment elevation

myocardial infarction (STEMI) has also been used for chronic

HF prediction (27). QRS duration and morphology including

left bundle branch block have been used for assessing ventricular

dyssynchrony and predicting heart failure (28). Similarly, QT-

prolongation and T-wave abnormalities are associated with

increased risk for arrhythmia (29) and SCD (30), respectively.

However, these individual ECG markers require manual

assessment and can thus, be prone to subjective interpretation

and variable clinical decisions. Recently, machine learning (ML)

have been employed to analyze the 12-lead, high-dimensional

ECG signal automatically, providing a more quantitative and

reproducible alternative to more subjective interpretation (31,

32). Neural networks on ECGs have been shown to outperform
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manual QTc measurements for life-threatening ventricular

arrhythmia prediction (33, 34) and also as predictive tools

for ventricular dysfunction (35, 36), coronary artery disease

(37), atrial fibrillation (38, 39), myocardial hypertrophy (40)

and ischemic heart disease (41). Although ML frameworks

on ECGs lack direct interpretability, they have been used to

detect the most relevant waves (P-wave, QRS complex or T-

wave), contributing to diagnosis of CVDs (42). Additionally,

ML frameworks have shown to detect both, clinically significant

and other subtle features that are not traditionally used by

cardiologists (42).

Given the significant value and success of ML-aided

techniques over manual assessment for cardiovascular disease

diagnosis and prediction, traditional ASCVD risk calculators

can potentially be augmented by features derived from ECG

using ML. In addition to ECG and other clinical predictors,

inclusion of CAC may improve cardiovascular risk stratification

beyond using CAC or ECG alone. This study sought to address

three objectives: (1) To evaluate the utility of ML on ECG data

(hand-crafted features) to predict MACE, (2) To evaluate the

additive benefit of ECG on CAC scores to predict MACE and

(3) To construct a nomogram with ECG and clinical variables to

assess its predictive capability of MACE. By including ECG and

CAC in a single model using a large prospective cohort (5,864

patients), a novel ASCVD-specific risk calculator is presented,

one that addresses some of the limitations associated with

the PCE.

Methods

Study design and participants

We used data from the Community Benefit of No-charge

Calcium Score Screening Program (CLARIFY, ClinicalTrials.gov

Identifier: NCT04075162), a prospective cohort study of patients

with at least one cardiovascular risk factor who underwent no-

charge coronary artery calcium scoring at University Hospitals

Health Systems (UHHS), comprising 11 hospitals and >31

health centers across Ohio. We included participants with

at least 1 cardiovascular risk factor and with a clinically

available 12 lead electrocardiogram in CLARIFYwho underwent

CAC between January 1st, 2014, to November 4th, 2020.

Cardiovascular events were identified from the electronic

medical records as part of the registry and included heart failure,

myocardial infarction, coronary revascularization, stroke, and

death. Available patient factors included CAC, age, female,

race, smoking status, body mass index, blood pressure,

serum lipids (total cholesterol, low-density lipoprotein, high-

density lipoprotein, triglycerides). The 10-year predicted risk

of atherosclerotic cardiovascular disease was calculated for

individuals with available variables using the AHA/ACC pooled

cohort equations.

ECG feature extraction

During an ECG test, each patient’s data is automatically

processed through GE MuseTM Cardiology Information System

(Milwaukee, WI, USA) using the validated GE MarquetteTM

12SLTM ECG analysis program (43). For each 12-lead ECG test,

a total of 649 ECG features (53 per lead and 13 overall) were

extracted. These features consisted of measurements such as

amplitude and interval measurements from all deflections in the

ECG waveform in each of the 12 leads (Supplementary Table 1).

These 649 features along with cardiovascular event outcomes

were extracted for all CLARIFY patients andweremade available

for subsequent analysis.

Feature selection and model
construction

For this analysis, patients in the CLARIFY trial were split

randomly into training (Str) and validation sets (Sv) using a

stratification technique to preserve the same proportion of those

who had an adverse CV event vs. those without an event during

their follow-up period. Four split sizes were implemented [Str

(1): Sv (1): 50:50, Str (2): Sv (2): 60:40, Str (3): Sv (3): 70:30,

Str (4): Sv (4): 80:20], and the results were compared across all

the subsets.

The least absolute shrinkage and selection operator (LASSO)

(44) method was used to select the most useful predictive

features from the patients in Str. The value of the tuning

parameter in the LASSO-Cox model (λ) was averaged out via

10 cross-validations to minimize error. An advantage of the

LASSO based analysis is the sparse solution associated with

it, resulting in unimportant features being assigned a weight

of 0. As a result, only the most discriminative features are

preserved using this strategy. After selecting the top features,

the corresponding LASSO coefficients were used for the eRiS

construction. eRiS was calculated for each patient via a linear

combination of selected features that were weighted by their

respective coefficients. Hence, for each patient, a new composite

ECG-risk score is added as a single feature (Figure 1).

A Cox-proportional hazards model was used to assess the

benefit of using an eRiS alone (Mecg), CAC alone (Mcac) and a

combination of eRiS and CAC (Mecg+cac) for ASCVD that is

prognostic of adverse CV disease-free survival. These models

were then further validated on Sv. Mnom was constructed by

integrating eRiS with CAC and clinical covariates (age and sex)

(Figure 1). This was developed on Str and then validated on Sv.

To validateMnom against the standard PCE based risk calculator

(1), we extracted the estimated 10-year ASCVD risk from PCE

for patients in this study. This information was available for

only 1,291 patients out of the 5,864 eligible patients analyzed in

this study.
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FIGURE 1

Overall workflow. The first step involves collecting ECG tests, manual CAC scores and clinical data from eligible patients. The ECG features are

then automatically extracted using the commercially available GE MUSE software. Top ECG features were selected using the LASSO feature

selection method and used for constructing eRiS. Mnom was constructed using clinical features and eRiS. Mecg and Mnom were validated for

prognostic performance and predicting downstream MACE events. LASSO: least absolute shrinkage and selection operator; eRiS: ECG risk

score, Mecg: Cox PH model using eRiS alone; Mnom: Nomogram with eRiS, CAC and clinical factors.

Outcomes

The primary endpoint of the study was the prognostic

performance of Mecg, Mcac, Mecg+cac and Mnom with respect

to CV risk prediction, which was measured from the date of

CAC scoring to the time of composite cardiovascular event.

Patients who were alive and did not have an event were

censored at the date of last follow-up. We validated whether

performance of Mnom was statistically better when compared

to Mecg+cac and Mecg. A second objective of our study was

to assess whether eRiS in addition to CAC score (Mecg+cac)

could provide additional benefit to CAC when predicting CV

risk. Other objectives of our study were to assess whether

Mecg and Mnom could be used to identify patient cohorts at

higher probability for developing major adverse cardiovascular

events (MACE: defined as composite of myocardial infarction,

coronary revascularization, stroke, heart failure, or death).

Statistical analysis

The risk determination of Mecg and Mcac was validated

using hazard ratios (HR) (95% CI) and Harrell’s concordance

index. Further, the fit for the combination model Mecg+cac

was evaluated against Mecg and Mcac using ANOVA. The

benefit of addition of eRiS to CAC in CV risk prediction was

evaluated using C-indices and HRs of eRiS and CAC. For

prognostic stratification, eRiS values were used to divide the

training cohort into two groups for which MACE-free survival

and HRs were calculated. The prognostic performance of Mecg

was validated using Kaplan-Meier survival analysis, log-rank

test, HR (95% CI), and Harrell’s concordance index [C index

(95% CI)]. Univariate analysis of eRiS and the clinical variables

was performed. Multivariable Cox-regression analysis was used

to investigate the relationships between the various covariates

and 2-year MACE-free survival. To assess nomogram risk

discrimination, C indices were calculated from the nomogram

for eRiS alone, CAC alone and clinical risk factors alone.

Results

Patient population

A total of 5,864 eligible patients were included in this

study. Baseline characteristics are listed in Table 1. Over a

median follow-up of 14.3 months, 73 died (1.2%), 220 had heart

failure (HF) (3.8%), 71 had myocardial infarction (MI) (1.2%),

104 had stroke (1.8%), 235 had MACE (Death/MI/Stroke),

106 had Revascularization (coronary artery bypass graft

surgery/percutaneous coronary intervention) (1.8%), and 494

had composite MACE (8.4%). CAC score distribution was

skewed to the right with 37% patients with CAC score 0, and

mean score 250 [0–9,479].
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TABLE 1 Patient baseline characteristics.

Variables

Calcium score 19.5 [0.0–217.0] (n= 5,864)*

Age 60.0 [53.0–67.0] (n= 5,864)*

Gender Female: 53% (n= 3,091)

Male: 47% (n= 2,773)

Race White: 83% (n= 4,854)

Black: 14% (n= 834)

Other: 1.6% (n= 92)

Unknown: 1.4% (n= 84)

Smoking status Non-Smokers: 61% (n= 3,592)

Smokers: 39% (n= 2,272)

Body mass index (kg/m2) 29.57 [25.9–34.2] (n= 5,533)*

Unknown: 6% (n= 331)

Systolic blood pressure (mmHg) 130 [120–142] (n= 5,567)*

Unknown: 5% (n= 297)

Diastolic blood pressure (mmHg) 80 [72–84] (n= 5,568)*

Unknown: 5% (n= 296)

High-density lipoprotein cholesterol

(HDL-C), mg/dl

50 [41–61.5] (n= 3,772)*

Unknown: 36% (n= 2,092)

Low-density lipoprotein cholesterol

(LDL-C), mg/dl

113 [88–140] (n= 3768)*

Unknown: 36% (n= 2,096)

Total cholesterol, mg/dl 193 [163–223] (n= 3,846)*

Unknown: 34% (n= 2,018)

Triglycerides, mg/dl 114 [81–165] (n= 3,744)*

Unknown: 36% (n= 2,120)

*Median [IQR].

ECG-based risk score construction

The LASSO-Cox regularization model resulted in

preservation of 89, 119, 89, and 115 features, respectively,

with 27 features being common to all across Str (1), Str

(2), Str (3) and Str (4). The selected features are listed in

Supplementary Table 2. This feature selection methodology

preserved only about 18% of the initial extracted features,

representing the highly correlated nature of the signal itself.

Cox proportional model analysis

ECG-risk score alone model (Mecg)

A Cox proportional model (Mecg) comprising of eRiS alone

predicted time-to-MACE across all data splits (C-Index: 0.6,

p = <2e-16 across all Sv): Sv (1) [HR: 2.98 (2.3–3.87)], Sv (2)

[HR: 2.26 (1.77–2.9)], Sv (3) [HR: 5.09 (4.14–6.25)], Sv (4) [HR:

2.74 (2.04–3.67)]. Association of downstream MACE events to

eRiS was visualized in Figure 2. It was observed that patients

with higher eRiS score tended to have a higher probability of a

MACE event.

FIGURE 2

ECG risk score predicts MACE events. Patients with higher ECG

risk score (eRiS) correlate with occurrence of MACE events,

demonstrating the value of considering ECG as a factor in

determining probability of a MACE event. X-axis denotes

patients arranged in ascending value of eRiS scores.

FIGURE 3

Kaplan-Meier plot for MACE-free survival according to

eRiS-based risk groups in Sv. The eRiS threshold of −0.055

showed two distinct groups of high vs. low MACE-free survival

in Sv (4).

For prognostic validation, two groups were identified in

Str using eRiS median threshold. For instance, in Str (4),

threshold was −0.055, below which patients were observed

to have low risk of MACE (and hence increased MACE-free

survival) and above which patients were observed to have high

risk of MACE (hence decreased MACE-free survival). Kaplan-

Meier for MACE-free survival were plotted to visualize patient

MACE survival over follow-up time in our validation group

(Figure 3).

CAC alone model (Mcac)

Mcac was found to be significantly associated with CV

events. (C-index 0.7, p= <2e-16).
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FIGURE 4

Receiver operating characteristic (ROC) curve for CAC only vs. eRiS+CAC shows the benefit of adding eRiS to CAC for better prediction of the

probability of a MACE event in (A). CAC+eRiS showed better performance than CAC+PCE (C-index: 0.72 vs. 0.67) for patients who had PCE

available in (B).

FIGURE 5

Precision-Recall (PR) curve for CAC only vs. eRiS+CAC shows the benefit of adding eRiS to CAC for better prediction of the probability of a

MACE event in (A) (Average F1 statistic 0.20 vs. 0.21. PR AUC: 0.68 vs. 0.71). (B) CAC+eRiS showed better performance than CAC+PCE for

patients who had PCE available (Average F1 statistic 0.28 vs. 0.30. PR AUC: 0.68 vs. 0.71).

ERiS ± CAC model (Mecg±cac)

Mecg+cac was significantly associated with cardiovascular

events (C-index: 0.65, p = <2e-16). Model comparison using

ANOVA showed that Mecg+cac performed in a manner that

was statistically superior when compared to Mcac (p < 2.2e-

16) (Figures 4A, 5A). M ecg+cac also performed better in

comparison to MCAC+PCE (p < 2.2e-16) (Figures 4B, 5B).

Additionally, the adjustment of CAC to eRiS score did not

attenuate HR for eRiS. Figure 6 shows this for Sv (4). Similar

results were seen for other splits.

Mecg+cac was used to divide the population into 4 groups:

(1) eRiS<median and CAC=0; (2) eRiS<median and CAC>0;

(3) eRiS> median and CAC=0; (4) eRiS> median and CAC>0

(Figures 6, 7). As seen in the figure, worst prognosis was seen

in the group with higher eRiS and CAC score, showing the

additive benefit of ECG to CAC for MACE survival prediction.

Similar groupings were seen when eRiS alone was used to

divide Str into 4 groups, although higher HRs were observed

between high and low risk patients with the eRiS+CAC model.

These observations were validation on the held-out validation

datasets (Sv).

We also evaluated reclassification index into high vs. low risk

based of eRiS and CAC scores. We considered a threshold of

−0.055 (eRiS median threshold in training data) for ECG and
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FIGURE 6

Additive benefit of eRiS to CAC: Hazard ratio is not attenuated

when eRiS is adjusted by CAC score, indicating a strong

relationship with MACE which is not weakened by the addition

of CAC. Similar results were seen with other splits.

400 for CAC for this analysis. In Sv (4), 41% of patients with

CAC score of 0 were reclassified as high risk by ECG. Further,

38% of patients with CAC>400 were reclassified as low risk

by ECG.

ECG, CAC and clinical factors nomogram
(Mnom)

The calibration curve for the nomogram showed

agreement between predicted survival and actual

survival, and the C index for Mnom was 0.76. As

shown in Figure 8, the ECG risk score had the most

significant contribution, followed by CAC score and other

clinical variables.

Mnom was also used to divide the population into

high, medium and low risk groups using thresholds of 20

and 60% MACE free survival. As illustrated in Figure 9,

Mnom predictions resulted in high and low risk groups.

The two groups were significantly different in terms of

their survival

ECG risk score-based nomogram vs. PCE for
MACE survival prediction

Mnom was found to be statistically superior in terms of

prognosis, to MPCE across all Sv (C-index: 0.71 vs. 0.68;

p < 0.001).

Discussion

Current ACC/AHA guidelines for atherosclerotic

cardiovascular disease (ASCVD) risk assessment involves

incorporation of traditional risk factors but does not include

additional dimensions of risk that may be conveyed through

other modalities such as coronary artery calcium (CAC)

and electrocardiography (ECG). Improving prediction of

major adverse cardiovascular events (MACE) risk can help

identify at risk patients who may benefit from treatment

interventions. Conversely, identification of patients who are

at low risk of MACE, might help prevent the potentially

harmful impact of unnecessary treatments. In this study,

we developed and validated a novel ECG and CAC-based

nomogram, that was not only associated with likelihood

of MACE but, improved cardiovascular risk stratification

when compared to the frequently used PCE for ASCV risk

estimation calculator.

CT-based coronary artery calcium scoring has shown to be

the single best predictor of CHD and CVD and is currently

endorsed by clinical practice guidelines in select populations

(21, 45, 46). CAC scoring, however, has modest discrimination

for total CVD events (e.g., inclusive of heart failure event and

arrhythmic events), which is becoming an important composite

outcome. Additionally, CAC does not involve electrophysiologic

parameters present in ECG (e.g., QRS width, q-waves, AV block)

that can be markers of CV risk. Therefore, one of the main

objectives of this study was to combine both electrophysiological

and CT-based diagnostic information to improve CV risk

prediction and prognosis when compared to either using ECG

or CAC alone.

Previous studies have assessed associations of ECG with

CAC in certain cardiac conditions. For instance, one study

noted CAC scores being higher with ECG abnormalities as

compared to those with normal ECGs and an elevated CAC

burden with myocardial disease (47). In another study, QT

interval duration significantly correlated with CAC in diabetic

patients (48). Further, presence of both CAC and abnormal ECG

has been associated with the highest rate of coronary events (49).

Our study differs from these works in that we employed ML on

a standard 12-lead ECG to automatically select relevant features

and use these features to construct a risk score which was then

tested for additive prognostic ability with CAC. Our ECG-CAC

model was significantly associated with cardiovascular events

in our dataset comprising of 5,864 patients. Additionally, our

ECG-CAC model performed in a manner that was statistically

superior compared to ECG or CAC alone or CAC-PCE, thus

demonstrating the value of combining ECG and CAC forMACE

prediction. We also demonstrated the risk reclassification by

incorporating both ECG and CAC into MACE prediction. For

patients with CAC score of 0, a higher risk predicted by ECG

features may help guide clinical decision-making toward statin

prescription recommendations.

A dedicated nomogram was developed demonstrating the

relative contribution of ECG, CAC with traditional clinical

factors for CV risk prediction. As seen in the nomogram, ECG

risk score, which is currently not included in routine clinical

practice for ASCVD risk prediction, was the most significant

contributor to risk prediction. When tested against PCE for
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FIGURE 7

Kaplan-Meier plot for MACE-free survival according to eRiS+CAC and eRiS only risk groups in Sv (4). (A) The eRiS+CAC threshold showed worse

prognosis for patients with high eRiS combined with high CAC score. HR between high and low risk: 6.72 [4.42–10.22]. (B) Similar observation

seen in eRiS based segregation. HR between high and low risk: 5.22 [2.54–10.75].

FIGURE 8

ECG Nomogram (Mnom) demonstrates relative contribution of each covariate in MACE prediction. ECG risk score has the most significant

contribution, followed by CAC score and other clinical variables.

patients with this information, our nomogram performed at a

level that was statistically superior to PCE. This suggests that

incorporation of anatomic imaging (CAC), physiologic data

(ECG) and clinical variables is superior to employing each

stream of data independently. Our nomogram was also used

to assess high vs. low risk patients based on their ECG risk

scores and clinical variables. Patients in the low-risk group had

higher survival rates compared to the high-risk patients. These

findings appear to suggest that our novel tool, when deployed

in the clinic, could be used for triaging patients far superior to

PCE. ECG signals are routinely used as part of CAC imaging for

image gating and thus are routinely available. A fully automated

platform incorporating ECG, CAC and clinical variables can be

envisioned for accurate risk prediction.

Much prior work around developing an ECG risk score

has been based on using specific leads or ECG waveforms to

predict CV risk/events (50). One study, for instance, used P-wave

variables to stratify patients into 3 risk groups (51). Manually

annotated features from ECG reports have been used to calculate

an ECG risk score, associated with sudden cardiac death and

risk stratification (52). ECG risk equation based on age, sex, QT

interval, heart rate, and T axis was shown to be comparable to

the Framingham risk score and yielded significant improvement

in risk classification (53). Although ECG based risk scores have
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FIGURE 9

Kaplan-Meier plot for MACE-free survival according to Mnom risk

groups for Sv (4) [C-index 0.6 (se = 0.023]). HR between high

and low risk: 3.24 [1.02–10.30].

been proposed in the past, most of these were not employed in a

way to take advantage of the entire 12-lead signal. Additionally,

to our knowledge, no study has tested the impact of ECG-based

risk score in conjunction with CAC scoring to predict MACE.

Due to the high-dimensional electrophysiological

information captured in a single 12-lead ECG test,

previous studies have utilized sophisticated ML techniques,

including deep learning (DL) to automatically diagnose and

predict various cardiovascular outcomes (54). For instance,

convolutional neural networks (CNN) on ECGs have identified

patients with atrial fibrillation with high accuracy (39). DL

models have also been developed to automatically interpret ECG

abnormality types (55). Similarly, DL algorithms on routine

12-lead ECGs have been used to detect low ejection fraction

(36), arrhythmia detection (56), aortic stenosis (57), atrial

fibrillation (58), heart failure (59) and even all-cause mortality

(60). Additionally, wavelets have also been used to extract

features from ECGs for LV diastolic dysfunction detection using

ML models (61). Also, unsupervised ML of ECG have been used

to stratify which CRT candidates may have better response to

resynchronization therapy beyond using QRS duration and left

bundle branch block (62). However, all prior studies have relied

upon DL methodologies employing neural networks or ML

models. While these approaches are powerful and do not require

domain level expertise to employ, the abstract nature of DL

transformations often preclude any clear, clinically meaningful

explanation of the features that drive the model predictions.

Recognizing that adoption of automated signal analysis

platforms into clinical practice will require not only convincing

statistical demonstrations but also clear, transparent, and

biologically inspired methods, we chose to employ a “hand-

crafted” feature-engineering approach in this work. This

approach relied on using clinically validated ECG features

automatically extracted from the GE MuseTM Cardiology

Information System. Our risk score comprised of ECG features

selected from a standard 12-lead ECG using ML to preserve

the most important features. A major advantage of our score

is the fact that no manual annotation is required to define the

ECG features. As seen in this study, the ML derived ECG risk

score was able to improve stratification of high-risk ASCVD

patients, thus potentially helping physicians with identification

of such patients. Another strength of this study was the relatively

large sample size, and the inclusion of the CAC score, which is

arguably considered the best marker of MACE risk.

This study did have its limitations. First, the ECG features

used here were those that were automatically extracted

from the GE MUSE system. Although this widely available

clinical software has been validated with manual annotations,

disadvantages might include inability to capture other subtle

features in the ECG waveform beyond what is offered from

the system. Second, the patient datasets used in this study

consisted only of those who were part of the UH health system

and are subject to referral bias. Although ECG, ECG-CAC and

the subsequent nomogram showed consistent performance with

respect to predicting patients with MACE, this tool needs to

be validated prospectively in an external cohort with a diverse

population in a multi-institution setting. In this current study,

we were unable to compare to theMESA 10 -year CHD risk with

CAC model, which may be current standard of care for many

clinicians when making decisions from CAC scores. This will

be considered in future analyses. Third, effects of treatment, if

any, has not been considered in this study. Future studies could

be directed toward adding more treatment-related variables into

the nomogram, thus capturing the heterogeneity in the ASCVD

prediction effects. As shown in this study, CAC score along with

the ECG provided an additive benefit in ASCVD risk prediction.

This suggests that assessing features from the CAC score itself

such as CT radiomics features (63) with ECG omics, might

provide even better risk stratification.

Conclusion

We developed and validated an ECG risk score-based

model, ECG incorporated with CAC and a novel nomogram,

with ECG, CAC and clinical factors. These models were

implemented on various training-validation dataset sizes and

the ECG features extracted were overall consistent. The

nomogram identified high vs. low risk patients for downstream

MACE with high separability. Following prospective multi-

site validation, the ECG score could be incorporated in the

electronic medical systems of patients which would enable

personalization of treatment regimens with the addition of

ECG based information. Specifically, it could be employed as a

clinical decision tool to enable triaging patients based on ECG,

CAC and the patient-specific clinical factors. Future testing

is needed to evaluate how clinical CVD outcomes may be

affected by incorporating this risk estimation tool into primary

prevention efforts.
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