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Pyroptosis is primarily considered a pro-inflammatory class of caspase-1- and

gasdermin D (GSDMD)-dependent programmed cell death. Inflammasome

activation promotes the maturation and release of interleukin (IL)-1β and

IL-18, cleavage of GSDMD, and development of pyroptosis. Recent studies

have reported that NLRP3 inflammasome activation-mediated pyroptosis

aggravates the formation and development of diabetes cardiomyopathy

(DCM). These studies provide theoretical mechanisms for exploring a novel

approach to treat DCM-associated cardiac dysfunction. Accordingly, this

review aims to summarize studies that investigated possible DCM therapies

targeting pyroptosis and elucidate the molecular mechanisms underlying

NLRP3 inflammasome-mediated pyroptosis, and its potential association

with the pathogenesis of DCM. This review may serve as a basis for the

development of potential pharmacological agents as novel and effective

treatments for managing and treating DCM.
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Introduction

Diabetes and heart failure have a bidirectional link. The prevalence of diabetes
in patients with heart failure caused by cardiomyopathy ranges from 10 to 40% (1).
Meanwhile, heart failure is a common and serious cardiovascular complication in
patients with diabetes. The Framingham Heart Study showed that the incidence of heart
failure is two- to fivefold higher in patients with diabetes compared with that in healthy
individuals (2). In addition, pre-diabetes is also related to an elevated risk of heart failure,
and the relative risks is 1.09–1.40 according to different diagnosis criteria (3). Notably,
both pre-diabetes and diabetes are associated with an increasing risk of cardiac events
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and mortality in patients with heart failure (4, 5). Therefore,
glycometabolism disorder is an important hazard factor for
heart failure, and the two potential mechanisms are as
follows: promoting the development of coronary atherosclerotic
stenosis, which leads to ischemic heart disease characterized
by systolic dysfunction; and more importantly, the classic
presentation of diabetes, namely, diabetes cardiomyopathy
(DCM) (1).

Diabetes cardiomyopathy is characterized by cardiac
changes in function, metabolism, and structure without
typical chronic cardiovascular complications, such as valvular
heart disease, hypertension, and ischemic heart disease
(6). DCM is the most frequent complication of diabetes
and causes myocardial fibrosis, ventricular enlargement,
and cardiac dysfunction, ultimately leading to clinical
heart failure (7–9). Owing to its substantial impact on
individuals cardiovascular health and lack of relevant targeted
therapy, the pathogenesis of DCM has been a trending
theme of research.

The abnormal metabolism of DCM is primarily due
to myocardial tissue insulin resistance, compensatory
hyperinsulinemia, and hyperglycemia, resulting in several
conditions, including glycolipid metabolic disorders, oxidative
stress, and advanced glycation end product deposition (1,
10). Previous review had well summarized the mechanisms
of DCM, such as mitochondrial dysfunction, endoplasmic
reticulum stress, and inflammation (11–13). Among the
multiple mechanisms of DCM, cardiomyocyte death is a
terminal pathway during the development of DCM, following
by systolic dysfunction, myocardial compensatory hypertrophy,
cardiac fibrosis, and electrocardiographic conduction disorder
(14). Previous studies have analyzed that development of
DCM caused by cardiomyocyte death, involving apoptosis,
autophagy, necrosis, and entosis, and recent evidence obtained
using electron microscopy has shown that pyroptosis-
regulated cell death (pyroptosis) is a key pathogenetic
factor in diabetes and DCM (15–17). Subsequently, an
increasing number of pre-clinical studies have investigated the
association between pyroptosis and DCM. Several molecular
mechanisms have been elucidated, however, further related
research is warranted.

Mechanisms of pyroptosis

Pyroptosis presented as programmed and inflammatory
cell death and characterized by caspase-1- and gasdermin D
(GSDMD)-mediated formation of plasma membrane pores,
following by cell lysis and the secretion of proinflammatory
cytokines, such as IL-1β and IL-18, and cellular component
(18). Pathogen associated molecular patterns (PAMPs) and
damage associated molecular patterns (DAMPs) are identified
by pattern recognition receptors (PRRs) to activate the

intrinsic immune reaction (19–22). PRRs is divided into
cell membrane PRR and cytoplasmic PRR according to
receptors site. The former is expressed on the membrane
of immunocyte, commonly known as Toll-like receptors
(TLRs), which can identify the exogenous infection signals
of the intracellular environment (20). The latter expressed
in cytoplasm, it can identify invasive pathogens; The most
common are retinoic acid-inducible gene I-like receptors, absent
in melanoma 2 (AIM2)-like receptors (ALRs) and nucleotide-
binding oligomerization domain (NOD)-like receptors (NLRs)
(22–25).

When the ALRs and NLRs recognize DAMPs and PAMPs,
the caspase-1 activated complex initiates assembly, this
process is called formation of inflammasome (26). Further,
it was regard as a processor of pro-caspases-1 to active
caspase-1, which subsequently promoting maturation and
release of IL-1β and IL-18 from precursor (26). Thus,
inflammasome mainly contain three components: caspase-
1, apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC), and receptors. According to
different receptors, inflammasomes mainly classified as AIM2,
NOD-like receptor protein 1 (NLRP1), NLRP3, NLR family
CARD-domain containing protein 4 (NLRC4), and NLRP6
inflammasomes. Although multiple kinds of inflammasomes
are being intensively studied, NLRP3 inflammasome is
currently the most studied, with the most abundant relevant
evidence, and the most widely involved in inflammatory and
immune diseases. Importantly, accumulating studies have
revealed that NLRP3 inflammasome-mediated pyroptosis
plays a significant role in inducing the formation and
development of DCM. Thus, our current review aims to
elucidate the molecular mechanisms of NLRP3 inflammasome-
mediated pyroptosis and its potential association with the
pathogenesis of DCM (Figure 1). Finally, we summarized
the progress of clinical drug research for DCM targeting
pyroptosis (Table 1).

Pre-clinical diabetes
cardiomyopathy treatments
targeting nucleotide-binding
oligomerization domain-like
receptor protein 3
inflammasome-mediated
pyroptosis

Natural extracts

Cardiac pumping dysfunction in DCM is mainly due
to cardiomyocyte injury and death. Thus, suppressing
pyroptosis in cardiomyocytes is important. Gypenosides,
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FIGURE 1

Pre-clinical treatment for DCM targeting NLRP3 inflammasome mediated pyroptosis. DCM, diabetes cardiomyopathy; GSDMD, gasdermin D;
H2, hydrogen; H2S, hydrogen sulfide; METTL14, methyltransferase-like 14; BMP-7, bone morphogenetic protein-7; ELAVLP1, ELAV like protein 1;
mtROS, mitochondrial reactive oxygen species.

the principal component of Gynostemma, exert various
cardiovascular protective effects, such as reducing blood
pressure, improving lipid and glucose metabolism, and
inhibiting inflammation (27, 28). Zhang et al. reported that
gypenosides can ameliorate high glucose-induced DCM by
inhibiting reactive oxygen species (ROS)- and cytochrome
c-mediated NLRP3 inflammasome activation and pyroptosis
(29). Skimmin is a coumarin and glycoside with several
biological activities, including antifibrosis, antioxidation, and
anti-inflammation (30, 31). A recent study has shown that
skimmin protects against streptozotocin (STZ)-induced
DCM by improving autophagy and inhibiting NLRP3
inflammasome-mediated pyroptosis in rat cardiac tissues.
Therefore, ginsenosides and skimmin are promising therapeutic
drugs for DCM treatment.

Non-coding RNAs

Studies in recent years have recognized the important
physiological roles of non-coding RNAs (ncRNAs), including
circular RNAs (circRNAs), long ncRNAs (lncRNAs), and
microRNAs (miRNAs) (32). These ncRNAs are related to DCM

through transcriptional and post-transcriptional regulation but
not directly involved in protein translation. For example,
miRNA-9 expression is downregulated in the cardiac tissue
of patients with diabetes and in cardiomyocytes treated with
high glucose (33). Furthermore, miRNA-9 mimics inhibit
pyroptosis (determined from the caspase-1 and IL-1β levels) in
cardiomyocytes by targeting ELAV-like protein 1 to ameliorate
hyperglycemia-induced DCM (33). Moreover, Li et al. observed
that miR-30d level was increased and in STZ-treated diabetic
rat hearts and high glucose-induced cardiac cell. Next, miR-
30d was proved to inhibit Forkhead box O3 activities (apoptosis
inhibitor) and exacerbates pyroptosis in DCM (34).

Xu et al. confirmed that GAS5 sponges miR-34b-3p
to promote aryl hydrocarbon receptor expression and
subsequently suppresses NLRP3 inflammasome-mediated
pyroptosis in cardiomyocytes to alleviate DCM (35).
Interestingly, Yang et al. reported that caspase-1-associated
circRNA (hsa_circ_0076631) also sponges miR-214-3p
(endogenous) to enhance high glucose-treated NLRP3
inflammasome activation and pyroptosis in cardiomyocytes
(36). In addition, epigenetic regulation of lncRNAs can be
modified by N6-methyladenosine (m6A), whose level and
activity impact cell pathophysiology (37). Recent research
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TABLE 1 Clinical registered studies for diabetic cardiomyopathy targeting pyroptosis.

Registration
time

Identifier Phase Study title Conditions Interventions Status Primary outcome
measures

2012 NCT01752842 Unknown Lipid Biomarkers for Diabetic
Heart Disease

. Type 2 diabetes mellitus

. Diabetes complications
Drug: fenofibrate
Drug: placebo

Completed Change in cardiac diastolic
function as measured by E′ and
fractional shortening percent

2019 NCT04200586 IV The Effects of SGLTi on Diabetic
Cardiomyopathy (SGLTi)

. Type 2 diabetes

. Heart failure with reduced
ejection fraction

Drug: dapagliflozin
Drug: placebo

Active, not
recruiting

Rate of change in myocardial T1
values with manganese enhanced
cardiac MRI

2019 NCT01803828 IV REmodelling in Diabetic
CardiOmyopathy: Gender
Response to PDE5i InhibiTOrs
(RECOGITO)

. Diabetic cardiomyopathy

. Diabetes mellitus type 2
Drug: tadalafil
Drug: placebo

Completed Change from baseline in left
ventricular torsion

2019 NCT04141475 Unknown Evaluation of Alpha-Lipoic Acid
in Diabetic Cardiomyopathy
(CARDIALA)

. Diabetic cardiomyopathies Drug: physiomance acide
lipoïque gold
Drug: placebo

Recruiting Change of LVEF between before
and after 12 weeks of treatment

2020 NCT04591639 IV The DAPA-MEMRI Trial
(DAPA-MEMRI)

. Heart failure

. Diabetic cardiomyopathies
Drug: dapagliflozin
Drug: placebo

Recruiting Change in myocardial perfusion
reserve index

2022 NCT04083339 III Safety and Efficacy of AT-001 in
Patients With Diabetic
Cardiomyopathy

. Diabetic cardiomyopathy Drug: AT-001
Drug: placebo

Recruiting Peak VO2 during
cardio-pulmonary exercise test
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has reported that the overexpression of the lncRNA TINCR
enhances cardiomyocyte NLRP3 inflammasome activities,
pyroptosis, and DCM, and the epigenetic regulation of
TINCR is controlled by methyltransferase-like 14-mediated
m6A methylation.

In addition to cardiomyocytes, cardiac fibroblasts are also
vulnerable to high glucose levels and exacerbate fibrosis and
DCM. Yang et al. reported that lncRNA Kcnq1ot1 activates the
caspase-1 and TGF-β1 pathways to aggravate fibrosis and DCM
by sponging miR-214-3p in cardiac fibroblasts. Moreover, miR-
21-3p expression in cardiac fibroblasts is upregulated under STZ
treatment, whereas functional inhibition of miR-21-3p improves
pyroptosis and collagen deposition by elevating the androgen
receptor. These studies demonstrate that ncRNAs play crucial
roles in DCM pathogenesis.

Endogenous gaseous signaling
molecules

Endogenous gas signaling molecules serve important
physiological and pharmacological functions and are
associated with diabetes and related complications. Kar
et al. found that hydrogen sulfide can be regulated by physical
exercise and serves as a cardioprotective antioxidant that
suppresses the activation of NLRP3, IL-1β, IL-18, and
caspase-1 (38). Another recent study has demonstrated
that hydrogen inhibits cardiomyocyte pyroptosis in cardiac
fibroblasts by blocking the AMPK/mTOR/NLRP3 signaling
pathway and improves fibrosis by inhibiting the TGF-
β1/Smad signaling pathway (39). Moreover, hydrogen,
as a therapeutic antioxidant, can reduce intracellular
oxygen free radicals and inhibit ROS production (40).
Thus, hydrogen inhibits the pathogenesis of DCM through
multiple pathways. Hydrogen sulfide and hydrogen have been
validated as gaseous signaling molecules that prevent DCM by
alleviating pyroptosis.

Exogenous protein molecules

Bone morphogenetic protein-7 (BMP-7), also known
as osteogenic protein-1, is used in clinical medicine
to treat osteoporosis and fracture (41). BMP-7 inhibits
inflammation and improves neovascularization (42, 43).
Furthermore, BMP-7 inhibits NLRP3 inflammasome-
mediated pyroptosis by blocking Nek7/GBP5 signaling
to improve deleterious cardiac function and remodeling
(44). Exendin-4, a glucagon-like peptide-1 analog, has an
extended half-life because it avoids the clearance of dipeptidyl
peptidase IV (45). Numerous studies have emphasized its
protective effects on glucose metabolism and cardiac function
(46). Additionally, exendin-4 inhibits pyroptosis via the

ROS/AMPK/TXNIP/NLPR3 pathway, indicating that exendin-
4 is a potential therapeutic drug for DCM (47). Secreted
frizzled-related proteins (SFRPs) are a family of secreted
proteins, and they were characterized by negative regulation
of pyroptosis through Wnt/β-catenin and Notch signaling
pathways in cardiovascular disease and inflammatory disease
(48, 49). Recent study demonstrated that SFRP5 is a powerful
prognostic assessment factor of heart failure for patients
with type 2 diabetes (T2D). Thus, SFRPs may be a novel and
potential exogenous inhibitory molecules of DCM by targeting
pyroptosis (50). It is innovative and significant to carry out
related research.

Clinical diabetes cardiomyopathy
therapies targeting pyroptosis

Sodium-glucose cotransporter-2
inhibitors

Sodium-glucose cotransporter-2 (SGLT2) inhibitors are
a relatively new type of hypoglycemic drug that increases
urinary glucose excretion for the treatment of T2D (51, 52).
Several clinical trials have revealed that SGLT2 inhibitors
exert powerful cardiovascular protective effects, such as
empagliflozin, canagliflozin, and dapagliflozin, on patients
with T2D (53–55). Furthermore, the EMPRISE trial verified
that empagliflozin decreases the risk of hospitalization for
heart failure in patients with T2D (56). However, these
cardiovascular protective effects of SGLT2 inhibitors cannot
be attributed merely to their hypoglycemic and natriuretic
effects. Pre-clinical studies revealed that SGLT2 inhibitors
attenuate myocardial oxidative stress, fibrosis, and DCM
by inhibiting NLRP3 inflammasome-mediated pyroptosis in
diabetic mouse heart (57–59). To date, clinical studies
confirming that SGLT2 inhibitors can improve DCM are
lacking, although two related clinical trials are in progress.
The DAPA-MEMRI trial (Identifier: NCT04591639) enrolled
heart failure patients with T2D from October 2020 to
explore the protective effects of SGLT2 inhibitors on cardiac
function and remodeling by using cardiac magnetic resonance
imaging (MRI) and echocardiography (Table 1). The results
of this study provide direct evidence that SGLT2 inhibitors
can improve DCM in humans. However, the other study
(Identifier: NCT04200586) has not recruited participants yet
(Table 1). These results suggest that SGLT2 is a promising drug
for DCM treatment.

Phosphodiesterase type 5 inhibitors

Cyclic guanosine monophosphate-phosphodiesterase type
5 (PDE5) inhibitors have gained attention because they can
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alleviate cardiac stress responses and improve hypertrophy
and cardiac damage from multiple adverse stimuli in clinical
and pre-clinical studies (60, 61). Early studies in men with
heart failure and preserved ejection fraction showed that PDE5
inhibitors improved pulmonary pressure, cardiac geometry, and
pump function (62). A recent RECOGITO study (Identifier:
NCT01803828) has enrolled 122 men and women with well-
controlled T2D and revealed that treatment with 20 mg tadalafil
for 20 weeks can significantly mitigate DCM in men but not in
women (63) (Table 1).

Mechanistically, PDE5 inhibitors exert protective effects on
the cardiovascular system by activating protein kinase G (PKG),
PKG-dependent hydrogen sulfide generation, nitric oxide
expression, and glycogen synthase kinase-3β phosphorylation
(64–66). In addition to hydrogen sulfide-mediated NLRP3
activation (38, 39), the PDE-5 inhibitor TPN171H, an icariin
derivative, displays significant anti-inflammatory activities via
suppressing NLRP3 inflammasome-mediated pyroptosis via
cathepsin B (67–69). These results indicate that PDE5 inhibitors
provide cardioprotection against DCM by inhibiting NLRP3
inflammasome-mediated pyroptosis; however, direct evidence
is still lacking.

Aldose reductase inhibitors

Aldose reductase, as a polyol pathway enzyme, is significant
upregulated in the conditions of oxidative stress and is the
important inducer of the ROS related inflammatory response
in diabetes (70). Pal et al. demonstrated that aldose reductase
inhibitors prevent NLRP3 inflammasome-mediated pyroptosis
and cytokine release in monocytes and STZ-induced diabetic
mouse heart (71). Thus, aldose reductase inhibitors targeting
NLRP3 inflammasome-mediated pyroptosis may be potential
agents for DCM treatment. To the best of our knowledge,
only one phase III trial (Identifier: NCT04083339) has been
conducted to test the safety and efficacy of AT-001 (aldose
reductase inhibitor) in patients with DCM. Although this study
was started on 10 September 2019, the anticipated results have
not been published yet (Table 1).

Fenofibrate

Fenofibrate is a peroxisome proliferator-activated receptor
α agonist that has been widely used in the clinic for
several decades because of its remarkable effect of reducing
triglycerides (72). It can ameliorate diabetic retinopathy and
stimulate angiogenesis by deregulating the activity of the
NLRP3 inflammasome in STZ-induced diabetic mice (73,
74). Fenofibrate exerts a considerable protective effect on the
heart, but whether it can ameliorate DCM remains unclear.
A randomized controlled study (Identifier: NCT01752842)

tested whether 160 mg fenofibrate per day for 12 weeks can
improve heart muscle function in patients with T2D (Table 1).
However, results of this study revealed no significant difference
in cardiac diastolic function as measured by E′ (cm/s) and
fractional shortening percentage between the placebo and
fenofibrate groups.

Alpha-lipoic acid

Alpha-lipoic acid (ALA), also known as thioctic acid, is a
vitamin-like sulfur-containing organic compound abundant in
human organs and tissues (75). Early studies demonstrated that
ALA is involved in improving hyperglycemia and deregulating
inflammation (76–78). Recent studies have reported that
ALA alleviates dyslipidemia and inflammation by modulating
NLRP3 inflammasome activation in rats with high-fat diet-
and STZ-induced T2D (79, 80). A randomized controlled
study (Identifier: NCT04141475) involving patients diagnosed
with diabetes from October 2019 evaluated the effect of ALA
(Physiomance Acide Lipoïque Gold) in DCM by measuring the
left ventricular ejection fraction (Table 1). The results of this
study are worth investigating further.

Conclusion and perspectives

Pyroptosis is primarily considered a pro-inflammatory
class of caspase-1- and GSDMD-dependent programmed cell
death via the NLRP3 inflammasome. An increasing number
of preclinical studies have emphasized that pyroptosis, which
is different from apoptosis and necrosis, is involved in
the pathogenesis of DCM. For example, natural extracts
(derivatives), ncRNAs, endogenous gaseous molecules, and
exogenous proteins have been explored and recognized for
their key roles in pyroptosis and DCM. These studies offer
theoretical mechanisms for developing new drugs to treat
DCM-related cardiac dysfunction in the future. In addition,
some clinical studies are actively exploring marketed drugs
that may treat DCM, such as SGLT2 inhibitors, PDE5
inhibitors, aldose reductase inhibitors, fenofibrate, and ALA.
The pharmacology of these drugs involves the inhibition of
NLRP3 inflammasome-mediated pyroptosis. Thus, they may be
the earliest evidence-based medicine for clinical use. However,
basic and clinical investigations are still warranted to establish
novel and effective treatments targeting pyroptosis for managing
and treating DCM.
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