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Cardiac magnetic resonance
imaging in patients with left
bundle branch block: Patterns
of dyssynchrony and
implications for late gadolinium
enhancement imaging
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Thomas Elgeti† and Lars-Arne Schaafs†

Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany

Background: Left bundle branch block (LBBB) is a ventricular conduction

delay with high prevalence. Aim of our study is to identify possible recurring

patterns of artefacts in late gadolinium enhancement (LGE) imaging in patients

with LBBB who undergo cardiac magnetic resonance imaging (MRI) and to

define parameters of mechanical dyssynchrony associated with artefacts in

LGE images.

Materials and methods: Fifty-five patients with LBBB and 62 controls were

retrospectively included. Inversion time (TI) scout and LGE images were

reviewed for artefacts. Dyssynchrony was identified using cardiac MRI by

determining left ventricular systolic dyssynchrony indices (global, septal

segments, and free wall segments) derived from strain analysis and features

of mechanical dyssynchrony (apical rocking and septal flash).

Results: Thirty-seven patients (67%) with LBBB exhibited inhomogeneous

myocardial nulling in TI scout images. Among them 25 (68%) patients also

showed recurring artefact patterns in the septum or free wall on LGE images

and artefacts also persisted in 18 (72%) of those cases when utilising phase

sensitive inversion recovery. Only the systolic dyssynchrony index of septal

segments allowed differentiation of patient subgroups (artefact/no artefact)

and healthy controls (given as median, median ± interquartile range); LBBB

with artefact: 10.44% (0.44–20.44%); LBBB without artefact: 6.82% (-2.18–

15.83%); controls: 4.38% (1.38–7.38%); p < 0.05 with an area under the curve

of 0.863 (81% sensitivity, 89% specificity). Septal flash and apical rocking were

more frequent in the LBBB with artefact group than in the LBBB without

artefact group (70 and 62% versus 33 and 17%; p < 0.05).
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Conclusion: Patients with LBBB show recurring artefact patterns in LGE

imaging. Use of strain analysis and evaluation of mechanical dyssynchrony

may predict the occurrence of such artefacts already during the examination

and counteract misinterpretation.

KEYWORDS

cardiac MRI, left bundle branch block (LBBB), strain analysis, artefacts, late
gadolinium enhancement (LGE)

Introduction

A left bundle branch block (LBBB) occurs when conduction
through the left bundle branches is slowed down or completely
absent, resulting in delayed depolarization of the left ventricular
(LV) myocardium (1). There are many underlying causes, and
LBBB is rather common with a prevalence that increases with
age (2, 3). Patients with LBBB have an increased risk of suffering
from a major cardiovascular event, and even in asymptomatic
patients LBBB is likely to be associated with adverse myocardial
remodelling (4, 5). Patients with LBBB may benefit from cardiac
resynchronization therapy (CRT); however, the response to CRT
depends in part on the degree of mechanical dyssynchrony
and the extent of any underlying structural heart disease
(6). For this reason, cardiac magnetic resonance imaging
(MRI) with late gadolinium enhancement (LGE) imaging is
becoming increasingly important in treatment planning and risk
stratification of patients with LBBB since it allows diagnostic
assessment of cardiac function, mechanical dyssynchrony, the
extent of scar tissue and characterization of ischemic and
non-ischemic cardiomyopathy in a single examination (7–
9). LGE might also be an additional risk stratifier for the
choice of therapy and implantation of defibrillation devices
(7, 10). Delayed excitation leads to characteristic abnormalities
of the cardiac cycle in up to 80% of affected patients. Such
abnormalities include septal flash (the rapid deflection of the
septum toward the free left ventricular wall at the onset of
systole) and apical rocking (rocking movement of the apex
due to dyssynchronous contraction of the left ventricle) and
can be detected by cinematographic (CINE) imaging (11, 12).
Additional MRI strain analysis may be helpful to quantify
regional wall motion abnormalities. Strain parameters, such
as the systolic dyssynchrony index (SDI), have been proposed
to describe the dyssynchronous excitation of the LV in LBBB
with regard to changes in global LV function parameters such
as ejection fraction and ventricular volumes (13–17). Thus,
when planning treatment of patients with LBBB using cardiac

Abbreviations: GRE, gradient echo; LBBB, left bundle branch block; LGE,
late gadolinium enhancement; LV, left ventricular/left ventricle; PSIR,
phase sensitive inversion recovery; SDI, systolic dyssynchrony index;
SSFP, steady-state free precession.

MRI, it is of particular importance for accurately estimating
dyssynchrony and the amount of scar tissue that LGE images
are not degraded by artefacts. While it is well established
that arrhythmia in general or a delay in conduction is a
challenge for cardiac MRI due to the risk of trigger artefacts
or inappropriate myocardial nulling during LGE imaging, little
is known about the specific influence of an LBBB on image
properties (18). Therefore, the aim of the present study is
twofold: first, to identify and describe patterns of artefacts that
might occur in cardiac MRI of patients with LBBB compared
to a healthy control group. Second, to define strain parameters
or mechanical features that are associated with the occurrence
of such artefacts.

Materials and methods

Study population

In this internal review board (IRB)-approved study
(application number: EA4/192/21), we retrospectively screened
all cardiac MRI examinations performed by our centre from
2015 to 2021 for patients with a LBBB, left anterior hemiblock
or left posterior hemiblock in an ECG obtained during the
period of hospitalisation in which the cardiac MRI examination
was performed. A waiver for informed consent was granted
by IRB due to the retrospective design of the study. Patients
were included in further analysis based on the 2021 European
Society of Cardiology criteria, i.e., when the reference ECG
showed a widened Q wave, R wave, S wave (QRS) complex
of > 120 ms and any other ECG characteristics of an LBBB
(3). At the time of image acquisition, all patients were in sinus
rhythm. For the purpose of comparison, a control group of
patients who were referred for cardiac MRI due to non-specific
thoracic symptoms was formed, in which both the cardiac MRI
and the further cardiac diagnostic work-up showed no evidence
of any pathological cardiac or cardiovascular findings and in
which the reference ECG showed no signs of a conduction delay.
Common inclusion criteria for patients and healthy controls
were: age of 18 or older and a complete cardiac MRI dataset
including CINE and LGE imaging in long and short axes.
Clinical information such as cardiovascular risk factors and
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pre-existing cardiovascular conditions were extracted from the
patients’ records.

Cardiac magnetic resonance imaging

Cardiac MRI was performed either on a 1.5T or a 3T
MRI system (Magnetom Aera or Magnetom Skyra, Siemens
Healthineers, Erlangen, Germany). Acquisition of localizers
was followed by retrospectively gated 2D steady-state free
precession (SSFP) pulse sequences in double-angulated long-
axis (2, 3, 4-chamber) and contiguous short-axis slices from
the level of the annulus of the mitral valve to the LV apex
(typical parameters: TR 39 ms, TE 1.2 ms, flip angle 69◦, FOV
360 mm × 292 mm, matrix 192 × 125). Slice thickness was
5 mm for long-axis acquisition and 8 with 2 mm interslice gap
for short-axis acquisition. Reconstructed temporal resolution
was 35–44 ms. Late gadolinium enhanced images in long-
axis (2, 3, 4-chamber) and short-axis views covering the
whole LV were acquired 10–12 min after administration of
0.15 mmol/kg gadobutrol (Gadovist, Bayer AG, Leverkusen,
Germany) using an inversion-recovery-prepared T1-weighted
gradient echo sequence with a manually adjusted inversion
time (TI) based on the TI scout as well as a parallel utilised
phase-sensitive inversion-recovery (PSIR)-based reconstruction
algorithm (typical parameters: TR 920 ms, TE 3.3 ms, TI 270 ms,
flip angle 25◦, FOV 360 mm × 292 mm, matrix 256 × 156
pixel spacing 1.45 mm × 1.45 mm, slice thickness 8, 2 mm
interslice gap).

Image analysis

Cardiac MRI datasets were evaluated by two board-certified
radiologists with eight (∗blinded∗) and over fifteen (∗blinded∗)
years of experience. For allocation of abnormalities and strain
analysis, the LV was divided into segments based on the
17-segment model of the American Heart Association (19).
CINE images of all included datasets were screened for signs
of mechanical dyssynchrony, and the presence of a septal
flash or apical rocking was noted. The TI scout and LGE
images were evaluated by both readers in consensus with
regard to inhomogeneous myocardial nulling and presence of
LGE. The suppression of myocardium in the TI scout was
defined as inhomogeneous if there was nulling but not of the
entire myocardium at a single inversion time. An abnormality
(i.e., inhomogeneous myocardial suppression) identified on
LGE images was defined as an artefact only if it could
not be reproduced in an intersecting second plane and if
the distribution and extent were not consistent with typical
characteristics of (non-)ischaemic LGE or if there were no
matching features in other sequences (e.g., thinning or reduced
kinetics of the myocardium in SSFP images) and also no

interference from any other typical artefacts such as breathing
or motion artefacts (20). True myocardial LGE was assessed
in terms of its distribution and affected segments while both
readers were blinded to the initial report.

Strain analysis

Semi-automatic analysis of circumferential strain was
performed using cvi42 R© [Release 5.13.5 (2190), Circle
Cardiovascular Imaging, Alberta, Canada]. The endocardial
and epicardial contours were automatically registered by the
software on short-axis CINE images covering the left ventricle.
All contours were checked by two experienced readers.
Whenever manual correction of the contours was necessary,
it was performed by consensus by the readers. The global SDI
(SDIglobal), defined as the standard deviation of the segmental
time to maximum strain for segments 1–16 normalised to
the length of the cardiac cycle and given in time percentage,
was used to determine the severity of LV dyssynchrony and to
correlate dyssynchrony with the frequency of artefacts identified
in LGE imaging (21).

To further account for LV dyssynchrony due to delayed
free wall contraction and associated septal deformation due
to stretching in early systole, we investigated two additional
new SDI:

(1) Septal SDI (SDIseptal): defined as the standard deviation of
the segmental time to maximum strain for segments 2, 3, 8,
9, and 14 normalised to the length of the cardiac cycle and
given in time percentage.

(2) Free wall SDI (SDIfreewall): defined as the standard deviation
of the segmental time to maximum strain for segments 5, 6,
11, 12, and 16 normalised to the length of the cardiac cycle
and given in time percentage.

The time required for strain analysis was less than 5 min and
did not differ between patients and controls.

Statistical analysis

For statistical analysis, three subgroups were defined: (1)
patients with no inhomogeneous suppression on TI scout
and no LGE imaging artefacts (LBBBno artefact), (2) patients
with inhomogeneous suppression on TI scout and/or LGE
imaging artefacts (LBBBartefact), and (3) healthy controls.
Demographic data, QRS width, left ventricular function
parameters and systolic dyssynchrony indices were tested
for normal distribution within each subgroup (LBBB with
and without inhomogeneous or incomplete suppression of
the myocardium, controls) using the Shapiro–Wilk test,
homogeneity of variances was asserted using Levene’s Test.
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In case of normal distribution of parameters, a one-way
ANOVA was conducted, and Tukey’s or Games-Howell test was
performed as a post hoc test depending on whether a variance
equality could be assumed or not. If normal distribution
could not be assumed for subgroups, non-parametric testing
was performed with the Kruskal–Wallis test and Dunn’s test
was performed as a post hoc test. Multiple comparisons were
corrected for using the Bonferroni-Holm method. Systolic
dyssynchrony indices in patients with LGE were compared
using a t-test. If a significant difference was found between
the subgroups, a receiver operating characteristic (ROC) curve
analysis was performed to measure the diagnostic ability of
the respective strain index. The optimal cut-off for separating
LBBBartefact and LBBBno artefact was determined using the
Youden index. A χ2-test for association was conducted
between LBBBartefact and LBBBno artefact and occurence of apical
rocking and septal flash. A p-value < 0.05 was considered
statistically significant. Descriptive statistics are given as median
(median ± interquartile range). SPSS 27 for Windows (IBM
Corporation, Armonk, USA) was used for statistical analysis.

Results

Demographics and clinical patient
characteristics

A total of 55 patients (18 female) with LBBB and 62 (27
female) controls were included. The median age of patients
with LBBB was 57 years (34–80) whereas the median age of
controls was 28 years (18–38). A summary of demographic
and clinical data as well as global left ventricular function
parameters, separately for patients and controls, can be found
in Table 1. Although not statistically significant (p = 0.24), the
median duration of the QRS complex was longer in LBBBartefact
(154 ms, 113–195 ms) than in LBBBno artefact (139 ms, 108–
171 ms), median duration of the QRS complex in controls was
88 ms (80–96 ms) Regarding global left ventricular function,
LVEF was significantly lowered in LBBBartefact when compared
to LBBBno artefact and controls (each p < 0.05). Concomitantly,
LVEDV and LVESV were significantly higher in LBBBartefact
when compared to both other groups (each p < 0.05).

Inversion time scout and late
gadolinium enhancement imaging

In 37 of 55 patients with LBBB (67%), there was no
homogeneous nulling of the left ventricular myocardium in
the TI scout (Figure 1). In these cases, a signal discrepancy
between the septum and LV free wall was evident, resulting
in a C-shaped suppression of the septum and anterior wall
while large portions of the lateral and inferior wall were not

nulled at this specific TI. The choice of a different TI in
the scout also allowed nulling of the remaining myocardium
with a signal difference consistently being visible between the
aforementioned C-shape and the remaining segments. Artefacts
on LGE images resulting in inhomogeneous myocardial
suppression were identified in 25 of 55 patients (45%), all of
whom also had inhomogeneous nulling in TI scout. Artefacts
on LGE images were found either in the septal segments (17
of 25 patients, 68%) or in the segments of the LV free wall
(8 of 25 patients, 32%). LGE artefacts resulted in areas with a
patchy or amorphous signal increase within the myocardium
that could not be assigned to a specific layer (subepicardial,
intramyocardial, or subendocardial) or a coronary territory.
Review of slices perpendicular to the affected image slice and
of supplemental sequences identified no correlate in any of the
25 cases and therefore there were no cases where an artefact
was present in both intersecting planes. Median inversion
time was 273 ms (231–316 ms) for slices with evidence of
artefacts. In 18 of those 25 (72%) cases artefacts persisted
when utilising PSIR. Inhomogeneous myocardial nulling on
the TI scout alone with no artefacts on consecutive LGE
images was found in 12 of 55 patients (21%). Examples of
LGE artefacts are shown in Figure 2. In the control group,
no inhomogeneous myocardial nulling was found on the
TI scout, and no comparable artefacts were identified on
LGE images.

Analysis of mechanical dyssynchrony

A summary of strain analysis and additional parameters of
mechanical dyssynchrony is given in Table 1. Solely SDIseptal
was able to differentiate between all three subgroups regarding
the extent of left ventricular dyssynchrony (Figure 3). SDIseptal
was highest in LBBBartefact (10.44%, 0.44–20.44%), followed by
LBBBno artefact (6.82%, -2.18–15.82%) and controls (4.38%, 1.38–
7.38%) (each p< 0.05). SDIglobal was highest among LBBBartefact
with 10.16% (2.16–18.16%). SDIglobal was generally able to
differentiate between patients and controls (each p < 0.05), but
could not distinguish between LBBBartefact and LBBBno artefact
and therefore could not estimate the occurrence of artefacts
in LGE imaging. SDIfreewall was highest among LBBBno artefact
with 4.67% (1.67–7.67%), but could not distinguish between
the different groups. Regarding the occurrence of artefacts,
ROC analysis revealed an area under the curve of 0.863 for
SDIseptal with an optimal cut-off value of 7.36% (81% sensitivity,
89% specificity). Furthermore, SDIseptal was able to distinguish
between LBBBartefact and LBBBno artefact in patients with LGE
(p < 0,05), whereas SDIglobal and SDIfreewall were not able
to differentiate between these subgroups if LGE was present.
All dyssynchrony indices did not significantly differ between
patients with LBBB and LGE and patients with LBBB without
LGE (p = 0.077–0.993). Septal flash and apical rocking occurred
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TABLE 1 Demographics, clinical characteristics, and summary of imaging-based parameters.

LBBBartefact LBBBno artefact Controls

n 37 18 62

Age (years) 60 (43–76)# 54 (19–89)# 27 (15–39)

Male (n) 22 (59%) 15 (83%) 35 (56%)

Clinical characteristics

Coronary heart disease 12# 8# 0

Non-ischemic cardiomyopathy 13*# 1 0

Hypertension 17# 7# 8

Smoking 9 1 11

Dyslipidaemia 7 6# 5

Obesity 7 1 6

Diabetes mellitus 7# 2# 0

QRS width (ms) 154 (113–195)# 139 (108–171)# 88 (80–96)

Left ventricular function parameters

Heart rate (bpm) 71 (55–87) 66 (41–92) 72 (56–88)

LVEDV (ml) 235 (145–325)*# 180 (114–246) 133 (80–186)

LVESV (ml) 150 (46–254)*# 75 (27–123) 46 (21–71)

LVSV (ml) 90 (36–144) 107 (52–162) 89 (55–123)

LVEF (%) 37 (7–67)*# 59 (31–87) 67 (60–74)

LV myocardial mass (g/m2) 77 (41–113)# 66 (52–80)# 58 (47–69)

LGE all 15 (41%) 8 (44%) 0

LGE ischemic 10 (27%) 7 (39%) 0

LGE non-ischemic 5 (14%) 1 (6%) 0

Dyssynchrony analysis

SDIglobal (segments 1–16) 10.16% (2.16–18.16%)# 7.2% (1.2–13.2%)# 4.57% (2.57–6.57%)

SDIseptal (segments 2, 3, 8, 9, 14) 10.44% (0.44–20.44%)*# 6.82% (-2.18–15.82%)# 4.38% (1.38–7.38%)

SDIfreewall (segments 5, 6, 11, 12, 16) 3.65% (-0.35–7.65%) 4.67% (1.67–7.67%) 3.45% (1.45–5.45%)

Septal flash 23 (62%)* 6 (33%) 0

Apical rocking 26 (70%)* 3 (17%) 0

Overview of demographics, clinical characteristics and imaging-based parameters of patients (LBBBartefact /LBBBno artefact) and controls.
The upper part of the table shows demographics, clinical characteristics, left ventricular function parameters and LGE pattern (ischemic/non-ischemic) for both groups of LBBB and
healthy controls. Results for analysis of mechanical dyssynchrony based on strain analysis and qualitative analysis of CINE images are shown in the lower part of the table.
Values are presented as median (median ± interquartile range), *p < 0.05 vs. LBBBno artefact , #p < 0.05 vs. controls.

more often in LBBBartefact with 70 and 62%, respectively, versus
33 and 17% for LBBBno artefact (each p < 0.05). None of the
controls showed these features of dyssynchrony. There was no
significant difference between patients with LBBB and LGE and
patients with LBBB without LGE in terms of occurrence of septal
flash and apical rocking (p = 0.37 respectively p = 0.944).

Discussion

The results of our study show that artefacts are common
in LGE imaging of patients with LBBB and exhibit recurring
patterns. While artefacts in TI scout and LGE images
may be identified as such by trained observers, they are
potential sources of error in clinical routine when imaging
findings are reported by possibly less experienced readers,
and this may have an impact on further treatment planning

especially when the extent of scar tissue is then overestimated
(22, 23).

Cardiac MRI is generally prone to artefacts due to motion,
breathing and arrhythmia. In LGE imaging data acquisition
is usually timed to diastole, with the heart exhibiting less
motion, resulting in a homogenous nulling of the myocardium.
There are two possible mechanisms that may lead to artefacts
when patients with LBBB are imaged with an inversion pulse-
prepared, segmented gradient echo (GRE) sequence (24, 25).
First, inversion pulse preparation relies on the synchronisation
of cardiac phases between the time of application of the
inversion pulse and the time of read-out. However, because
the septum and LV free wall are in slightly different phases
of the cardiac cycle in patients with LBBB, it is likely that
portions of the myocardium are not uniformly covered by the
inversion pulse and thus are unevenly nulled during the read-
out. Second, k-space sampling may be compromised in that the
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FIGURE 1

Findings on TI scout images. Artefact-free TI scout (A) in a healthy control. Images (B,C) show different degrees of inhomogeneous myocardial
nulling in patients with LBBB, resulting in a pronounced, C-shaped nulling of the septal and anterior wall segments. Review of supplemental
sequences revealed no morphologic correlate in any of the cases shown.

FIGURE 2

Findings on LGE images. Artefact-free images of a healthy control (A). Columns (B,C) show examples of artefacts in patients with LBBB each
resulting in an amorphous signal increase within the myocardium (white arrow heads) without a correlate in an intersecting plane. Examples of
true LGE (white arrows) in patients with LBBB are shown in columns (D,E). Here, both planes show an intramyocardial (septum) and
subendocardial (free wall) signal increase (D) respectively a typical subepicardial signal increase (E). The red dashed lines depict the respective
intersection of both planes shown.

septum may be in different positions between the acquisition
of different k-space segments despite sufficient ECG triggering.
Established techniques to reduce artefacts in LGE imaging due
to cardiac motion are the reduction of the FOV in the phase-
encoding direction or, more commonly found, the use of single-
shot inversion recovery balanced SSFP, single-shot spoiled GRE
sequences and phase sensitive inversion recovery sequences (18,
26, 27). Further ways to reduce motion-induced artefacts have
been proposed based on image acquisition during end-systole,
and this may also be a possible approach in patients with

LBBB given that in 72% of the cases in our collective artefact
reduction using PSIR was unsuccessful (28, 29). Before utilising
single-shot sequences with a generally lower spatial resolution
or technically more complex systolic acquisition schemes, it
seems desirable to determine the need for the use of such
techniques early in the examination and before contrast medium
is administered. Patients with LBBB show typical patterns
of mechanical dyssynchrony and can therefore be identified
early during the MR examination during the assessment of
global function (11, 30, 31). A significantly higher proportion
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FIGURE 3

Comparison of systolic dyssynchrony indices. Comparison of SDIglobal, SDIseptal, and SDIfreewall between all three subgroups. An asterisk (∗)
indicates a statistically significant difference (p < 0.05).

of patients in LBBBartefact exhibited apical rocking and septal
flash than in LBBBno artefact , suggesting that the risk for the
occurrence of artefacts can be assessed already based on these
two characteristics. However, a segmental and therefore more
precise analysis of the extent of mechanical dyssynchrony can
be achieved using strain analysis. Rutz et al. reported that a
circumferential SDI (analogous to SDIglobal in the present study)
was highest among patients with LBBB and identified most
severe dyssynchrony compared to controls and patients with
myocardial infarction (13). While this agrees with our results,
SDIglobal did not differentiate between LBBBartefact and LBBBno

artefact . However, the newly investigated parameter SDIseptal
showed a significant difference between these two subgroups
and thus allowed differentiation. A possible explanation is that
septal movement in patients with LBBB has both active and
passive components, and delayed contraction of the LV free
wall thus has a more marked effect on the apical segments
of the septum than on its basal segments (32, 33). The data
of the present study suggest that qualitative assessment of
dyssynchrony (i.e., “septal flash” and “apical rocking”) already
during CINE imaging can help to identify “patients at risk” while
strain analysis with SDIseptal could further assist in identifying
those patients prone to artefacts, the latter also with respect to
the comparatively short computing time and a sufficiently good
inter-study reproducibility (21). Consideration must be given

to the fact that strain analysis by MRI is not widely used in
institutions. Therefore, it can be assumed, based on the data of
this work, that already the analysis of the TI scout and detection
of septal dyskinesia on CINE images are an alternative guide in
the evaluation of possible artefacts in LGE imaging.

To the best of our knowledge, this is the first study that
has systematically analysed the occurrence of specific artefacts
in this relatively common form of conduction delay. However,
despite the potential utility of our results for routine clinical
practice, some limitations need to be considered. First, due to
the retrospective design of the study, it was not possible to
form different subgroups (LBBB in ischemic or non-ischemic
heart disease, LBBB of other aetiology) with sufficiently large
numbers of patients for a more differentiated analysis of
possible factors influencing dyssynchrony. Comparable studies
included groups of 20–43 patients (1, 11, 14, 34). Secondly,
and also due to the retrospective design, alternative MRI pulse
sequence techniques such as single-shot inversion recovery
balanced SSFP or single-shot spoiled GRE sequences could not
be evaluated regarding their potential for artefact avoidance.
Lastly, the patients in the control group, which was formed
for the purpose of analysing occurrence of artefacts in
uncompromised conduction, were not age- and sex-matched,
hence any differences in global systolic function may also be due
to age- or sex- differences alone.
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Conclusion

Patients with LBBB show recurring artefact patterns on
cardiac MRI in both TI scout and LGE images, which may
compromise the quality of cardiac MRI but also of subsequent
reporting if readers are not familiar with these artefacts.
The qualitative and quantitative analysis of left ventricular
dyssynchrony may assist estimate the occurrence of such
artefacts already during the MR examination and may help
avoid misinterpretation.
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SUPPLEMENTARY MATERIAL 1

Four-chamber steady-state free precession CINE images of a patient
with LBBB. Typical features of dyssynchronous contraction in LBBB are
evident: (1) rapid movement of the interventricular septum during early
systole (“septal flash”) and (2) movement of the apex toward the
interventricular septum during early systole and backward movement of
the apex toward the free wall during the ejection phase
(“apical rocking”).
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