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Introduction: Computed tomography pulmonary angiography (CTPA) is an

essential test in the work-up of suspected pulmonary vascular disease

including pulmonary hypertension and pulmonary embolism. Cardiac and

great vessel assessments on CTPA are based on visual assessment and manual

measurements which are known to have poor reproducibility. The primary aim

of this study was to develop an automated whole heart segmentation (four

chamber and great vessels) model for CTPA.

Methods: A nine structure semantic segmentation model of the

heart and great vessels was developed using 200 patients (80/20/100

training/validation/internal testing) with testing in 20 external patients.

Ground truth segmentations were performed by consultant cardiothoracic

radiologists. Failure analysis was conducted in 1,333 patients with mixed

pulmonary vascular disease. Segmentation was achieved using deep learning

via a convolutional neural network. Volumetric imaging biomarkers were

correlated with invasive haemodynamics in the test cohort.

Results: Dice similarity coe�cients (DSC) for segmented structures were in

the range 0.58–0.93 for both the internal and external test cohorts. The left

and right ventricle myocardium segmentations had lower DSC of 0.83 and

0.58 respectively while all other structures had DSC >0.89 in the internal test

cohort and >0.87 in the external test cohort. Interobserver comparison found

that the left and right ventricle myocardium segmentations showed the most

variation between observers: mean DSC (range) of 0.795 (0.785–0.801) and
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0.520 (0.482–0.542) respectively. Right ventriclemyocardial volume had strong

correlation with mean pulmonary artery pressure (Spearman’s correlation

coe�cient = 0.7). The volume of segmented cardiac structures by deep

learning had higher or equivalent correlation with invasive haemodynamics

than bymanual segmentations. Themodel demonstrated good generalisability

to di�erent vendors and hospitals with similar performance in the external test

cohort. The failure rates inmixed pulmonary vascular disease were low (<3.9%)

indicating good generalisability of the model to di�erent diseases.

Conclusion: Fully automated segmentation of the four cardiac chambers and

great vessels has been achieved in CTPA with high accuracy and low rates

of failure. DL volumetric biomarkers can potentially improve CTPA cardiac

assessment and invasive haemodynamic prediction.

KEYWORDS

deep-learning (DL), semantic segmentation and labelling, computed tomography

pulmonary angiography (CTPA), whole heart segmentation, pulmonary vascular

disease (PVD)

Introduction

Pulmonary vascular disease encompasses a range of

conditions that are linked with a large disease burden worldwide

and are associated with high mortality and morbidity (1–

4). Computed tomography pulmonary angiography (CTPA)

is a crucial imaging investigation performed in patients with

suspected pulmonary embolism (PE) and in the work up

of patients with suspected pulmonary hypertension (PH) (1).

Current imaging approaches in pulmonary vascular disease

rely on visual assessments or manual measurements of cardiac,

pulmonary arterial and aortic size; suchmeasures are used to risk

stratify patients with acute PE (5–8) and diagnose PH (5, 6).

Pulmonary arterial dilatation is a salient feature radiologists

observe on routine thoracic imaging. This feature may be the

clue to the diagnosis of pulmonary hypertension (7–10). Cardiac

features such as right ventricular (RV) dilatation (11), RV

hypertrophy and septal flattening (5) add to pulmonary arterial

dilatation as predictors of the presence of PH. In acute PE

the relative diameter of the right ventricle to left ventricle is

used to predict mortality (12, 13). Measurement of right and

left ventricular volume ratio may be a superior approach (13).

Right and left atrium measurements on computed tomography

(CT) are also known to have diagnostic and prognostic value

for pulmonary vascular disease (14–18). Manual cardiac and

pulmonary measurements are limited by their time-consuming

nature (14), human error, observer variability (19, 20), and

observer experience leading to potentially inaccurate predictions

and less frequent use.

Historically, volumetric measurements have not been

performed on CTPA because it is not typically a cardiac

gated acquisition, causing significant cardiac motion artefacts.

However, following improvements in CT technology, cardiac

structures are now captured with increased clarity on CTPA due

to the more rapid acquisition of the cardiac and great vessel

structures and therefore diagnostic information is available,

despite the lack of cardiac gating.

Automated ventricular volume measurement approaches

have been developed in CT showing similar accuracy to cardiac

magnetic resonance imaging (MRI) (21), and provide added

prognostic value in acute pulmonary embolism (19). There is the

need to develop methods to automatically measure the cardiac

volume, myocardial hypertrophy, and great vessels on CTPA

to provide a comprehensive cardiopulmonary assessment. In

addition, it is necessary to determine the generalisability of such

a method across hospitals and CT systems (22).

Artificial intelligence is widely used in cardiothoracic

applications with utilisation in different diseases for a variety

of computer vision tasks (23–26). Semantic segmentation

of cardiac chambers is a challenging task which requires

the use of automation to minimise the bias effect and to

maximise reproducibility (27, 28). Deep learning (DL) has

been used successfully in semantic segmentation tasks with

high performance in supervised cardiac segmentation (29)

including multiple cardiovascular structures (30). The main

limitations of the deep learning approaches are the lack of model

generalizability across different domains, interpretability and

explainability of the model, and for supervised approaches, the

need of a large amount of manual segmentation (31).

Automatic segmentation of cardiac chambers has the

potential to provide unbiased and robust measurements for the

diagnosis and assessment of cardiovascular diseases. By using

the information from volumetric anatomical models derived

from semantic segmentation, human interpretable diagnostic
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and prognostic models can be developed. Such models have the

potential to transform the management of pulmonary vascular

disease, allowing earlier diagnosis in rare diseases such as

pulmonary hypertension. Thus, automatic segmentation is a

crucial step for the robust and unbiased evaluation of CTPA.

The aims of this retrospective study were:

• to measure the interobserver variability for multi-structure

cardiac segmentation in CTPA so that any automated

segmentation tool can be compared to human performance

of three independent observers.

• to develop a deep learning semantic segmentation tool

for CTPA four chamber, ventricle myocardium and great

vessel structures and to evaluate the performance of the DL

method in an internal and external dataset. The external

dataset will be used to assess the generalisability of the

segmentation tool utilising a dataset from hospitals across

England and Wales.

• to evaluate the failure rates in two disease groups;

confirmed pulmonary embolism and suspected pulmonary

hypertension to establish the generalisability of the model

to different pathologies.

• to investigate the correlations between cardiac structure

volumes and invasive haemodynamic measurements for

DL and human segmentations.

Materials and methods

In this study we develop and test a deep learning multi-

structure semantic segmentation model which segments the

four chambers, myocardium, and great vessels on CTPA scans.

An interobserver comparison study was conducted with three

observers to measure the accuracy for multi-structure cardiac

segmentation in order to contextualise the performance of the

deep learning multi-structure segmentation models.

For the deep learning segmentation, a two stage, cascade

approach is used; firstly, a low-resolution model is trained to

localise and extract the cardiac structures within the CTPA

scan (Cardiac Localisation Model—Figure 1B), secondly a high-

resolution model is trained to segment a multi-structure

cardiac model on the extracted cardiac structures (Cardiac

Segmentation Model—Figure 1C). For the segmentation, two

different models were trained and compared; model 1 (DL-

1) and model 2 (DL-2) which were trained with 50 and 100

patients respectively.

The best performing deep learning model was selected

for further analysis. Volumetric parameters from human

segmentation and segmentations from the best performing

model were correlated with invasive haemodynamic pressure

measurements in a cohort of 100 PH patients. Segmentation

failure rates were measured in a large cohort of 1,333 patients

with a variety of cardiovascular disease.

Figure 1 provides an overview of the methodology used

in this study; Figures 1A–E show the patient populations and

respective cohorts, the cardiac localisation model, the multi-

structure cardiac segmentation model, the inference pipeline

and the testing methodology respectively.

Patient populations and datasets

This was a GDPR compliant retrospective study based

on 1,553 patients selected from the ASPIRE registry of

patients with suspected pulmonary hypertension (n = 1346)

and patients selected from a local registry of patients with

confirmed pulmonary embolism (n = 207). Research ethics

committee approval for retrospective analysis with waiver of

informed consent was obtained for PH patients (ASPIRE, ref:

c06/Q2308/8) and PE patients (ref: 17/YH/0142). We followed

the CLAIM (checklist for artificial intelligence in medical

imaging) (32) checklist for presenting this research.

The selected patients were split into different cohorts

used to train and test a deep-learning model. An internal

cohort (n = 200) and an external cohort (n = 20) of

patients with suspected PH referred to a tertiary referral

centre were identified from the ASPIRE registry. Patients had

heterogeneous underlying conditions: lung disease, left heart

disease, pulmonary thromboembolic disease, pulmonary arterial

hypertension, and a group of patients found to not have

pulmonary hypertension following right heart catheterisation.

The internal cohort was used for training, validating and

testing the deep learning models. The internal test cohort (n

= 100) was used for correlating volumetric measurements

with invasive haemodynamics, with a subset of the internal

test patients used for the interobserver comparison (n = 24).

The external cohort was used for testing the model. Ground

truth segmentations in the internal and external cohorts were

made by a single consultant cardiothoracic radiologist observer

(AJS). Three consultant cardiothoracic radiologists, observer 1

(AJS), 2 (KK), and 3 (CJ), with 12, 5 and 15 years’ experience

respectively segmented the cardiac structures on the patients in

the interobserver comparison cohort.

Failure rates of the segmentation models were tested in a

large group of patients with a variety of pulmonary vascular

diseases, a suspected PH Cohort (n= 1,126) and a confirmed PE

Cohort (n= 207). See Figure 1A for details of the patient cohorts

and Table 1 for the patient demographics.

Internal cohort

Patients were selected randomly from suspected PH patients

imaged at Sheffield Teaching Hospitals NHS Trust between 2010

and 2018 who had undergone right heart catheter measurements

within 48 h of CTPA image acquisition. The cohort consisted

of 93 patients imaged on a 64 detector-row CT GE system
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FIGURE 1

Methodology. (A) Datasets used within this study. (B) Cardiac localisation deep learning model. (C) Cardiac segmentation deep learning model.

(D) Inference pipeline. (E) Model testing strategy. Ob 1, 2, 3, observer 1, 2, 3; DL-1, deep learning model 1; DL-2, deep learning model 2; Dice,

dice similarity score, ICC, intraclass correlation coe�cient; NSD, normalised surface distance (Surface Dice Score).

(Light-Speed; General Electric Medical Systems, Milwaukee,

WI) and 107 patients imaged on a 320 detector-row Canon CT

system (AquilionONE/ViSION edition; CanonMedical Systems

Corporation, Otawara, Japan). GE acquisition parameters: 120

kV, 100mA with auto dose reduction, pitch 1, rotation time

0.5 s, field of view (FOV) 400 × 400mm and slice thickness

0.625mm. Canon acquisition parameters: kV 120, modulated

mA, pitch (standard pitch factor 0.813 and helical pitch 65)

rotation time 0.275, FOV 500 L and slice thickness 0.3mm.

Intravenous iodine contrast agents were administered with a

dose of 60ml at a rate of 5 ml/s (agent Omnipaque 300, GE

Healthcare, United States). Bolus tracking was used with a

region of interest over the pulmonary trunk with a manual

trigger. Contiguous slices were acquired during an inspiratory

breath hold.

External cohort

The external cohort consisted of 20 patients from 12

hospitals across England and Wales acquired between 2011 and

2018 on GE (n= 8), Siemens (n= 6), Philips (n= 1) and Canon

(n= 5) CT scanners.

Pulmonary hypertension cohort (PH cohort)

A cohort of 1,126 patients imaged in two hospitals in

England was selected from the ASPIRE registry. Consecutive

patients between 2011 and 2019 which had invasive right heart

catheterization (RHC) haemodynamics within 48 h of the CT

were selected. Patients in the internal cohort were excluded.

Patients were imaged on GE (n = 835), Canon (n = 289),

and Siemens (n = 2) CT scanners. Patients had heterogeneous

underlying conditions similar to the internal cohort.

Pulmonary embolism cohort (PE cohort)

A cohort of 207 patients with confirmed PE was randomly

selected from two hospitals in England between 2009 and 2017.

Cases were acquired on GE (n = 176), Canon (n = 28), and

Philips (n= 3) CT Scanners.
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TABLE 1 Demographics, diagnosis and scanner type of the cohorts utilised.

Train DL-1 Validation

DL-1

Train DL-2 Validation

DL-2

Internal test

cohort

External test

cohort

PE cohort PH cohort

Total 40 10 80 20 100 20 207 1,126

Age, years± SD 65.7± 13.6 56.9± 15.2 66.2± 12.1 58.2± 11.9 63.8± 13.9 62.7± 16.0 64.2± 17.0 64.6± 12.8

Age range, years 26–81 32–75 26–87 32–75 20–86 24–88 22–95 18–90

Female, % 60.0 70.0 63.7 60.0 62.0 60.0 57.0 62.3

Ethnicity

White, % 85 80 83 85 85 90 –* 89

Black, % 0 0 4 0 6 0 – 2

Asian, % 8 10 6 5 5 5 – 5

Other, % 0 0 0 5 1 0 – 1

Not stated, % 8 10 8 5 3 5 – 3

Manufacturer

GE, % 50.0 50.0 50.0 40.0 45.0 40.0 85.0 74.2

Canon, % 50.0 50.0 50.0 60.0 55.0 25.0 13.5 25.7

Philips, % 0.0 0.0 0.0 0.0 0.0 5.0 1.4 0.0

Siemens, % 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.2

Pulmonary hypertension

diagnosis

Not PH, % 17.5 40.0 17.5 25.0 12.0 10.0 0.0 13.6

Pulmonary hypertension with

lung disease, %

10.0 20.0 17.5 25.0 15.0 15.0 0.0 19.2

Pulmonary arterial

hypertension, %

27.5 20.0 16.3 20.0 19.0 15.0 0.0 21.0

Pulmonary hypertension with

left heart disease, %

25.0 20.0 25.0 10.0 22.0 20.0 0.0 16.8

Chronic thromboembolic

pulmonary hypertension, %

20.0 0.0 23.8 10.0 25.0 30.0 0.0 26.2

Unclear/unknown, % 0.0 0.0 0.0 10.0 7.0 10.0 0.0 3.0

Pulmonary embolism

Positive, %

0.0 0.0 0.0 0.0 0.0 0.0 100 0.0

Invasive haemodynamic

measurement available, %

100.0 100.0 98.8 100.0 100.0 75.0 0.0** 98.8

Mean PA pressure, mmHg±

SD

39± 14 41± 21 39± 13 42± 17 42± 14 47± 14 – 39± 14

PA pressure range, mmHg 16–71 16–77 14–71 16–77 17–78 23–73 – 8–95

PE, pulmonary embolism; PH, pulmonary hypertension; PA, pulmonary artery.

* Patient ethnicities were not available in the PE cohort.

** Invasive haemodynamics were not performed in the PE cohort.

Cardiac segmentation model

Nine structures were manually segmented on the CTPA

images for the 220 cases in the internal and external cohorts;

the left ventricular (LV) myocardium (LVmyo), LV endocardial

cavity (LVvol), right ventricular (RV) myocardium (RVmyo),

RV endocardial cavity (RVvol), left atrium (LA), right atrium

(RA), proximal pulmonary arteries (PA) and the aorta, which

was split into two structures (i) the ascending aorta and

aortic arch excluding the supra-aortic vessels (Aoascend), and

(ii) the descending aorta (Aodescend). The left ventricular

structures included the septum and the outflow tract and

excluded trabeculation. The right ventricular structures included

the outflow tract and excluded the septum and trabeculation.

The LA excluded the appendage and pulmonary veins. The

RA included the appendage and excluded the inferior and
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superior vena cava. For the aorta the outer margin was

segmented, therefore calcifications and atheroma were included

where present.

Ground truth image segmentations were performed using

MASS software (Version 2021EXP, Leiden University Medical

Center, Leiden, The Netherlands). Segmentation was performed

on axial slices with interslice contour interpolation used where

appropriate (e.g., along the descending aorta) to speed up

the process. Multi-planar reformats were reviewed to achieve

consistent contouring between slices. For the 100 patients

in the internal test cohort contemporary standard of care

manual measurements were made; RV:LV ratio of maximal

chamber diameter and pulmonary artery: aorta ratio (PA:Ao)

of vessel diameter at the level of the PA bifurcation, both

measurements made on axial slices. Independent quality control

was performed on all manual segmentations by an experienced

medical physicist, errors and omissions were corrected by the

original observer.

Deep learning pipeline

Deep convolutional neural networks using nn-UNet

(33) were trained for cardiac localisation (Figure 1B)

and cardiac segmentation (Figure 1C). Common pre-

processing, data augmentation, and network parameters

were used for all networks, further details are provided in

Supplementary material E1.

Cardiac localisation model

A cardiac localisation model was trained to extract a volume

containing the heart and great vessels. The nine manually

segmented cardiac structures weremerged into a single structure

(combined cardiac structure) to be used as a training label.

Images and labels were pre-processed by resampling to a

4.4mm isotropic voxel size and a 128 × 128 × 320 matrix.

The localisation model allows the heart to be localised in CT

acquisitions of up to 1.4m in length, such as a chest-abdomen-

pelvis acquisition. A patch size of 128× 128× 128 and batch size

of 5 was used. Training/validation/testing was conducted using

the DL Model 2 cohort with 80/20/100 patients respectively. No

external validation was conducted.

The resulting segmented cardiac structure was used to

extract a rectangular cuboid bounding box containing the

structures of interest, a symmetrical margin of 20 voxels was

added to the bounding box. The bounding box was used to

establish the input image volume for inferences using the DL-1

and DL-2 segmentation models.

Cardiac segmentation

Two separate deep learning models were trained for

cardiac segmentation to investigate the performance gains from

increasing the training population from 50 cases to 100 cases.

Images and masks were pre-processed by extracting a bounding

box encompassing the entire manual segmentations plus a

symmetrical margin of 20 voxels. The extracted volumes were

resampled to a mean voxel spacing of 0.71 × 0.71 × 0.45mm.

The processed volume size was 214 × 210 × 467 voxels

compared to 512× 512× 751± 285 for the original images. The

two models were trained to segment the nine cardiac structures.

A patch size of 128 × 128 × 192 was used. External testing

was conducted in 20 cases. Testing was performed once for each

algorithm with no iterative development.

Cardiac segmentation model 1 (DL-1)

Training/validation/testing was conducted using the DL

Model 1 cohort of 40/10/100 patients respectively.

Cardiac segmentation model 2 (DL-2)

This was trained identically to DL-1 apart from

training/validation/testing was conducted using the DL

Model 2 cohort of 80/20/100 patients respectively. This cohort

was created by adding additional patients to the training and

validation sets from DL-1.

Statistical analysis

Segmentations were compared using an overlap-based-

metric [Dice Similarity Coefficient (DSC)], a boundary-

based-metric [Normalised Surface Distance (NSD) (34)] and

a property-related-metric to measure volumetric differences

between structures [volume intraclass correlation coefficients

(ICC)] following the recommendations of (35). ICC estimates

and their 95% confidence intervals were calculated using SPSS

statistical package (version 27, SPSS Inc, Chicago, IL) based

on a single-rater, absolute-agreement, two-way random-effects

model, ICC (2, 1). Normalised Surface Distances were evaluated

at structure specific thresholds (see Table 2) derived from the

95th percentile of the NSD measured from the three consultant

radiologists in the interobserver variability study (34). Non-

parametric Wilcoxon signed rank test was used to compare the

pairedmeans of samples populations as the DSC andNSD values

are not normally distributed. Non-parametric Spearman’s rank

order correlation coefficients were calculated as the relationship

between cardiac segmentation volumes and haemodynamic

pressure measurements were non-linear.

The threshold for statistical significance was considered a

priori to be P < 0.05. Statistical analyses were performed in

Python using the SciPy [version 1.8.0 (36)] library with plots

generated using matplotlib [version 3.4.2 (37)].
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TABLE 2 Dice similarity coe�cients (DSC) and normalised surface distances (NSD) for the three observers and DL model 2 evaluated in the

interobserver comparison cohort (n = 24).

Cardiac structure Metric Ob 1 vs. Ob 2 Ob 1 vs. Ob 3 Ob 2 vs. Ob 3 Ob 1 vs. DL-2

LV endocardial cavity Mean DSC (95%CI) 0.883 (0.865–0.902) 0.909 (0.897–0.921) 0.891 (0.873–0.910) 0.902 (0.891–0.912)

Mean NSD, τ = 4.38mm (95%CI) 0.964 (0.944–0.985) 0.936 (0.905–0.966) 0.950 (0.925–0.975) 0.949 (0.920–0.978)

LV myocardium Mean DSC (95%CI) 0.785 (0.759–0.810) 0.801 (0.780–0.822) 0.798 (0.777–0.818) 0.808 (0.784–0.833)

Mean NSD, τ = 3.56mm (95%CI) 0.962 (0.949–0.976) 0.940 (0.921–0.959) 0.948 (0.931–0.964) 0.956 (0.936–0.975)

RV endocardial cavity Mean DSC (95%CI) 0.902 (0.894–0.910) 0.915 (0.908–0.921) 0.910 (0.902–0.918) 0.924 (0.916–0.932)

Mean NSD, τ = 4.02mm (95%CI) 0.960 (0.951–0.969) 0.940 (0.927–0.952) 0.951 (0.942–0.960) 0.963 (0.947–0.978)

RV myocardium Mean DSC (95%CI) 0.482 (0.444–0.520) 0.542 (0.508–0.576) 0.537 (0.501–0.573) 0.594 (0.554–0.634)

Mean NSD, τ = 6.04mm (95%CI) 0.959 (0.949–0.969) 0.948 (0.939–0.957) 0.944 (0.933–0.956) 0.964 (0.956–0.973)

Left atrium Mean DSC (95%CI) 0.867 (0.851–0.884) 0.888 (0.871–0.904) 0.896 (0.881–0.910) 0.897 (0.874–0.919)

Mean NSD, τ = 5.20mm (95%CI) 0.955 (0.939–0.971) 0.929 (0.912–0.946) 0.967 (0.957–0.977) 0.956 (0.924–0.989)

Right atrium Mean DSC (95%CI) 0.875 (0.859–0.891) 0.892 (0.883–0.902) 0.876 (0.859–0.894) 0.897 (0.878–0.915)

Mean NSD, τ = 6.70mm (95%CI) 0.973 (0.961–0.985) 0.941 (0.925–0.958) 0.942 (0.921–0.963) 0.958 (0.924–0.991)

Ascending aorta Mean DSC (95%CI) 0.901 (0.893–0.909) 0.932 (0.928–0.936) 0.916 (0.906–0.927) 0.924 (0.919–0.930)

Mean NSD, τ = 2.51mm (95%CI) 0.969 (0.960–0.978) 0.936 (0.924–0.949) 0.950 (0.936–0.963) 0.953 (0.938–0.967)

Pulmonary arteries Mean DSC (95%CI) 0.913 (0.904–0.922) 0.830 (0.819–0.842) 0.838 (0.825–0.851) 0.934 (0.925–0.943)

Mean NSD, τ = 8.13mm (95%CI) 0.861 (0.845–0.878) 0.980 (0.971–0.988) 0.885 (0.868–0.901) 0.990 (0.981–0.999)

Descending aorta Mean DSC (95%CI) 0.879 (0.870–0.888) 0.936 (0.924–0.948) 0.900 (0.890–0.910) 0.910 (0.897–0.923)

Mean NSD, τ = 2.24mm (95%CI) 0.976 (0.957–0.994) 0.917 (0.892–0.941) 0.945 (0.926–0.964) 0.937 (0.914–0.959)

Interobserver performance comparison

Interobserver comparison was performed using DSC and

NSD for structure segmentations, and ICC for structure volume

measurements. DSC and NSD were used to evaluate the DL

segmentation models in the inter observer comparison (IOC)

cohort against individual observers and against the simultaneous

truth and performance level estimation (STAPLE) (38) ground

truth from all three observers (Supplementary Figure A). ICC

was calculated between DL-2 and observer 1.

Evaluation of deep learning pipeline

The two DL segmentation models were evaluated against

the ground truth manual segmentation from observer 1 in

the internal testing and external cohorts. DSC, NSD, volume

ICC and structure volumes were used to evaluate segmentation

accuracy and performance. The superior model based on

mean DSC and NSD was selected for further analysis in the

performance evaluation cohorts. Mean values were compared

using paired t-tests. Bland-Altman plots were used to compare

volumes between the human ground truth and the superior deep

learning model, and to compare DL model 1 and DL model 2.

In the performance evaluation cohorts failure was evaluated

visually for each structure by observer 1 who assessed failure on

a per structure basis on axial slices; multi planar reformats were

available. Failure was assessed on a three-point scale where 0 was

an ideal segmentation with no errors, 1 included minor errors

but were considered unlikely to change the volume or shape

of structures significantly, and 2 included errors considered to

significantly change structure volume or shape. A score of 2 was

considered a failure.

Invasive haemodynamic pressure correlations

Spearman rank correlations (ρ) and bootstrap 95%

confidence intervals were calculated between cardiac

segmentation parameters and invasive haemodynamics in

the internal test cohort for observer 1 and the DL-2 model. The

volume of right sided cardiac structures (RVmyo, RVvol, RA

and PA) were correlated with mean pulmonary artery pressure

(mPAP), and left sided cardiac structures (LVmyo, LVvol, LA,

Aoascend and Aodescend) were correlated with the pulmonary

artery wedge pressure (PAWP). The Steiger z test (39) was

performed to test for differences between dependent variables

for the manual and DL correlations.

Results

Results are presented for the interobserver comparison

demonstrating the human performance in multi-structure

cardiac segmentation on CTPA images. The deep learning

model performance is presented in the internal test and

external cohorts. The model trained in 100 cases (DL-

2) outperformed the model trained in 50 cases and was

selected for further analysis in qualitative analysis and for
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FIGURE 2

Box plots comparing Dice similarity coe�cients (DSC) for the segmented cardiac structures for observers 1 (AJS), 2 (KK) and 3 (CJ) and DL

model 2 in the interobserver comparison cohort (n = 24). Structures are as follows; LV endocardial cavity (LVvol), LV myocardium (LVmyo), RV

endocardial cavity (RVvol), RV myocardium (RVmyo), left atrium (LA), right atrium (RA), ascending aorta and aortic arc (Aoascend), proximal

pulmonary arteries (PA), and descending aorta (Aodescend).

correlation between segmented structure volumes and invasive

haemodynamic measurements.

Interobserver performance

Mean DSC for the three observers (Table 2; Figure 2) are

generally very high, with mean DSC for the LV cavity, RV cavity,

LA, RA, ascending aorta, descending aorta, and the pulmonary

arteries all within the range 0.830 to 0.936. The DSC for the

LV myocardium and the RV myocardium are much lower with

mean (range) of 0.795 (0.785–0.801) and 0.520 (0.482–0.542)

respectively. Volumetric ICC (2, 1) (Table 3) were excellent and

>0.89 for all structures.

Ninety fifth percentile NSD (Table 2;

Supplementary Figure B) ranged from 2.2mm for the

descending aorta to 8.1mm for the pulmonary arteries.

The value for the RV cavity is towards the higher end

of this range (6.04mm) indicating the variability of the

segmentation for human observers. The measured structure

specific 95th percentile values are used to evaluate the NSD

performance of the deep learning models. Deep learning

model 2 had NSD values of >0.95 in the IOC cohort

(Table 2) for all but two of the structures; the LV cavity and

TABLE 3 Volume ICC statistics for the three observers and DL model 2

evaluated in the interobserver comparison cohort (n = 24).

Observers Ob 1 and Ob 2 and Ob 3 Ob 1 and DL-2

Metric Volume, ICC (2, 1) (95%CI) Volume, ICC (2, 1) (95%CI)

LV endocardial cavity 0.93 (0.74–0.97) 0.93 (0.73–0.97)

LV myocardium 0.91 (0.76–0.97) 0.87 (0.02–0.97)

RV endocardial cavity 0.97 (0.92–0.98) 0.97 (0.93–0.99)

RV myocardium 0.89 (0.79–0.95) 0.92 (0.83–0.97)

Left atrium 0.97 (0.84–0.99) 0.92 (0.82–0.96)

Right atrium 0.98 (0.96–0.99) 0.97 (0.93–0.99)

Ascending aorta 0.96 (0.72–0.99) 0.96 (0.43–0.99)

Pulmonary arteries 0.94 (0.68–0.98) 0.96 (0.88–0.98)

Descending aorta 0.89 (0.50–0.96) 0.96 (0.89–0.98)

the descending aorta which had NSD values of 0.949 and

0.937, respectively.

The mean DSC, and structure specific NSD for DL-2

compared to observer 1 are comparable to the interobserver

human results for all structures and the differences between

model and human are lower than the inter-observer

reproducibility. The ICC (2, 1) between observer 1 and
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the DL-2 model are >0.87 indicating excellent correlation to

human observers.

Internal and external test performance

Evaluation of DL-1 and DL-2 in the test cohort (n = 100)

(see Figure 3; Table 4; Supplementary Figure C) demonstrated

that the additional fifty training cases used for training DL-

2 improved the overall performance of the segmentation.

DSC performance was similar for both models in the

external cohort, with it being too small a sample (n = 20)

to reach statistically significant conclusions. Bland-Altman

plots for DSC in the test cohort and evaluation cohort

are available in the Supplementary Figures D,E. Examples of

successful DL-2 segmentation in a suspected PH patients

can be found in Figures 4, 5 and Supplementary Videos A

(axial) and B (sagittal). The NSD scores in the internal test

cohort is marginally improved in DL-2 compared to DL-1

(Table 4).

Volume measurements (Table 5; Figures 6, 7) demonstrate

statistically significant differences for human derived volume

compared to the DL-2 in both the test cohorts. In the internal

test cohort, the mean LV endocardial volume has decreased

by 8ml whereas LV myocardial volume has increased by 9ml

when compared to the manual measurement. This pattern

is also seen in the RV myocardial and endocardial volumes

but to a lesser extent, suggesting that the DL model is over

segmenting thin-walled structures and transferring volume to

the myocardium from the endocardial volume as compared to

manual segmentation.

Qualitative segmentation performance

DL-2 was assessed in a large cohort (n = 1,333) of PH

and PE patients; there were 50, 30, and 21 patients with

>1, >2 and >3 structures failing, respectively. Overall, there

were a total of 148 (1.2%) structures that failed. Failure rates

for >1 structures failing (Table 6) in the two cohorts were

similar with 3.8 and 3.4% for PH and PE, respectively. The

LV myocardium had the highest failure rate which was 2.3

and 1.9% in PH and PE, respectively. Failure of the other

structures was generally in the range of 1–1.5%, except for

the descending aorta which was 0.4 and 0% in PH and

PE, respectively. Radiologists reviewed CT images to identify

potential explanations for segmentation failures. Failures were

predominantly associated with low or no contrast in one or

FIGURE 3

Box plots comparing Dice similarity coe�cient (DSC) for the segmented cardiac structures for DL model 1 vs. the manual segmentation

observer 1 (AJS) and DL model 2 vs. observer 1 in the test cohort (n = 100) and the external cohort (n = 20). Structures are as follows; LV

endocardial cavity (LVvol), LV myocardium (LVmyo), RV endocardial cavity (RVvol), RV myocardium (RVmyo), left atrium (LA), right atrium (RA),

ascending aorta and aortic arc (Aoascend), proximal pulmonary arteries (PA), and descending aorta (Aodescend).
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TABLE 4 Dice similarity coe�cients (DSC) and normalised surface distances (NSD) in the internal and external test cohorts for DL model 1 (DL-1) and DL model 2 (DL-2) 2.

Cohort Internal test cohort (n = 100) External test cohort (n = 20)

Cardiac structure Metric DL-1 DL-2 Difference p-value (t-test) DL-1 DL-2 Difference p-value

(Wilcoxon)

LV endocardial cavity Mean DSC

(95%CI)

0.911 (0.902–0.920) 0.908 (0.902–0.914) −0.003 0.42 0.903 (0.886–0.920) 0.894 (0.882–0.906) −0.009 0.10

Mean NSD, τ = 4.38mm

(95%CI)

0.957 (0.940–0.974) 0.964 (0.953–0.974) 0.007 0.38 0.948 (0.911–0.986) 0.967 (0.952–0.983) 0.019 1.00

LV myocardium Mean DSC

(95%CI)

0.816 (0.805–0.826) 0.832

(0.823–0.840)

0.016 <0.001 0.822 (0.800–0.844) 0.827 (0.808–0.847) 0.006 0.60

Mean NSD, τ = 3.56mm

(95%CI)

0.952 (0.940–0.964) 0.963

(0.955–0.972)

0.012 0.005 0.952 (0.931–0.973) 0.960 (0.947–0.974) 0.009 0.99

RV endocardial cavity Mean DSC

(95%CI)

0.919 (0.914–0.924) 0.924

(0.920–0.929)

0.005 0.03 0.899 (0.853–0.946) 0.913 (0.881–0.945) 0.013 0.73

Mean NSD, τ = 4.02mm

(95%CI)

0.956 (0.944–0.967) 0.965 (0.956–0.973) 0.009 0.07 0.932 (0.883–0.981) 0.950 (0.917–0.983) 0.018 0.25

RV myocardium Mean DSC

(95%CI)

0.577 (0.559–0.595) 0.584

(0.566–0.603)

0.007 0.01 0.582 (0.532–0.632) 0.590 (0.546–0.635) 0.008 0.55

Mean NSD, τ = 6.04mm

(95%CI)

0.954 (0.948–0.960) 0.958

(0.953–0.964)

0.004 0.04 0.946 (0.912–0.980) 0.957 (0.935–0.980) 0.011 0.16

Left atrium Mean DSC

(95%CI)

0.897 (0.886–0.909) 0.907

(0.896–0.917)

0.010 0.01 0.875 (0.839–0.911) 0.871 (0.842–0.900) −0.004 0.99

Mean NSD, τ = 5.20mm

(95%CI)

0.954 (0.937–0.970) 0.962 (0.947–0.977) 0.008 0.12 0.941 (0.890–0.992) 0.912 (0.862–0.962) −0.029 0.26

Right atrium Mean DSC

(95%CI)

0.886 (0.875–0.897) 0.898

(0.890–0.906)

0.012 0.002 0.843 (0.752–0.934) 0.875 (0.829–0.920) 0.032 0.19

Mean NSD, τ = 6.70mm

(95%CI)

0.944 (0.924–0.963) 0.967

(0.955–0.979)

0.024 <0.001 0.901 (0.812–0.989) 0.926 (0.881–0.972) 0.025 0.84

Ascending aorta Mean DSC

(95%CI)

0.924 (0.917–0.930) 0.922 (0.917–0.928) −0.001 0.62 0.926

(0.911–0.942)

0.910 (0.892–0.928) −0.017 0.02

Mean NSD, τ = 2.51mm

(95%CI)

0.936 (0.922–0.949) 0.943 (0.931–0.955) 0.007 0.21 0.946 (0.917–0.975) 0.921 (0.889–0.953) −0.025 0.14

Pulmonary arteries Mean DSC

(95%CI)

0.927 (0.922–0.933) 0.933

(0.928–0.937)

0.005 0.01 0.914 (0.887–0.940) 0.927 (0.916–0.937) 0.013 0.08

Mean NSD, τ = 8.13mm

(95%CI)

0.980 (0.973–0.988) 0.987

(0.982–0.992)

0.007 0.003 0.958 (0.912–1.005) 0.968 (0.945–0.990) 0.009 0.62

Descending aorta Mean DSC

(95%CI)

0.906 (0.895–0.917) 0.910 (0.901–0.919) 0.004 0.16 0.866 (0.849–0.884) 0.868 (0.848–0.887) 0.001 0.50

Mean NSD, τ = 2.24mm

(95%CI)

0.914 (0.898–0.929) 0.928

(0.914–0.942)

0.014 0.03 0.876 (0.852–0.900) 0.861 (0.827–0.896) −0.015 0.65

The bold values indicate the significant values at p < 0.05.
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FIGURE 4

Example of a successful segmentation by DL-2 for a patient with suspected PH in the internal test cohort.

more chambers of the heart which accounted for 40% of failures.

Pericardial effusion and chamber dilatation accounted for 24

and 18% of failures, respectively. The remaining failures were

assessed to have been caused by large hiatus hernia, artefacts due

to pacemaker/pacemaker leads, severe congenital abnormalities,

thoracic deformity, tumour and LV hypertrophy, 4% of failures

were associated with image acquisition artefacts. Failure rates

were 3.15 and 5.67% for GE and Canon scanners respectively,

p= 0.07.

Correlations with invasive
haemodynamics

Table 7 shows the correlations between mPAP for right sided

cardiac structures and PAWP for left sided cardiac structures.

The RV myocardial volume had the strongest correlation to

mPAP with Spearman rank correlation coefficient (ρ) = 0.70

for DL-2. The LA volume had the strongest correlation to

PAWP with ρ = 0.57. The DL-2 correlation was similar to

manual segmentation for all structures, with significantly higher

correlations for RVvol (0.57 vs. 0.54, p = 0.03) and for LVmyo

(0.34 vs. 0.24, p= 0.003).

Correlation is higher between mPAP and the DL volume

measurement RVmyo (ρ = 0.70) compared to the manual

contemporary standard of care measurements PV:Ao (ρ = 0.50,

p = 0.03) and RV:LV (ρ = 0.46 p < 0.001). When comparing

correlations between manual and DL PA:Ao to mPAP and

RV:LV to mPAP the manual PA:Ao correlation was found to be

significantly stronger than DL-2, ρ = 0.50 vs. ρ = 0.37, p= 0.04,

for RV:LV no significant differences were found with ρ = 0.46

and ρ = 0.45 for manual and DL respectively, p= 0.83.
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FIGURE 5

Example of a successful segmentation by DL-2 for a patient with suspected PH in the external test cohort.

Discussion

In this study we show that a deep learning multi-

structure four chamber, myocardium and great vessel CTPA

segmentation model trained in a mixed cohort of patients with

varied underlying cardiothoracic pathology has high accuracy

compared to expert cardiothoracic radiologists. Testing has

been performed in an internal cohort of patients from the

training institution, an external cohort including patients from

multiple different hospitals, CT vendors, and pathologies,

and a large cohort of patients with two different pulmonary

vascular diseases.

Two DL models were trained, the first (DL-1) using 40

training cases and the second (DL-2) using 80 training cases.

Both DLmodels performed well, with the model trained in twice

as many patients having a slight performance advantage with

mean DSC andNSD in the test cohort increasing by∼1.0%. This

improvement in performance is considered insignificant for the

additional effort (∼30 mins per case) required to generate the

manual segmentations. However, it is noted that with the DL-

2 model the number of outliers were reduced compared to DL-1

in both the internal and external test cohorts (Figure 3), this may

suggest that in some cases increasing the variety in the training

cohort by including different pathologies and demographics

may be more important than the total size of the training cohort.

In this study we achieve state-of-the-art performance in

CTPA segmentation. Prior studies have achieved DSC of 0.85

(40) and 0.92 (41) for semantic segmentation of the pulmonary

arteries compared with 0.93 in this study. For whole heart

segmentation we refer to the presented results from the multi-

modality whole heart segmentation challenge (42) in which

seven cardiac structures were segmented on CT angiography

scans. In this challenge the RV myocardium was excluded,

and the aorta was segmented as a single structure. This
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TABLE 5 Volumes of segmented cardiac structures for manual (observer 1) and DL model 2 segmentations in the internal and external test cohorts.

Cohort Internal test cohort (n = 100) External test cohort (n = 20)

Metric Mean manual

volume, ml

Mean DL-2

volume, ml

Difference, ml

(%)

p-value

(t-test)

Mean manual

volume, ml

Mean DL-2

volume, ml

Difference, ml

(%)

p-value

(t-test)

LV endocardial cavity 107.75± 39.45 99.66± 37.45 −8.09 (−7.51) <0.001 102.37± 32.23 93.27± 29.30 −9.10 (−8.89) <0.001

LV myocardium 93.35± 36.53 102.22± 33.99 8.88 (9.51) <0.001 100.87± 33.13 103.82± 27.55 2.95 (2.93) 0.17

RV endocardial cavity 188.34± 70.25 184.78± 69.22 −3.57 (−1.89) <0.001 195.92± 87.55 195.39± 89.39 −0.53 (−0.27) 0.93

RV myocardium 44.48± 19.31 49.19± 18.44 4.71 (10.60) <0.001 52.37± 30.33 52.20± 24.73 −0.17 (−0.33) 0.94

Left atrium 81.66± 52.85 83.26± 54.71 1.60 (1.95) 0.01 67.04± 41.92 71.58± 42.93 4.54 (6.77) <0.001

Right atrium 145.50± 74.50 141.16± 70.49 −4.34 (−2.98) 0.02 139.34± 53.28 135.94± 57.51 −3.40 (−2.44) 0.35

Ascending aorta 120.24± 42.31 113.95± 38.88 −6.29 (−5.23) <0.001 122.20± 41.03 109.88± 38.54 −12.32 (−10.08) <0.001

Pulmonary arteries 116.28± 49.26 115.73± 46.35 −0.55 (−0.47) 0.50 119.52± 45.20 114.19± 44.52 −5.33 (−4.46) 0.001

Descending aorta 90.80± 27.63 93.00± 28.52 2.20 (2.42) 0.01 113.62± 42.41 94.59± 30.09 −19.03 (−16.75) <0.001

FIGURE 6

Bland-Altman plots comparing manually segmented structure volumes by observer 1 (AJS) against DL model 2 in the test cohort (n = 100).

challenge was won with a whole heart segmentation DSC of

0.91, which compares very favourably with the value of 0.90

for this study if the RV myocardium is excluded. The DSC

values presented in this study exceed the highest score in

the challenge table for all right sided cardiac structures; RV

endocardial cavity 0.92 vs. 0.91, RA 0.90 vs. 0.89 and PA

0.93 vs. 0.86.

Prior studies have shown that manually derived measures

of all four cardiac chambers have clinical value in suspected

and confirmed pulmonary vascular disease. In the present

study, all structures segmented by DL-2 have excellent accuracy

assessed by DSC apart from the LV myocardium (0.83) and RV

myocardium (0.58). The low DSC of the LV and RV myocardial

measurements between DL-2 and the cardiothoracic radiology
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FIGURE 7

Bland-Altman plots comparing manually segmented structure volumes by observer 1 (AJS) against DL model 2 in the external cohort (n = 20).

observers was mirrored by poor interobserver variability of

the radiologists.

The training data for the LV myocardium and the RV

myocardium was the weakest of all the chambers. The problem

with a Dice Coefficient is that it becomes quite a crude

assessment of precision if the ground truth is noisy. If the

algorithm identified structures as belonging to the RV, and these

were missed by the manual segmentation, the algorithm would

be penalised for identifying a true positive. The DSC in the

IOC cohort (Figure 2) are similar between each observer and

DL-2 with no statistical differences, apart from the PA where

observer 3 was found to be segmenting a smaller region than the

other two observers. There is no apparent bias towards observer

1 despite all the training cases being generated by observer 1.

The volumetric ICC measured in the IOC cohort were excellent

for all observers (>0.89) and DL-2 (>0.87) demonstrating that

DSC is not the most appropriate metric for assessing thin-walled

structures. For this reason, in this study we have used DSC

alongside a boundary-based-metric (NSD) to assess the overall

segmentation performance. When evaluated using DSC or NSD

the differences between model and human is lower than the

inter-observer reproducibility within the IOC cohort. The LV

and RV myocardium DL and manual segmentations have lower

performance highlighting the challenges of segmenting these

structures on CT images.

A great challenge of AI development is achieving

generalisability of the model across different CT systems,

hospitals and diseases (22) and patient populations. The PE and

suspected PH cohorts contain patients with a wide range of

pathology, including lung disease, left heart disease, pulmonary

emboli and congenital heart disease, however the failure rate

was found to be comparable for the PE and suspected PH

cohorts suggesting good generalisability across pathologies. This

study shows similar accuracy of the DL-2 model in patients in

the internal test cohort and the external test cohort scanned at

12 hospitals on 4 different CT systems. The DLmodel was tested

and trained in a predominantly white European population

(>85% white for all cohorts) and there were insufficient patients

of other ethnicities to do a subgroup analysis to determine

any bias.

In the large PH and PE cohorts the failure rate was low,

<3.9% for failure of any structure. The pathologies causing

failures were pericardial effusions see Figure 8A, the poor

differentiation of effusion and LV myocardium primarily led to

LV epicardial contour failure. Poor contrast opacification was

a major cause of failure, see Figures 8B,C. The segmentation

Frontiers inCardiovascularMedicine 14 frontiersin.org

https://doi.org/10.3389/fcvm.2022.983859
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Sharkey et al. 10.3389/fcvm.2022.983859

performance may be improved by including additional patients

with very poor contrast in the training dataset, or alternatively

a method for identifying poor opacification prior to automated

segmentation may be desirable, as it may not be appropriate

to analyse such cases. The model generally performed well

in patients with intracardiac devices such as pacemakers, see

Figure 8D. Though failures in such cases were identified, see

Figure 8E. Local and global chamber dilatation was thought to

be the cause for several failures, see Figure 8F, and the addition

of more extreme data to the training cohort may improve the

performance of the DL model in these cases.

Correlation with mPAP was found to be significantly

higher for the DL volume measurement RVmyo (ρ = 0.70)

compared to the contemporary standard of care measurements

PV:Ao (ρ = 0.50, p = 0.03) and RV:LV (ρ = 0.46; p <

TABLE 6 Qualitative failure rates for DL model 2 in the pulmonary

embolism (PE), and pulmonary hypertension (PH) cohorts.

Cohort PH cohort (n

= 1,126)

failure rate (%)

PE cohort (n =

207) failure

rate (%)

p-value (chi

squared)

LV endocardial cavity 1.42 1.45 1

LV myocardium 2.31 1.93 0.94

RV endocardial cavity 1.51 1.45 1

RV myocardium 1.60 1.45 1

Left atrium 0.62 0.48 1

Right atrium 1.60 0.48 0.35

Ascending aorta 0.89 0.97 1

Pulmonary arteries 0.98 1.45 0.81

Descending aorta 0.44 0.00 0.73

Any structure 3.82 3.38 0.92

0.001). Despite there being bias between manual and DL

volumes for the left and right ventricular structures, the DL

volume measurement LVmyo shows a significant improvement

in the volume correlations with PAWP compared to the

manual measurement. All other correlations are comparable

between the DL model and manual. For the contemporary

standard of care diameter ratio measurements it is interesting

to note that the manual correlation for PA:Ao to mPAP is

significantly stronger for manual measurements than for the

DL measurement, whereas the RV:LV ratio has no significant

difference between manual and DL. This may indicate that

the method to extract the PA:Ao diameter ratio from the DL

segmentations requires refinement to correctly select the level

of the PA bifurcation in order to be directly comparable to the

manual measurement.

Limitations and future work

The model developed in this work is specific to ungated

CT pulmonary angiography (CTPA), however as ungated

CTPA is a very frequent examination, particularly in

the emergency department, it is important to have a DL

model that works on ungated images. The model has

been developed and tested in a predominantly white

European population, with a small external test cohort.

Future work will seek to address the limitations of

this study by testing the DL model in a large cohort of

multi-ethnicity patients.

Volumetric measurements are generated in this study,

whereas in clinical practise simple diameter measurements

tend to be made. This study has highlighted the potential

added value of DL volumetric measurements compared to

manual diameter measurements in a small cohort. Future work

TABLE 7 Correlation between cardiac structure volumes and invasive haemodynamic measurements for human (observer 1) vs. DL model 2 in the

internal test cohort (n = 100).

CTPA parameter Corresponding RHC parameter Human (ρ value) DL model 2 (ρ value) p-value

RV endocardial volume mPAP 0.54 (0.37–0.67) 0.57 (0.41–0.69) 0.03

RV myocardial volume mPAP 0.68 (0.56–0.77) 0.70 (0.57–0.78) 0.52

Right atrial volume mPAP 0.41 (0.24–0.55) 0.41 (0.24–0.56) 0.76

Pulmonary arterial volume mPAP 0.49 (0.32–0.63) 0.51 (0.34–0.64) 0.24

PA:Ao diameter ratio mPAP 0.50 (0.31–0.65) 0.37 (0.15–0.55) 0.04

RV:LV diameter ratio mPAP 0.46 (0.27 – 0.61) 0.45 (0.25 – 0.61) 0.83

LV endocardial volume PAWP 0.23 (0.00–0.43) 0.26 (0.05–0.46) 0.16

LV myocardial volume PAWP 0.24 (0.03–0.43) 0.34 (0.13–0.52) 0.003

Left atrial volume PAWP 0.57 (0.39–0.70) 0.57 (0.38–0.70) 0.87

Ascending aorta volume PAWP 0.20 (0.00–0.38) 0.17 (-0.02–0.36) 0.33

Descending aorta volume PAWP 0.15 (-0.05–0.35) 0.19 (-0.03–0.38) 0.23

PA:Ao, pulmonary artery to aorta diameter ratio at the level of the PA bifurcation; RV:LV, RV to LV ratio for the maximal mid chamber diameter; mPAP, mean pulmonary artery pressure;

PAWP, pulmonary arterial wedge pressure; ρ, Spearman’s correlation coefficient. Values in parentheses are 95% CI.
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FIGURE 8

(A) Segmentation failure in the LV myocardium in the presence of pericardial e�usion. (B) Failure of segmentation of right sided cardiac

structures with poor right sided contrast opacification. (C) Segmentation failure apically with globally poor contrast opacification. (D) Example

showing success in the presence of an intracardiac device. (E) Segmentation failure in the region of an intracardiac device. (F) Failure in right

atrial segmentation with severe dilatation.

will be to refine the extraction of diameters and ratios and

compare with manual approaches used in clinical practise.

Further investigation of whether volumetric parameters are of

greater clinical significance is required, and the development of

diagnostic and prognostic CTPAmodels for different pulmonary

vascular diseases.

Conclusion

Based on our knowledge, this study presents the first
multi-structure four chamber cardiac and great vessel
segmentation model that has been developed for CTPA

images. We have achieved state of the art accuracy and low
failure rates during testing in heterogeneous internal and

external cohorts with a wide variety of pulmonary vascular

disease. We have used a rigorous testing methodology to

evaluate the model and demonstrate that the model is

generalisable across different CT vendors and hospitals

with differing acquisition protocols. The model has been

assessed in different pulmonary vascular diseases with

no differences in failure rates identified. The segmented

results are highly reproducible compared to multi-structure

segmentation performance for expert cardiothoracic

radiologists which has been measured in an interobserver

comparison study.

Imaging biomarkers based on deep learning volumetric

measurements of cardiac structures show strong correlation

with invasive haemodynamic measurements and are equal to,

or outperform, human volume measurements. Furthermore,

the volumetric measurements show superior correlation to

invasive haemodynamics than the current standard of care

diagnostic measurements (RV:LV and PA:Ao ratio), offering the

potential for diagnostic and prognostic models from routine

CTPA imaging.
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