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Editorial on the Research Topic

Insights in cardiovascular therapeutics: 2021

Introduction

With the effort and support of the authors, editorial office, and editorial team, the

Frontiers in Cardiovascular Medicine, Cardiovascular Therapeutics Section-Research

Topic “Insights in Cardiovascular Therapeutics: 2021” has achieved great success and

is attracting interest from the cardiovascular community. Here, we spotlight 12 studies

published in our section that related to cell death and cardiovascular injuries, as well

as some recent advances in the field that have tremendous potential in cardiovascular

therapy. In addition, these highlights may serve as the foundation for some new

developments in our Cardiovascular Therapeutics areas. In 2022, we will keep working

to create a fantastic platform for cardiologists, translational cardiovascular scientists,

and cardiovascular pharmacological scientists to share new results and data in clinical

cardiology and translational cardiovascular therapeutics.

Cell death and heart diseases

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality

worldwide. An estimated 17.9 million people live with CVDs each year with no effective

cures (1). Therefore, studying the pathogenesis of heart diseases and identifying potential

therapies are critical. Programmed cell death is an essential but generally detrimental
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process in CVD development. Cardiomyocytes are terminally

differentiated, have a limited division capacity, and serve vital

functions. The death of cardiomyocytes affects hearts’ ability

to contract and causes adverse remodeling, and eventually lead

to cardiac dysfunction and heart failure.Hence, cell death that

leads to the loss of cardiomyocytes is a significant phase in the

pathogenesis of cardiac diseases. Therefore, strongly suggesting

that targeting cell death processes as a therapeutic approach

to alleviate and reverse cardiomyopathy is a viable therapeutic

strategy (2–4). In this editorial we will discuss a common

molecular pathological theme related to research progresses in

CVDs including heart failure reported by Wu et al., Liao et al.,

and Dash et al., atrial fibrillation reported by Lee et al. and Zheng

Wang et al., refractory angina reported by Ambari et al., In-stent

restenosis reported by Zhu et al., critical limb ischemia reported

by Quiroz et al., protein conformational diseases reported by

Zheng Song et al., mitochondrial dysfunction reported by Chen

et al., and myocardial injury reported by Barbieri et al. and

Cao et al.

In recent decades, new mechanisms that orchestrate various

cell death pathways have been discovered, and this field

continues to expand. The current well-established forms of

cell death pathways include intrinsic or extrinsic apoptosis,

necroptosis, pyroptosis, ferroptosis, mitochondrial permeability

transition (MPT)-driven necrosis, autophagic cell death

(autosis), lysosome-dependent cell death, immunogenic cell

death (5), cellular senescence, parthanatos, mitotic catastrophe,

neutrophil extracellular trap (NET)otic cell death, entosis (6, 7),

anoikis (8), oxelptosis, and alkaliptosis (9). From a physiological

point of view, cell death helps an organism develop, impacts

morphogenesis and maintains homeostasis (10). However,

pathological cell death is triggered when cells are subjected to

various stimuli, including heart failure (11), myocardial injury,

ischemia, ventricular remodeling (12), elevated troponins (13),

energy production failure, oxidative damage, and imbalanced

ion fluxes (14). As a result, pathological cell death does not

maintain homeostasis but instead promotes disease progression.

Apoptosis is the most characterized form of cell death

in various cardiovascular diseases. It is characterized by a

process of cellular self-destruction without inflammation (15).

Although apoptosis is the most studied form of cell death,

few apoptotic myocytes are observed in patients with heart

failure since 80–250 myocytes are found to undergo apoptosis

per 1 x 105 myocytes (2). Moreover, immunologically silent

apoptosis cannot be used to explain why vasculature ormyocytes

injury always accompanies the excessive inflammation and

immune cell infiltration during cardiac disease progression.

Another five death mechanisms have been identified in

heart diseases, including necroptosis, mitochondrial-mediated

necrosis, pyroptosis, ferroptosis, and autophagic cell death.

Among them, lytic programmed cell death, such as necroptosis

and pyroptosis (16–22), has historically received the most

attention. The lytic programmed cell death pathway causes

cell death by making a pore on the plasma membrane.

These mechanisms of cell death are associated with release

damage/danger-associated molecular patterns (DAMPs) and

inflammatory cytokines, which leads to inflammation (23).

Lytic programmed cell death and its
role in inflammation of heart
diseases

Inflammation plays an essential role in all types of cardiac

diseases. The vasculature experiences inflammation as a reaction

to lipid peroxidation, damage, and possibly infection. Studies

in epidemiology and medicine have consistently and strongly

linked the risk of cardiovascular events to inflammation

(24). In contrast, the absence of inflammatory properties of

apoptosis allows us to understand the importance of lytic cell

death in cardiovascular diseases (25). Previous studies reported

that lysophosphatidylcholine (LPC) and oxidized low-density

lipoprotein (oxLDL) induce Nod-like receptor family 3 (NLRP3)

and promote endothelial cell activation (26–28) in cardiac

diseases (29). Further, the activation of caspase-1 canonical

inflammasome pathway and caspase-4 (human)/ caspase-11

(mice) noncanonical inflammasome pathway will lead to

gasdermin D cleavage and N-terminal gasdermin D protein

pore formation on the plasma membrane, which could mediate

endothelial pyroptosis during atherosclerosis development (30–

32). In addition to pyroptosis, necroptosis, and mitochondrially

mediated necrosis are the other common cell death pathways

observed in heart diseases. Necroptosis is characterized

by cellular enlargement, degradation of plasma membrane

integrity, DAMPs release (33), and inflammation. Necroptosis

could be activated when serine/threonine kinase receptor

protein kinases (RIPK) 1 binds to and activates RIPK3. Then, the

activated RIPK3 further activates a pseudokinase, which leads

mixed lineage kinase-like domain (MLKL) phosphorylation.

Phosphorylated MLKL translocates from cytosol to plasma

membrane, promoting necroptotic cell death (34). Necroptosis

implicated in the pathogenesis of many heart diseases. In

this Research Topic, Wu et al. reported that RIPK1-RIPK3-

MLKL mediated necroptosis contributes to catecholamine-

induced heart failure. Moreover, necroptosis is also related to

mitochondrial-mediated necrosis. RIPK1, RIPK3, and MLKL

have been shown to translocate to the mitochondrial membrane

during necroptosis to promote mitochondrial dysfunction,

mitochondrial reactive oxygen species (mtROS) production

(35–40), and cell damage (34). Chen et al. in this Research

Topic demonstrated that intracellular mitochondrial transfer

has been discovered in cardiovascular diseases. In pathological

situations, injured cells seek recipient cells for assistance by

transferring defective mitochondria; and recipient cells accept

“foreign” functional mitochondria to reduce injury. Therefore,

mitochondrial-targeted therapies could be a potential menthod

to treat diseases. In addition to the activity of individual cell

death pathways in cardiac diseases, a growing number of
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TABLE 1 Summary for 12 highlighted studies in Insights in cardiovascular therapeutics: 2021.

Disease/Patient

condition

Research objectives Therapy/therapeutic targets Reference

Heart failure To investigate whether necroptosis is involved in

beta-adrenergic stimulation-induced cardiomyocytes

injury.

RIPK1/ RIPK3 inhibitors could be used for

anti-inflammatory treatments.

PMID: 34604361

Heart failure and reduced

ejection fraction (HFrEF)

To investigate the cost-effectiveness of additional

empagliflozin in HFrEF compared to conventional

therapy alone from the standpoint of the Asia-Pacific

healthcare systems.

Addition of empagliflozin to HFrEF

treatment is expected to be a cost effective

option among Asia-Pacific countries.

PMID: 34778407

Atrial fibrillation (AF),

chronic kidney disease

(CKD), coronary artery

disease (CAD)

Real-world data are used to assess the efficacy and

safety of antithrombotic regimens in the population

with concomitant CKD, AF, and CAD.

Direct oral anticoagulants showed more

favorable outcomes than warfarin.

PMID: 34692798

Refractory angina (RA),

coronary artery disease

(CAD)

This study seeks to assess the impact of ECP therapy on

flow-sensitive miR-92a, VEGF-A, and VEGFR-2, which

are markers of angiogenesis in RA patients.

External counterpulsation (ECP) may

improve angiogenesis by preserving the

expression of VEGF-A and VEGFR-2. No

significant increased miR-92a between ECP

and the control group.

PMID: 34760951

In-stent restenosis (ISR),

drug-eluting stents (DES),

DES-ISR

To compare the angiographic and clinical results of the

two most successful therapies for the patients with

DES-ISR: drug-eluting balloons (DCB) and DES.

For the patients with DES-ISR, treatment

with DES, especially NG-DES/EES could

reduce the risk of TLR significantly compared

to DCB at long-term follow-up.

PMID: 34926617

Mitochondrial dysfunction in

cardiac diseases in general

This review paper summarizes the mechanism of

mitochondria transfer in the cardiovascular system and

outlined donor mitochondria’s fate and functional role.

EVs-based mitochondrial delivery and the

polymer-coated delivery system might

become a more feasible and promising

strategic alternative for mitochondrial

transplantation.

PMID: 34901230

Atrial fibrillation (AF) The incidence, risk predictors, and probable

mechanisms of silent cerebral embolisms (SCEs) in

patients with AF ablation and the potential impact of

robotic magnetic navigation on SCE rates.

AF ablation carries a low risk of symptomatic

cerebral ischemia but is associated with a

substantial risk of SCEs.

PMID: 34926624

Heart failure, HIV Try to find the molecular causes of the high death rate

of heart failure in HIV patients.

Glycolysis byproduct methylglyoxal (MG)

increased with the time of HIV infection.

PMID: 34970611

COVID-19 patients with

ST-segment-elevation

myocardial infarction

(STEMI)

To assess the effects of RAAS-inhibitors on the clinical

outcomes and in-hospital mortality of STEMI patients

during the COVID-19 pandemic.

The potential benefit of ACEi/ARB

discontinuation in patients with COVID-19

may be overcome by its detrimental effect.

PMID: 35004902

Protein conformational

diseases

Chaperones can be used to restore intracellular protein

homeostasis. Chemical chaperones improve the

treatment efficiency of protein conformational diseases.

Lumacaftor (LUM) is an excellent chemical

chaperone to correct specific mutants.

PMID: 35282377

Critical limb ischemia (CLI),

peripheral arterial disease

(PAD)

Cell-adhesion molecule plays a vital role in

angiogenesis and wound healing. To increase their

therapeutic profile, the authors creates a viral vector to

overexpress E-selectin on mesenchymal stem cells

(MSCs).

This innovative cell therapy confers increased

limb reperfusion, neovascularization,

improved functional recovery, decreased

muscle atrophy.

PMID: 35174227

Sleep deprivation (SD),

myocardial injury

To study the protective effect of stem-leaf saponins

from Panax notoginseng (SLSP) on myocardial injury

in SD mice.

SLSP exerted cardiac protection in SD mice

by inhibiting aberrant autophagy and

apoptosis through the PI3K/Akt/mTOR

signaling pathway.

PMID: 35071373
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studies indicate crosstalk between three types of cell death

of pyroptosis, apoptosis, and necroptosis, which is termed as

PANoptosis. PANoptosis is a pro-inflammatory programmed

cell death (PCD) pathway and has initially discovered in

response to viral infections. Following infection with a virus such

as influenza A virus (IAV), a master regulator of PANoptosis,

Z-DNA-binding protein 1 (ZBP1) (41, 42), interacts with

RIPK3 via RIP homotypic interaction motif (RHIM) domains

and forms a multimeric protein complex, PANoptosome.

This single multimeric complex can concurrently activate

NLRP3-dependent pyroptosis, Caspase-8-dependent apoptosis,

and MLKL-dependent necroptosis (43). It is believed that

simultaneous activation of the three PCDs and PANoptosome

formation indicate PANoptosis occurrence. PANoptosis can

elicit dramatic host inflammation in response to IAV infection

or severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection (22), resulting in severe lung tissue damage

and other lethal consequences (44). PANoptosis is not limited

to virus infection but participates in other diseases including

stroke, traumatic brain injury, atherosclerosis, and cancer (45).

Although there is not currently much data on the involvement

in PANoptosis in heart diseases, the significance of this death

pathway warrants future investigation.

Potential therapeutic studies in
cardiovascular diseases

Medical experts and scientists have long searched for

potential cardiac disease treatments and surviving and

improving patients’ lives. The Frontiers in Cardiovascular

Medicine -Cardiovascular Therapeutics section has provided a

platform for distinguished scientists to communicate, inspire,

and seek more potential therapeutic solutions (46, 47). In

Table 1, we summarized 12 significant studies Wu et al., Zheng

et al., Wang et al., Liao et al., Dash et al., Lee et al., Ambari et al.,

Zhu et al., Quiroz et al., Zheng Song et al., Chen et al., Barbieri

et al., and Cao et al. on our Research Topic to illustrate the

cutting-edge treatments for different cardiovascular diseases.

Readers could use Table 1 as an outline to dig out their interests.
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