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As an important auxiliary tool of arrhythmia diagnosis, Electrocardiogram

(ECG) is frequently utilized to detect a variety of cardiovascular diseases

caused by arrhythmia, such as cardiac mechanical infarction. In the past

few years, the classification of ECG has always been a challenging problem.

This paper presents a novel deep learning model called convolutional

vision transformer (ConViT), which combines vision transformer (ViT) with

convolutional neural network (CNN), for ECG arrhythmia classification, in

which the unique soft convolutional inductive bias of gated positional self-

attention (GPSA) layers integrates the superiorities of attentionmechanism and

convolutional architecture. Moreover, the time-reassigned synchrosqueezing

transform (TSST), a newly developed time-frequency analysis (TFA) method

where the time-frequency coe�cients are reassigned in the time direction,

is employed to sharpen pulse traits for feature extraction. Aiming at the

class imbalance phenomena in the traditional ECG database, the smote

algorithm and focal loss (FL) are used for data augmentation andminority-class

weighting, respectively. The experiment using MIT-BIH arrhythmia database

indicates that the overall accuracy of the proposed model is as high as 99.5%.

Furthermore, the specificity (Spe), F1-Score and positive Matthews Correlation

Coe�cient (MCC) of supra ventricular ectopic beat (S) and ventricular ectopic

beat (V) are all more than 94%. These results demonstrate that the proposed

method is superior to most of the existing methods.

KEYWORDS

ECG classification, vision transformer, convolutional neural network, time-reassigned

synchrosqueezing transform, class imbalance

Introduction

Electrocardiogram (ECG) is a diagnosis and treatment technology to detect cardiac

physiological activities by extracting human skin electrode signal. By analyzing ECG

signal, doctors are able to correctly diagnose various arrhythmias, and then help to judge

myocardial infarction, myocarditis, myocardial ischemia, pericardial effusion and other

diseases. Therefore, exploring the internal characteristics of ECG is of great significance

for the timely diagnosis and treatment of arrhythmia diseases (1, 2).
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In the past decade, with the development of artificial

intelligence, many machine learning methods mainly based

on feature extraction and modal classification have achieved

fruitful results in the application of ECG analysis. The works

for ECG feature extraction include digital filtering (3), group

optimization (4) and time-frequency analysis (5–8). Ozbay et al.

combined the fuzzy C-means clustering algorithm (FCMA)

and discrete wavelet transform to extract the key feature of

ECG signal (9). Alickovic and Subasi used the multi-scale

principal component analysis (PCA) to denoise ECG signal,

and further extracted feature through autoregressive model

(10). Azia et al. (11) applied empirical mode decomposition

(EMD) and support vector machine (SVM) to region of

interest extraction and signal denoising. In (12), the wavelet

transform was utilized for data preprocessing, and then the

PCA was added to project it to the lower dimensional feature

space with particle swarm optimization. Marinho et al. (13)

explored the combined advantages of different feature extraction

methods and several classical machine learning models, and

evaluated the actual achievements of Fourier transform, gerzel

algorithm, higher order statistics and structural co-occurrence

matrix on four types of perceptron: support vector machine,

multi-layer perceptron, naive bayes model and optimum-path

forest. Coast et al. (14) used the hidden Markov models to

analyze cardiac arrhythmia. Osowski et al. (15) utilized the

support vector machine to recognize heartbeat. Yeh et al. (16)

developed a clustering method to identify ECG signal with

arrhythmia. Park et al. (17) proposed the logistic regression to

automatically classify the ECG interval characteristics. Li and

Min (6) completed ECG classification by combining wavelet

packet transform and random forests. In summary, the most

commonly used machine learning methods include hidden

Markov model (14), support vector machine (13, 15), clustering

algorithm (16, 17), logistic regression (18), random forest (6, 19)

and naive Bayes (13, 20, 21). However, the above-mentioned

techniques have many limitations in practical application; for

instance, they rely heavily on manual feature extraction and

require a lot of time and expertise.

In recent years, due to the end-to-end learning convenience

of deep learning technique, it has also made great progress

in ECG classification. Kiranyaz et al. (22) introduced a

1-D convolution neural network (CNN) to deal with ECG

arrhythmia classification task. Li et al. (23) presented the general

regression neural network to extract correlation patterns from

ECG signal. On the basis of CNN, Acharya et al. (24) added

data augmentation and noise filtering technique to strengthen

fitting ability of the model. Sellami and Hwang (25) paid more

attention to the problem of class imbalance, and showed the

solicitude for the classification of various samples in batch

processing through batch-weight loss. Atal and Singh (26)

developed the deep CNN, modified by rider optimization

algorithm, to implement the automatic classification of ECG.

In addition, some studies used the practice of machine learning

for reference and combined TFA with deep learning model,

which greatly improved the accuracy and robustness of the

model. In order to make full use of spatial information of 2-D

image, Huang et al. (7) transformed the time-domain ECG

signal into time-frequency domain by STFT, and then fed the

time-frequency map to the neural network as input feature.

Wang et al. (27) employed continuous wavelet transform

(CWT) to implement preprocessing and designed a CNN

framework to achieve the automatic ECG classification from

2-D spectrum. To pursue a more readable TFR as input feature,

Ozdemir et al. (28) proposed a new method for detecting and

predicting seizure based on synchrosqueezing transform (SST)

and CNN. Furthermore, the enhancement of TFA methods,

such as STFT, CWT and Hilbert-Huang Transform (HHT), for

hand gesture intelligent classification was discussed in (29). An

important conclusion is that the time-frequency resolution of

2-D spectrum has a direct influence on the classification based

on deep learningmodel. Nevertheless, these methodsmentioned

often simply transform the representation of ECG time-domain

signal, and lack of deep excavation of its characteristics, so

as to introduce a preprocessing technique in line with its

attributes. Besides, the deep learning model such as deep CNN

is subject to the problem of network degradation, in which the

training sets are easy to be saturated due to the complexity

of the deep model, and are limited by the hard inductive

bias of pure convolution layers, resulting in insufficient data

information mining. Finally, most of the existing studies on

ECG classification do attach importance to the class imbalance

in applied database, the number of normal heart rate sample is

often hundreds of times that of abnormal, which will produce

serious over fitting problem.

In this study, since the signal characteristics corresponding

to arrhythmia are usually reflected in the pulse of ECG, a TFA

technique called time-reassigned synchrosqueezing transform

(TSST) which can highlight the characteristics of pulse signal

that will be used to extract ECG information, which transforms

ECG in the time domain into time-frequency domain with the

high frequency resolution. Then, the two-dimensional signal is

transformed into picture and input into the convolutional vision

transformer (ConViT) for classification. Aiming at the class

imbalance problem mentioned previously, the smote algorithm

is adopted to synthesize some small sample data for soft balance,

and the focal loss (FL) is performed to further make up for

the defect of class imbalance. The contributions of this paper

are expressed as follows: (1) the TSST is employed for ECG

data preprocessing to make full use of pulse information; (2)

the ConViT with convolutional architecture and self-attention

mechanism is used for ECG classification; (3) the smote

algorithm and FL are adopted to deal with the ECG class

imbalance problem.

The rest of this paper is organized as follows. Section Theory

describes the fundamental principle of TSST algorithm, ConViT

framework and treatments of imbalance problem. In Section
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FIGURE 1

Flow chart of ECG classification based on TSST and ConViT.

Experiment, the experimental results and discussions are shown.

The conclusions are drawn in Section Discussion.

Theory

Method overview

The overall framework of the proposed ECG classification

method in the paper is shown in Figure 1. The test data

comes from MIT-BIH arrhythmia database (30). According to

the R-wave position in the annotation file, a total of 300 points

within the selected interval are taken as a time domain sample,

and the data are enhanced by a small number of samples in the

training set. Then, the TSST is utilized to transform the one-

dimensional time-domain signal into two-dimensional time-

frequency map, which will be input into ConViT with FL. Under

the recommendations from Association for the Advancement

of Medical Instrumentation (AAMI) (31), we will divide the

original samples into five categories: fusion (F), non-ectopic

beat (N), unknown (Q), supra ventricular ectopic beat (S)

and ventricular ectopic beat (V), showing in Table 1, for the

model processing.

Time reassigned
synchrosqueezingtransform

TSST is a newly developed time-frequency decomposition

algorithm (32). It reassigns the time-frequency coefficients along

TABLE 1 Details of MIT-BIH arrhythmia database.

AAMI heartbeat

class

MIT-BIH

heartbeat type

MIT-BIH

arrhythmia label

F fVN F

N N, LBBB, RBBB,

AE, NE

N, L, R, e, j

Q P, fPN, U /, f, U

S AP, aAP, NP, SP A, a, J, S

V PVC, VE V, E

the time direction by calculating the group-delay estimator, so

as to extract the transient characteristic of pulse signal, which

is highly suitable for processing ECG signal. The definition and

property of TSST are stated below.

The STFT of a signalxis defined as a function of time t and

frequency ω computed with a Gaussian windowg.

F
g
x (t,ω) =

∫ +∞

−∞
x (τ ) g∗ (t − τ)e−jωτ dτ (1)

where g (t) = 1/
√
2π e−t2/2 , and g∗ denotes the complex

conjugate of g. The time-frequency representation (TFR)

corresponds to
∣

∣

∣
F
g
x (t,ω)

∣

∣

∣

2
.

In order to further improve the resolution of TFR, a time

reassignment step moves the energy of the signal according to

the map (t,ω) →
(

t̂x (t,ω) ,ω
)

, herein, t̂x (t,ω) is the group
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FIGURE 2

(A–E) Spectrograms of several ECG signals via TSST decomposition.

FIGURE 3

Framework of ConViT and the details of SA and GPSA.
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FIGURE 4

Smote result of class F samples.

FIGURE 5

Dataset division strategy (A) and the quantity of samples before and after augmentation (B).

delay estimation mentioned above. The time reassignment

operator t̂ can be deduced as:

t̂x (t,ω) = R

(

t − F
τg
x (t,ω)

F
g
x (t,ω)

)

(2)

where R (Z) stands for the real part of Z, τg (t) = tg (t) is a

modified version of the Gaussian window function g.

Therefore, TSST can be written as:

S
g
x (t,ω) =

∫ +∞

−∞
F
g
x (t,ω) δ

(

t − t̂x (t,ω)
)

dτ (3)

Next, the spectrogram
∣

∣

∣
S
g
x (t,ω)

∣

∣

∣

2
will be saved as picture

and fed into the ConViT model as input sample. Figure 2

shows the spectrogram results, in which five representative time-

domain ECG signals are transformed into two dimensional

spectrograms through TSST. It can be seen that these

spectrograms are characterized by high resolution in the time

dimension, which is very beneficial for extracting the transient

characteristics of ECG arrhythmia.

Convit structure

ConViT combines the advantages of two popular neural

network frameworks, CNN and Transformer (33–36), which

overcomes the shortcomings of low performance upper limit
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FIGURE 6

Confusion matrix of test set (1: F, 2: N, 3: Q, 4: S, 5: V).

caused by hard induction bias of CNN and the high dependence

of Transformer on data. In the paper, the gated positional self-

attention (GPSA) is employed to balance convolution and self-

attention (SA) in a soft way, and its framework is shown in

Figure 3. ConViT is based on vision transformer and consists

of twelve propagation blocks composed of a SA layer and a

two-layer feedforward network (FFN) with Gelu activation (see

Figure 3). The difference is that the SA layer in the first ten

blocks is replaced by GPSA layer, and the settings of SA layer

are still retained in the last two blocks. In addition, the L2

regularization and dropout mechanism are applied in FNN to

counter overfitting. Since the ECG spectrum is relatively simple,

we set the input image with the size of 160 to 8 x 8 non-

overlapping blocks of 20 x 20 pixels, and the embedding matrix

dimension is 12.

For the SA layer, the essence of self-attention mechanism is

to selectively manage the input through attention pooling. For

single head self-attention with position, we can define it as PSAh,

andMHSA performs concat and linear operations on SAh:

PSAh
ij (K,Q,V) : = Vhsoftmax





KhT
i Qh

j√
d

+ υhT
posrij



 (4)

MHSA : =concat
h∈[Nh]

[

SAh (K,Q,V)
]

Wout + bout (5)

where softmax(X)ij = e
Xij

∑

k e
Xik

.

The input image is divided into multiple patches and

represented as X ∈ RDemb×Nby embedding matrix processing.

Therefore, we have K = WkeyX, Q = WqryXand V = WvalX,

here Wkey, Wqry, Wval ∈ RD×Demb, Nh is the number of

FIGURE 7

ROC of classification result and their AUCs.

attention head. Trainable embedding υh
pos and relative position

coding rij are added to discipline position information. Then,

Demb = NhD, W
out ∈ RDemb×Demb , bout ∈ RDemb×D. In (37),

a PSA layer with Nh heads and a relative positional encoding

of dimension Dp ≥ 3 can express any convolutional layer with

filter size of
√

Nh ×
√

Nh.











υh
pos : = −αh

(

1,−21h
1 ,−21h

2

)

rδ = ‖δ‖2, δ1, δ2
Wkey,Wqry

: = 0, Wval = I

(6)

where αh and 1h
1 , 1

h
2 determine the width and center of each

attention head, respectively. (δ1, δ2) is a fixed value used to

define the relative offset of K and Q.

Hence, each attention head only extracts local information

to achieve the effect of convolution. However, this generalized

convolution operation is difficult to be carried out on ViT,

so GPSA is modified to allow it to decide whether to

maintain convolution.

GPSAh (K,Q,V) : = Vhnormalize
[

Ah
]

(7)

Ah
ij : =

(

1− σ
(

λh
))

softmax
(

KhT
i Qh

j

)

+ σ
(

λh
)

softmax
(

υhT
posrij

) (8)

where
(

normalize
[

Ah
])

ij
= Aij

∑

k Aik
and σ (Z) = 1

1+e−Z .

The gating parameter λ is learned through the model,

which is utilized to balance content-based self-attention and

convolution initialization position self-attention, so as to achieve

the effect of soft inductive bias.

Frontiers inCardiovascularMedicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.983543
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Bing et al. 10.3389/fcvm.2022.983543

FIGURE 8

t-SNE results of input samples (A) and output samples (B).

FIGURE 9

Error histogram (errors = output – target).

Treatment of class imbalance

In the actual situation, the amount of normal heart rate

data is much larger than that of arrhythmia data. The problem

caused by class imbalance is that the easy positive samples will

make a major contribution to loss and dominate the update

direction of the gradient. Hence, the model is unable to learn

valid information for correct classification. In this paper, we

introduce the smote algorithm and FL to combat it (38, 39). The

former artificially generates a large number of scarce samples,

and the latter pays attention to the samples that are difficult to

be classified.

Based on the k nearest neighbor points of each sample, smote

algorithm randomly selects N adjacent points to multiply the

difference by a threshold in the range of [0, 1], so as to achieve

the purpose of synthesizing data. The core of this algorithm is

that the feature of adjacent points in feature space is similar. It

does not sample in the data space, but in the feature space, so its

accuracy will be higher than the traditional sampling method.

Figure 4 shows the data enhancement result of smote algorithm

for class F samples. The formula for constructing new sample is

as follows:

Znew = Z + rand (0, 1) ∗ |Z − Zr| (9)

where Z indicates the original sample, and Zris the adjacent

value randomly selected.

FL can be regarded as a loss function, which reduces the

weight of samples easy to classify and increases the weight of

samples difficult to classify. It focuses on training a sparse set

of difficult samples. For multi-class classification task, FL can be

defined as:

FL
(

pt
)

= −
(

1− pt
)

log
(

pt
)

(10)

pt =
{

x = p y = 1

y = 1− p y 6= 1
(11)

where pt represents the probability predicted by the model as

class t,p is the probability that the sample to be classified as

positivity, and y is the output of the model. γ can adjust the rate

of weight reduction of easy samples. The larger the γ , the more

the loss of easy sample will be suppressed. It is worth noting

that when γ = 0, FL is equal to the cross-entropy loss. In this

example, γ = 2.
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FIGURE 10

Confusion matrices of ConViT without TSST (A), FL (B) and smote algorithm (C), respectively.

TABLE 2 Classification comparison of classes S and V.

Approach S V Data size

Acc Spe F1-Score MCC Acc Spe F1-Score MCC

CNN (22) 96.6 98.1 63.2 61.5 98.4 98.7 91.4 90.6 49,557

CNN Aug (24) 97.0 98.6 92.4 90.6 97.9 98.8 94.8 93.5 452,960

2-D CNN (40) 99.3 99.7 83.4 83.1 99.3 99.6 93.6 93.3 12,548

GRNN (23) 97.4 98.9 90.2 88.8 98.4 99.4 88.8 88.0 49,661

ResNet (41) 98.8 99.9 98.4 97.3 99.4 99.9 99.7 99.7 49,564

LSTM (27) 99.3 99.6 83.4 83.1 99.3 99.5 93.6 93.3 27,789

Proposed 99.7 99.9 95.0 94.9 99.7 99.7 97.7 97.5 20,000

TABLE 3 Training parameters.

Learning rate Batch size Epoch Embed dimension Dropout rate Decay rate

1e-4 32 120 12 0.5 0.02/10epoch

Experiment

Dataset description

In this paper, we employ MIT-BIH arrhythmia database to

test the effectiveness of the proposed model, which includes 48

and a half hours of dual channel ambulatory ECG records of 47

subjects, with a sampling frequency of 360Hz and independent

annotation by more than two experts.

In this example, we randomly divide the database into

three parts. Firstly, the whole data is divided into training plus

verification set and test set in the ratio of 8 to 2, then the former

is augmented by smote algorithm and divided into training

set and verification set in the same proportion. The data set

division diagram and the number of samples (before and after

data augmentation) (Table 1) are shown in Figure 5.

Evalution

In order to further assess the validity of the proposed

model in ECG classification task, the results of the test set are

evaluated in terms of accuracy (Acc), sensitivity (Sen), specificity

(Spe) Positive predictive value (Ppv), F1-Score and Matthews

Correlation Coefficient (MCC), which are expressed as follows.

Acc = TP + TN

TP + TN + FP + FN
(12)
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TABLE 4 Classification results of PTB database.

Approach Acc Sen Spe Ppv F1-Score

KNN (42) – 92.3 88.1 – –

HMM with

GMM (43)

82.5 85.7 79.8 – –

ANN (44) 95.6 93.3 97.9 99.3 96.2

CNN (45) 93.5 93.7 92.8 98.0 95.8

ResNet (46) 92.6 93.2 92.0 – –

Proposed 94.6 93.6 92.1 95.9 94.0

Sen = TP

TP + FN
(13)

Spe = TN

TN + FP
(14)

Ppv = TP

TP + FP
(15)

F1 = Ppv× Sen

Ppv+ Sen
(16)

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(17)

where TP, TN, FP and FN represent true positive, true negative,

false positive and false negative, respectively.

Result and discussion

In this section, the results will be discussed by means of

confusionmatrix, receiver operating characteristic curve (ROC),

t-distributed stochastic neighbor embedding (t-SNE) and error

histogram. Figure 6 shows the confusion matrix from the test

set based on the proposed model. It can be clearly seen that

the overall accuracy of our model is as high as 99.5%. However,

due to the influence of FL on the weight of a small number

of sample classes, the most class objects (class N) are probably

incorrectly classified.

The ROC curve in Figure 7 further illustrates the

relationship between false positive rate (FPR) and true

positive rate (TPR) of various classes. As can be observed, the

performance of classes F and S is slightly poor owing to the

small number of samples, the ROC curves of other classes are

almost perfect. Nevertheless, all the area under curves (AUCs)

are larger than 0.99, which indicates that the proposed method

can achieve a satisfactory classification result.

In Figure 8, the t-SNE gives the visualization result of the

test set. It creates a compressed feature space, in which the

similar samples are represented by the nearby points and the

dissimilar samples are represented by far points with the high

probability. Then, the Kullback Leibler divergence between the

two distributions about the location of embedded points is

minimized. Finally, the high-dimension data is simplified into

a low-dimension graph with the affluent original information.

One can clearly see that benefit from the feature extraction of

TSST, the samples have been scattered well in space before the

training, the proposedmodel achieves the excellent classification

after the training.

In addition, Figure 9 plots the error histogram, it shows

that the proposed model has less prediction error, which

further demonstrates the superior performance of the

presented method.

On the other hand, the confusion matrix results of ConViT

without TSST (each 1D ECG signal is simply stacked into

2D image), FL and smote algorithm respectively are given in

Figure 10. It can be clearly seen that the overall performance

of ConViT is far inferior to the scenario with TSST, which is

likely due to the fact that the information from single time

series is not enough to achieve the excellent classification.

In addition, the scenarios without FL and smote algorithm,

shown Figures 10A,C, indicate that the ConViT without balance

processing generates a bias where the data is classified into N

categories. Therefore, it is concluded that the classification result

of few-shot without the above mentioned tricks is poor.

Discussion

In this section, we apply our model to classification of classes

S and V for comparison with other state-of-the-art methods in

terms of Acc, Sen, Spe, F1-score and MCC, which is shown in

Table 2. Note that the test set used in the paper consists of 20,000

beats of ECG. As illustrated in Table 2, the proposed method

performs clearly better, with higher precision, which mainly

benefits from the following three aspects: (1) TSST achieves the

effective feature extraction on ECG signal; (2) FL and somte

algorithm alleviate the conflict between the differences in various

sample number; (3) Deep mining of input information by

attention mechanism of ViT architecture and the CNN structure

can ensure the property of small sample task. It should be

mentioned that the proposed model implements 120 epochs on

NVIDIA GeForce RTX 2060 about 9640s, which is suitable for

a 2-D visual model with attention mechanism. Benefit from the

ConViT, the model with multi-head attention mechanism can

perform the fast iteration. Note that some important training

parameters are listed in Table 3.

To further verify the robustness of the proposed method, we

apply the trained model with binary-classification (normal and

others) to PTB database (47). The dataset contains 549 records of

290 subjects with 12 leads, which records the diseases including

myocardial infarction (MI), cardiomyopathy/Heart failure,

bundle branch block, dysrhythmia, myocardial hypertrophy,

valvular heart disease, myocarditis, miscellaneous, healthy

controls (normal). Each channel is sampled at the frequency

of 1 kHz with 16-bit resolution. In this experiment, we apply

ECG lead II data to TSST for test, which is focused on MI

Frontiers inCardiovascularMedicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.983543
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Bing et al. 10.3389/fcvm.2022.983543

FIGURE 11

TFR of class S based on (A) TSST, (B) STFT and (C) EMD.

TABLE 5 Comparison results of TSST-, STFT- and EMD-based ConViT methods.

TFA S V

Acc Spe F1-Score MCC Acc Spe F1-Score MCC

TSST 99.7 99.9 95.0 94.9 99.7 99.7 97.7 97.5

STFT 95.6 96.8 92.3 91.6 95.9 97.0 95.2 95.0

EMD 92.1 90.2 87.6 85.3 93.3 95.1 89.6 88.1

and healthy control data. The comparison results are listed

in Table 4 Although not all indexes in the result of the

proposed method are optimal, its overall performance is very

competitive for an unseen dataset. The Acc of 94.6 is sufficient

for MI diagnosis, which demonstrates the generalization of the

proposed method again.

Third, we also list the results of class S based on TSST

and traditional time-frequency analysis methods (e.g. STFT

and EMD) in Figure 11. It is obvious that the TSST achieves

a highly energy-concentrated TFR and highlights the pulse

characteristics of ECG well compared with STFT, which helps

to reduce some unnecessary convolution operations in the

GPSA layer. Due to the existence of pulse points in ECG

signal, EMD is easy to cause mode aliasing, as shown in the

Figure 11(C), which is not conducive to feature extraction. In

addition, the comparison results of TSST-, STFT- and EMD-

based ConViT approaches for ECG classification usingMIT-BIH

dataset are shown in Table 5. The accuracy of ECG classification

using TSST-based ConViT is 99.7%, which is obviously higher

than STFT-based (95.6%) and EMD-based methods (92.1%).

Similarly, the metrics, such as Spe, F1-Score and MCC, TSST-

based ConViT also obtain the optimal values. The experiment

indicates that TSST is a reliable technique for non-stationary

signal, with pulse feature, processing and ECG classification

in ConViT.

Actually, there are still some issues that need to be solved

in the future. The first one is the adaptability of smote

algorithm, traditionally used for 2-D image augmentation,

for time series signals. Although the experiment (Figure 10)

indicates that smote algorithm can improve ECG classification,

the relevant research work is still lacking. The second one

is about overfitting problem. We utilize some anti-overfitting

strategies, such as L2 regularization and dropout, in the paper,

but there are some differences in the classification performance

for MIT-BIH and PTB datasets. Finally, more comparative

experiments on the combination of TSST and deep learning

models like (48) are needed, which can further illustrate the

advantages of the proposed model, and this is also our future

research direction.

Conclusion

In this study, we propose a novel ECG classification method,

it achieves the overall accuracy of 99.5% and does a better job

classifying ECG signal compared to the traditional methods.

With this method, the TSST transforms one-dimension ECG

signal to two-dimension time-frequency map for characterizing

the pulse characteristics of arrhythmia signal. The classifier

performs smote algorithm and FL to deal with the class

imbalance phenomenon. The former enhances the data by

feature space sampling, and the latter ensures the classification

ability by increasing the weight for a few class samples. In

addition, as the main architecture of the model, on the one
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hand, ConViT utilizes multi-head attention mechanism of

Transformer for image processing to make full use of the

internal related information of the input. On the other hand,

the hard induction bias of CNN enables the model to achieve

good result with a few samples, and greatly improves the

training speed.
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