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Background: Single nucleotide polymorphisms that a�ect RNA modification

(RNAm-SNPs) may have functional roles in coronary artery disease (CAD). The

aim of this study was to identify RNAm-SNPs in CAD susceptibility loci and

highlight potential risk factors.

Methods: CAD-associated RNAm-SNPs were identified in the

CARDIoGRAMplusC4D and UK Biobank genome-wide association

studies. Gene expression and circulating protein levels a�ected by the

RNAm-SNPs were identified by QTL analyses. Cell experiments and Mendelian

randomization (MR)methodswere applied to test whether the gene expression

levels were associated with CAD.

Results: We identified 81 RNAm-SNPs that were associated with CAD or

acute myocardial infarction (AMI), including m6A-, m1A-, m5C-, A-to-I- and

m7G-related SNPs. The m6A-SNPs rs3739998 in JCAD, rs148172130 in

RPL14 and rs12190287 in TCF21 and the m7G-SNP rs186643756 in PVT1

were genome-wide significant. The RNAm-SNPs were associated with gene

expression (e.g., MRAS, DHX36, TCF21, JCAD and SH2B3), and the expression

levels were associated with CAD. Di�erential m6A methylation and di�erential

expression in FTO-overexpressing human aorta smooth muscle cells and

peripheral blood mononuclear cells of CAD patients and controls were

detected. The RNAm-SNPs were associated with circulating levels of proteins

with specific biological functions, such as blood coagulation, and the proteins

(e.g., cardiotrophin-1) were confirmed to be associated with CAD and AMI in

MR analyses.

Conclusion: The present study identified RNAm-SNPs in CAD susceptibility

genes, gene expression and circulating proteins as risk factors for CAD and

suggested that RNA modification may play a role in the pathogenesis of CAD.
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Introduction

Coronary artery disease (CAD) is the leading global cause

of death (1). As an archetypal common complex disease, a

person’s risk of developing CAD is modulated by a combination

of genetic and environmental factors (2). Family-based and

twin-pair studies showed that CAD is partly heritable due

to genetic and possibly epigenetic factors, and its broad-

sense heritability has been estimated to be between 40 and

60% (3). Over the past decade, great progress has been

made in understanding the genetics of CAD (4). Genome-

wide association studies (GWASs) have provided valuable

clues to the understanding of the pathophysiology of this

complex disease. More than 100 CAD-associated loci have

been identified by previous large-scale GWAS (5–11). Some

genetic variants in the identified loci have been shown to

affect gene expression. However, most of their functions remain

largely unknown.

Since the first discovery of modifiable nucleosides, more

than 170 distinct RNA modification types have been detected

in all types of RNA molecules (12, 13). Modifiable RNA

modifications are involved in the regulation of various

biological processes in eukaryotic cells (14). In the study of

posttranscriptional gene regulation, RNA modifications are

becoming increasingly important. Several RNA modification

types, including m6A (N6-adenosine methylation), m6Am

(N6,2’-O-dimethyladenosine), m7G (N7-methylguanosine),

m1A (N1-adenosine methylation), m5C (5-methylcytidin),

m5U (5-methyluridine), Nm (ribose 2’-O-methylation),

pseudouridine and A-to-I RNA editing, have been explored

since sufficiently sensitive high-resolution transcriptome-wide

techniques are available. N6-methyladenosine (m6A) is the

most common reversible RNA methylation that plays roles in

nearly every aspect of the mRNA lifecycle and in various disease

processes (15). m6Amethylation has become a research hotspot.

Recently, genetic variants, e.g., RNA modification-related SNPs

(RNAm-SNPs), that impact several types of RNA modifications

by changing the modification target sites or RNA sequences

around modifiable nucleotides have been highlighted (16).

The RNAm-SNPs in CAD-associated genomic loci may have

impacts on RNA modifications and may be putative functional

variants for CAD. However, studies on the relationship between

RNAm-SNPs and CAD are very scarce.

The identification of RNAm-SNPs as functional variants

should help with the translation of GWAS signals into causal

mechanisms and clinical applications. The aim of this study was

to evaluate the impacts of RNAm-SNPs on CAD using publicly

available GWAS summary datasets. Quantitative trait locus

(QTL) analysis, cell experiments and Mendelian randomization

(MR) analysis were performed to identify the role of

the RNAm-SNPs.

Methods

Determination of RNAm-SNPs for CAD

The RNAm-SNPs annotation information was obtained

in the RMVar database (http://rmvar.renlab.org/download.

html), which contains 1,678,126 RNAm-SNPs related to

the nine kinds of RNA modifications (m6A, m5C, m5U,

m7G, m1A, m6Am, 2
′
-O-Me, A-to-I and pseudouridine)

(17). In the RMVar database, the RNAm-SNPs are

classified into three categories according to confidence

levels: high, medium and low. RNAm-SNPs determined by

single-nucleotide resolution experiments (e.g., miCLIP, m6A-

Label-seq, BS-Seq and DART-seq) have high confidence.

RNAm-SNPs obtained from MeRIP-Seq experiments

were defined as having a medium confidence level. m6A

sites with low confidence levels were predicted by a

statistical model.

We obtained functional interpretations for CAD

GWAS signals by integrating novel RNA modification

annotations (i.e., RNAm-SNPs) and summary data from

the CARDIoGRAMplusC4D CAD GWAS (7). The GWAS

examined the associations between genome-wide SNPs

and CAD risk in approximately 185 thousand individuals,

mainly (77%) of European descent. The raw data used in

our analysis were summary statistics downloaded at http://

www.cardiogramplusc4d.org/data-downloads/. The dataset

embodied effect size (beta), standard error and P values

of associations between approximately 9.5 million SNPs

and CAD.

We also annotated RNAm-SNPs in UK Biobank

GWAS summary data of acute myocardial infarction

(AMI, ICD-10 code: I21). The UK Biobank AMI GWAS

included 8,764 AMI patients and 443,500 controls (18).

GWAS summary data of AMI (ICD-10 code: I21) were

obtained at http://geneatlas.roslin.ed.ac.uk/downloads/. The

dataset comprises summary statistics of the genome-wide

associations between 9,113,133 imputed variants and AMI

analyzed in the linear mixed models. Detailed information

on the GWAS can be identified in previous UK Biobank

publications (19).

When the GWAS summary data files were downloaded,

the CAD-associated SNPs were selected (P < 1.0 × 10−4

were considered). Then, the dataset containing the CAD-

associated SNPs was combined with the RNAm-SNP annotation

files based on the “rs ID numbers” column using the

“merge” function of the R program. By this combination,

the SNPs in GWAS summary datasets were annotated

according to the RNA modification annotations of the

RNAm-SNP sets. Then, RNAm-SNPs associated with CAD

were identified.
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eQTL analysis for the RNAm-SNPs

RNA modification plays a critical role in gene expression

regulation. Therefore, CAD-associated RNAm-SNPs may

influence gene expression by affecting RNA modification.

We performed gene expression QTL (eQTL) analysis to

further elaborate the association between the CAD-associated

RNAm-SNPs and mRNA expression levels in several types

of tissues. We carried out cis-acting eQTL analysis in

different cells and tissues to obtain functional evidence for

the RNAm-SNPs by searching data from the HaploReg

browser (http://archive.broadinstitute.org/mammals/haploreg/

haploreg.php) (20). Signals in 10 relevant tissues (coronary

artery, aortic artery, tibial artery, atrial appendage, left

ventricle, liver, visceral omentum adipose, subcutaneous

adipose, adrenal gland and pancreas) and whole blood cells

were considered.

SMR analysis

We performed a summary data–based Mendelian

randomization (SMR) (21) analysis to identify associations

between gene expression levels and CAD by integrating

eQTL data from the GTEx project (22) with the

CARDIoGRAMplusC4D GWAS data. The eQTL datasets

that contain summary statistics of gene expression levels

in 10 relevant tissues (coronary artery, aorta artery, tibial

artery, atrial appendage, left ventricle, liver, visceral omentum

adipose, subcutaneous adipose, adrenal gland and pancreas)

and whole blood cells were used in the analysis (http://

cnsgenomics.com/software/smr/#DataResource). The CAD

summary statistics required in the SMR analysis were

sorted from the CARDIoGRAMplusC4D GWAS datasets.

In SMR analysis, the top-associated eQTL for each gene

was used as an instrumental variable to examine association

with CAD.

SMR software (version 0.712) was used with default

parameters. Genotype data from HapMap r23 CEU were used

as a reference panel to calculate the correlation matrix for

SNPs analyzed in SMR. The significance threshold was adjusted

with Bonferroni correction. The genome-wide significance

threshold for the SMR analysis was 5.0 × 10−5. Meanwhile,

the heterogeneity in dependent instruments (HEIDI) test was

performed to test the ‘no horizontal pleiotropy’ assumption, the

basic assumption of MR study. The HEIDI test was conducted

to examine whether there was a single causal SNP affecting CAD

and gene expression. Multiple testing correction is not required

in the HEIDI test, as Zhu et al. did in the original paper of this

method (21). Genes without heterogeneity (PHEIDI ≥ 0.05) were

considered. The results of the HEIDI tests are presented in the

Supplementary Tables S1–S6.

Cell culture and transfection

We attempted to determine whether the interference of

RNAm-SNPs on m6A methylation and gene expression affects

CAD. FTO is an RNA demethylase whose major substrate is

m6A methylation and is an important regulator of mRNA

expression. Overexpression of FTO decreased m6A levels

on RNA (23). We therefore compared the effect of FTO

overexpression on m6A modification and the expression of

the genes identified to be affected by the RNAm-SNPs in

human aorta smooth muscle cells (HASMCs). The HASMCs

were purchased from ScienCell (Catalog #6110, San Diego, CA,

USA). On receiving them, cells were seeded into each well of

6-well plates at a concentration of 2 × 106 cells per plate and

cultured in SmoothMuscle Cell Medium supplemented with 2%

fetal bovine serum (Catalog #0010; Thermo Fisher Scientific),

1% smooth muscle cell growth supplement (Catalog #1152)

and 1% penicillin/streptomycin solution (Catalog #0503). Cells

were grown at 37◦C in a humidified 5% CO2 incubator. The

medium was replaced every 48 h. When cells were cultured

to subconfluence, they were subcultured with 0.25% trypsin-

EDTA (Gibco, Life Technology, USA) at a ratio of 1:3.

HASMCs from passages 5 to 7 were used in the following

experiments. For adenovirus-mediated overexpression, Ad-

FTO (Vigenebio, Shandong, China) was added to the culture

medium, and HASMCs were transfected with Ad-FTO at

a multiplicity of infection of 100 at 37◦C. The transfected

HASMCs were incubated for an additional 48 h. A recombinant

adenovirus encoding enhanced GFP (Ad-GFP) was used as a

negative control.

MeRIP-seq and RNA-seq

RNA was extracted from peripheral blood mononuclear

cells (PBMCs) of five CAD patients and five healthy controls

(24) and from FTO-overexpressing HASMCs (n = 3) and

control HASMCs (n = 3) for MeRIP-seq and RNA-seq.

The MeRIP-seq experiment was conducted by Guangzhou

Epibiotek Co., Ltd. (Guangzhou, China) in compliance with our

previously published procedure (24) with slight modifications.

Briefly, RNAs were fragmented into 100 nt fragments after

removing rRNA with a Ribo-Zero rRNA Removal Kit (Illumina,

MRZG12324). A strand-specific RNA library was constructed

using 10 ng fragmented RNA in accordance with the UTP

method. The remaining fragmented RNA was incubated with

anti-m6A polyclonal antibody (Synaptic Systems, 202003) in

immunoprecipitation (IP) buffer at 4◦C for 2 h. The mixture

was then immunoprecipitated with protein-A beads (Thermo

Fisher Scientific) at 4◦C for an additional 2 h. Then, the

immunoprecipitated RNA was eluted from the beads with N6-

methyladenosine (Berry & Associates, PR3732) in IP buffer

and extracted with TRIzol reagent (Thermo Fisher Scientific,
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15596026). Purified RNA (the m6A IP and the input samples

without IP sample each) was used for RNA-seq library

construction with the NEBNext R© UltraTM II Directional RNA

Library Prep Kit for Illumina R© (NEB, #E7760). The IP library

(MeRIP-seq) and input library (RNA-seq) were each subjected

to an Illumina HiSeq 4000 sequencer (Illumina, Inc.) with

150 bp paired-end reads. The harvested paired-end reads were

analyzed byQ30.When the Q30> 80%, the reads were qualified.

The clean reads of all libraries were obtained after trimming

3’ adaptors, and low-quality reads were removed by Cutadapt

software (v1.9.3) (25); then, the reads were aligned by using

Hisat2 software (v2.0.4) (26). MACS software (27) was used to

identify methylated peaks on RNAs. DiffReps software (28) was

used to identify differentially methylated lncRNAs/mRNAs.

Di�erential expression analysis

We further examined the differential expression of the

identified genes in PBMCs. Transcriptome-wide lncRNA and

mRNA expression profiles of PBMCs of 93 CAD patients and

48 healthy controls were obtained. Details of our transcriptome-

wide lncRNA and mRNA expression profile were described

in a previous publication (29). The microarray data were

normalized and analyzed using GeneSpring software V12.0

(Agilent Technologies). Differential expression of the identified

CAD-related genes between CAD cases and controls was tested

by comparing mean gene expression levels between cases and

controls using t tests. The P value was two-tailed. Probes

with fold change > 2.0 and FDR < 0.05 were considered

differentially expressed.

pQTL analysis for the CAD-associated
RNAm-SNPs

To look for proteins affected by the RNAm-SNPs, we carried

out pQTL analysis in peripheral blood by using data from a

published pQTL study, the INTERVAL study. This pQTL study

tested the associations between approximately 10million genetic

variants and circulating levels of 2,994 proteins measured in

3,301 individuals of European descent (30). The association data

used in the pQTL analysis were downloaded at http://www.phpc.

cam.ac.uk/ceu/proteins/.

Functional enrichment analysis

To shed light on the pathological significance of the

identified proteins in CAD, functional enrichment analyses were

performed using the DAVID database (Database for Annotation,

Visualization and Integrated Discovery, https://david.ncifcrf.

gov/). GO and KEGG pathway analyses were performed to

cluster functional genes into different biological processes in

which the genes coding the identified proteins were involved.

DAVID contains a set of integrated biological knowledge bases

and analytic tools for extracting biological significance from

large gene/protein lists in a systematic way (31, 32). The results

of the functional enrichment analyses are presented in bubble

diagrams, which were created by using the “ggplot2” R package.

MR analysis of proteins

Finally, we attempted to prove that the proteins identified

in pQTL analysis were associated with CAD. Five MR methods,

including the weighted median (33), inverse-variance weighted

(IVW) (34), MR-Egger (35), MR-PRESSO (MR pleiotropy

residual sum and outlier) (36) and CAUSE (Causal Analysis

Using Summary Effect estimates) (37), were employed to

examine the causal associations between circulating protein

levels and CAD. In a fixed-effects meta-analysis model, the

IVW method combines the ratios of SNP-exposure to SNP-

outcome estimates from each instrument variable (34). If more

than 50% of the weights for the SNPs come from valid SNPs,

the weighted median estimation can produce a consistent

assessment (33). The intercept of the MR-egger further tested

horizontal pleiotropy (35). The weighted median, IVW andMR-

Egger analyses were performed by applying the “mr_allmethods”

function in the “MendelianRandomization” R package (38).

MR-PRESSO is amethod that systematically detects and corrects

horizontal pleiotropic outliers inMR testing through three steps:

the MR-PRESSO global test, the MR-PRESSO outlier test and

the MR-PRESSO distortion test. The outlying genetic variants

were identified by applying this method (36). The source code

and documents for MR-PRESSO are available at https://github.

com/rondolab/MR-PRESSO. The default parameters were used

for theMR-PRESSO analysis. The parameters were left to default

in the MR-PRESSO analysis.

The requisite data (i.e., SNP rs number, beta, standard error,

and P value) were extracted from each of the CAD GWASs and

pQTL studies mentioned above and then merged by SNP to

form a plain file with 7 columns (i.e., SNP rs number, beta for

protein, standard error for protein, P value for protein, beta for

CAD, standard error for CAD and P value for CAD) for the MR

analysis using the R language. We sorted out the pQTLs with P

< 5.0×10−6 as potential instrumental variables. The selection

criterion was set to 5.0×10−6 because 5.0 × 10−8 would lead

to too few instrumental variables. We harmonized the genetic

association between the pQTL and CAD GWAS to ensure

that they reflected the same effect allele. We then conducted

linkage disequilibrium clumping on these SNPs to obtain the

independent pQTL (LD r2 < 0.001, within 10,000 kb) for each

protein. Linkage disequilibrium clumping was realized through

the “clump_data” function provided by the “TwoSampleMR” R

package with reference to the 1000 Genomes EUR population.
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FIGURE 1

Genome-wide distribution of the identified CAD-associated m6A-SNPs. This is a Manhattan plot that shows the P values of associations between

m6A-SNPs and CAD. The x-axis is chromosome positions. The y-axis is the -log10 P values of the associations. The P value information was

obtained from the summary dataset of the CAD GWAS. The red line indicates the significance level of 1.0 × 10−4.

We finally applied the CAUSE (an R package) method

to differentiate correlated pleiotropy from causal effects for

proteins that passed the four MR tests described above. The

CAUSE method accounts for both correlated and uncorrelated

horizontal pleiotropic effects using summary statistics of

genome-wide SNPs (37). CAUSE included as much information

from all of the genome-wide variants as possible, even weakly

associated variants. Genome-wide summary statistics from the

pQTL study and GWASs described above were used in CAUSE

analysis. In the analyses, nuisance parameters were estimated

using 1,000,000 SNPs. Other parameters were left as the defaults.

Results

CAD-associated RNAm-SNPs

We selected RNAm-SNPs from the CAD GWAS datasets

according to the annotation information of the RNAm-SNPs.

We found 37 RNAm-SNPs that were associated with CAD at P

< 1.0 × 10−4, including 34 m6A-, 1 m1A- and 2 m7G-related

SNPs. These 37 RNAm-SNPs mapped to 32 protein coding and

noncoding genes.

A total of 923 m6A-SNPs among the 9.5 million SNPs

were associated with CAD at P < 0.05 (Figure 1). Among

them, 34 m6A-SNPs, including 10 high, 12 medium and 12 low

(prediction) confidence levels, were associated with CAD at P

< 1.0 × 10−4. Twenty-seven (79.4%) of them were functional

loss, while 7 (20.6%) were functional gain m6A-SNPs. Onem6A-

SNP, rs1811351, mapped to the pseudogene SERBP1P3, and the

remaining 33 m6A-SNPs mapped to 29 protein-coding genes.

Of these 33 m6A-SNPs mapped to protein coding genes, 10

(30.3%) were exonic, 9 (27.3%) were in the 3’-UTR, 2 (6.1%)

were in the 5’-UTR and 12 (36.4%) were intronic. Of note,

the m6A-SNP rs3739998 (missense variant) at the sixth exon

of JCAD (KIAA1462) was significantly associated with CAD

at the genome-wide level (P = 2.44×10−9). This SNP is a

m6A functional loss and belongs to the medium confidence

category. We noticed that rs3739998 is not the top SNP in

this locus (Figure 2A). In addition, we also found m6A-SNPs

in other well-characterized CAD susceptibility genes, such as

MRAS (Figure 3A), LPL, TCF21,MYH11 and SMG6.

For m7G modification, we identified nine m7G-SNPs to

be nominally associated with CAD. The functional loss m7G-

associated SNPs rs2270576 (P = 9.74 × 10−6) in SNF8 and

rs8354 (P= 3.01× 10−5) in the 3’-UTR ofARL3were associated

with CAD. In addition, we found one functional loss m1A-SNP

rs897172 at the 5’-UTR ofORC4 that was significantly associated

with CAD (P = 8.33× 10−5).

Association with myocardial infarction

Furthermore, we tested for an association between the

RNAm-SNPs and AMI in the UK Biobank GWAS. We found
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FIGURE 2

Association between the JCAD gene and CAD. (A) The m6A-SNP rs3739998 in the JCAD (KIAA1462, reference assembly: GRCh37.p13) gene was

associated with CAD; (B) SNPs in JCAD were strongly associated with the expression level of JCAD in aortic artery tissue, and the expression

level of JCAD in aortic artery tissue was associated with CAD (reference assembly: GRCh37.p13); (C) The m6A methylation peaks in the sixth

exon of JCAD in FTO-overexpressing and control HASMCs (reference assembly: GRCh38.p14).

49 RNAm-SNPs that were associated with AMI at P <

1.0 × 10−4, including 45 m6A-, 1 m5C-, 1 A-to-I- and 2

m7G-related SNPs. The 45 m6A-SNPs, including 10 high, 15

medium and 20 low (prediction) confidence levels, mapped

to 6 noncoding genes and 38 protein coding genes. Among

the 39 m6A-SNPs mapped to protein coding genes, 8 (20.5%)

were exonic, 13 (33.3%) were in the 3’-UTR, 2 (5.1%) were

in the 5’-UTR and 16 (41.0%) were intronic. Three m6A-

SNPs, rs764957 in LOC100506178, rs148172130 in RPL14 and

rs12190287 in TCF21, were significantly associated with AMI

at the genome-wide level (P = 3.95×10−10, 2.46×10−8 and

3.95×10−8, respectively). We found that a missense variant

rs72654423 (m6A-SNP) in APOB was nominally associated

with AMI (P = 7.27×10−5). The m7G-SNP rs186643756 in

the lncRNA PVT1 was significantly associated with CAD at

the genome-wide level (P = 3.20×10−8). For the 37 CAD-

associated RNAm-SNPs described above, we found four m6A-

SNPs (rs13702 and rs3208305 in the 3’-UTR of LPL, rs12190287

in the 3’-UTR of TCF21 and rs6490162 in the intron of

ATXN2) that were associated with AMI (P < 1.0 × 10−4).

Taken together, we identified 81 RNAm-SNPs (three types of

modification) associated with CAD or AMI at P < 1.0 × 10−4

(Supplementary Table S1).

Gene expression related to CAD

We further investigated whether the 81 identified RNAm-

SNPs were associated with the expression levels of their host

genes. Many RNAm-SNPs displayed eQTL effects with the

corresponding genes in various types of tissues according to

the HaploReg database. Thirty-six eQTLs were found, and 28

of them were significantly associated with the expression of

their host genes (cis-eQTLs), including LPL, TCF21, MRAS,

JCAD, ATXN2, MAPKAPK5, MYH11, SNF8, MYO15A, IPO9,

ORC4, TNS1, IP6K2, SERBP1P3, ARHGEF26, DHX36, PARP12,

CACFD1, ARL3, POC1B, NEK9, CFDP1, ZNF652, SMARCA4,

CYP4F2 and RRBP1. Specifically, rs2279241 in MRAS was

associated with the expression levels of MRAS in subcutaneous

adipose, aortic artery and tibial artery tissues; rs12190287 in

TCF21 was associated with the expression levels of TCF21 in

subcutaneous adipose tissue; rs13702 in LPL was associated with
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FIGURE 3

Association between the MRAS gene and CAD. (A) The m6A-SNP rs2279241 (reference assembly: GRCh37.p13) in the MRAS gene was

associated with CAD; SNPs in MRAS were strongly associated with the expression level of MRAS, and the expression levels of the MRAS gene in

aortic artery (B), tibial artery (C) and coronary artery tissues (D) were associated with CAD (reference assembly: GRCh37.p13); (E) The m6A

methylation peaks in the 3’-UTR of MRAS in FTO-overexpressing and control HASMCs (reference assembly: GRCh38.p14).

the expression levels of LPL in whole blood cells; rs6490162 in

ATXN2 was associated with the expression levels of ATXN2 in

whole blood cells and was also associated with the expression

levels of SH2B3 in lymphoblastoid and whole blood cells;

rs2075511 inMYH11was associated with the expression levels of

MYH11 in whole blood cells; rs2270576 in SNF8 was associated

with the expression levels of SNF8 in aortic artery and adrenal

gland and was associated with the expression levels of UBE2Z

and ATP5G1 in whole blood cells; and two missense variants,

rs3739998 and rs2185724, in JCAD were associated with the
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expression levels of JCAD in the aortic artery. In addition, in

skeletal muscle and the tibial artery, rs854766 in the intron

of MYO15A was strongly associated with the expression of

ALKBH5, which is a m6A demethylase.

In SMR analysis, we found significant associations between

gene expression levels in the 11 relevant tissue types and CAD.

We set the significance threshold to 5.0 × 10−5 and detected

significant associations for FAM117B, MRAS, DHX36, TCF21,

JCAD,ARL3, SH2B3,MAPKAPK5, CFDP1,ATP5G1, SMARCA4

and RRBP1 (Supplementary Table S2). We found significant

associations between the expression levels of JCAD in the aortic

artery (P = 1.73× 10−5) (Figure 2B),MRAS in the aortic artery

(P =4.59 × 10−8) (Figure 3B), tibial artery (P =1.64 × 10−7)

(Figure 3C), coronary artery (P= 3.89× 10−5) (Figure 3D) and

atrial appendage (P = 1.43 × 10−5), FAM117B in the aortic

artery (P =4.78 × 10−6), DHX36 in whole blood cells (P =

2.02 × 10−5), SH2B3 in whole blood cells (P = 2.04 × 10−5),

ATP5G1 in whole blood cells (P =3.03 × 10−6), left ventricle

(P =7.32 × 10−6) and atrial appendage (P = 1.66 × 10−5),

SMARCA4 in whole blood cells (P = 4.82 × 10−5), RRBP1 in

whole blood cells (P = 2.05 × 10−5) and CAD. In addition,

suggestive associations were found between the expression levels

of DHX36 in whole blood cells (P = 5.96× 10−5), TCF21 in the

tibial artery (P = 8.85× 10−5) and subcutaneous adipose tissue

(P= 7.76× 10−5),ARL3 in whole blood cells (P= 8.64× 10−5),

MAPKAPK5 in whole blood cells (P= 7.44× 10−5), andCFDP1

in whole blood cells (P = 8.71× 10−5) and CAD.

Di�erentially methylated and expressed
RNAs in FTO-overexpressing HASMCs

In FTO-overexpressing HASMCs, we aimed to determine

which of the CAD loci contain methylation sites, whether

the expression of the methylated genes is affected, and which

of the CAD-associated m6A-SNPs fall into the differentially

methylated peaks. For the genes containing m6A-SNPs,

we found that 19 were differentially methylated in FTO-

overexpressing HASMCs (fold change > 2.0, FDR < 0.05)

(Supplementary Table S3).We noticed that key CAD genes, such

as JCAD (Figure 2C), MRAS (Figure 3E), MYH11 and SMG6,

were differentially methylated, and SMG6 was differentially

expressed in FTO-overexpressing HASMCs. We found that the

synonymous m6A-SNP rs216196 (chr17: 2299651) was located

in differentially methylated peaks (chr17: 2299633 - 2299784) in

the SMG6 genes. In addition, we found that UBE2Z and SH2B3

were differentially methylated and differentially expressed in

FTO-overexpressing HASMCs. For the differentially methylated

genes, the expression levels of MAPKAPK5, MRAS and SH2B3

in the aorta, coronary artery, tibial artery or whole blood cells

were associated with CAD in the SMR analysis described above

(Supplementary Table S2).

Di�erentially methylated and expressed
RNAs in PBMCs

Among the genes that contain the RNAm-SNPs identified

above, we further found that ASAP2, MRAS, ARHGEF26,

MDN1, MTHFSD, SMG6, MYO15A, OSBPL7, AIRE, FTCD and

MAPK11 were differentially methylated (seven upregulated

and four downregulated; fold change > 2.0, FDR < 0.05)

in human PBMCs of five CAD cases and five controls

(Supplementary Table S4). In human PBMCs of 93 CAD

cases and 48 controls, 42 genes seemed to be differentially

expressed (FDR < 0.05), including APOB, ATXN2, MYH11,

UBE2Z, ATP5G1 and SH2B3 (Supplementary Table S5).

However, only APOB passed the significance threshold

of fold change > 2.0, FDR < 0.05 (fold change = 2.0,

FDR= 3.73× 10−5).

Proteins a�ected by the RNAm-SNPs

We identified 65 pQTL signals (P < 5.0 × 10−8
,

Supplementary Table S6) for six of the identified RNAm-

SNPs (rs739468, rs41302673, rs6859, rs3172494, rs11105310

and rs8354). A total of 44 proteins were identified. rs739468

in CACFD1 was associated with circulating levels of 26

proteins; rs41302673 in STKLD1 was associated with

circulating levels of 20 proteins. The top signals were the

significant associations between rs739468 in CACFD1 and

circulating levels of SELE (P = 2.04 × 10−134) and ABO

(P = 3.80 × 10−126). rs41302673 in STKLD1 was also

associated with circulating levels of SELE (P = 1.0 × 10−89)

and ABO (P = 3.16 × 10−84). The 3’-UTR SNP rs8354

in ARL3 was significantly associated with ARL3 levels

(P = 2.57× 10−8).

We performed GO and KEGG pathway analyses in the

DAVID database for proteins that were affected by the CAD-

associated RNAm-SNPs. We mainly analyzed the 44 proteins

related to the RNAm-SNPs. The identified proteins (FLT4, INSR,

IL3RA, KDR, MET and TLR4) were enriched in the PI3K-Akt

signaling pathway (P= 1.80× 10−3), Rap1 signaling pathway (P

= 1.60 × 10−2), Ras signaling pathway (P = 2.10 × 10−2) and

MAPK signaling pathway (P= 3.90× 10−2) (Figure 4A). The 44

associated proteins were also enriched in 58 biological process

GO terms, including peptidyl-tyrosine modification (TPST2,

CTF1, CD300A, FLT4, INSR, KDR and MET, P = 1.40 ×

10−4), innate immune response-activating signal transduction

(CD300A, CD209, PSME1, ICAM2, TLR4 and MBL2, P= 6.0×

10−4), positive regulation of cell migration (SELP, FLT4, INSR,

KDR, SELE, MET and TLR4, P = 1.40× 10−3), MAPK cascade

(CD300A, FLT4, INSR, IL3RA, PSME1, KDR, MET and TLR4,

P = 4.50 × 10−3), blood coagulation (SELP, F8, C1GALT1C1,

DOCK9 and TLR4, P = 6.70× 10−3) and so on (Figure 4B).
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FIGURE 4

Biological pathways related to the proteins a�ected by the CAD-associated RNAm-SNPs. (A) KEGG pathway enrichment of the proteins a�ected

by the CAD-associated RNAm-SNPs; (B) The top 20 significant biological process GO terms for the proteins a�ected by the CAD-associated

RNAm-SNPs.

Frontiers inCardiovascularMedicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.985121
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Li et al. 10.3389/fcvm.2022.985121

TABLE 1 Association between circulating protein levels and CAD and AMI.

Proteins Estimate¶ Standard Error¶ P values

MR-PRESSO IVW Weighted median MR-Egger Intercept CAUSE

CAD

ABO 0.0363 0.0049 2.43E-09 2.29E-13 3.03E-06 9.42E-08 5.66E-01 9.10E-03

C1GALT1C1 0.0737 0.0157 5.33E-05 2.84E-06 4.27E-07 8.13E-07 5.94E-03 9.69E-02

C5orf38 0.0857 0.0125 6.75E-09 7.85E-12 4.22E-18 7.18E-09 8.23E-02 7.89E-03

CD209 0.0452 0.0089 9.30E-06 3.86E-07 5.73E-06 6.92E-05 2.54E-01 1.64E-02

CEP57 −0.0681 0.0120 6.59E-08 1.50E-08 2.52E-11 9.14E-08 3.14E-02 4.27E-02

CTF1 0.0965 0.0118 1.64E-09 3.48E-16 2.75E-13 6.44E-15 2.41E-03 1.10E-04

F8 0.0591 0.0145 6.17E-04 4.72E-05 1.28E-04 1.07E-06 2.39E-03 5.29E-02

GNAI3 −0.0741 0.0207 1.38E-03 3.43E-04 3.91E-04 8.83E-05 2.52E-02 8.34E-02

GOLM1 0.0618 0.0153 3.31E-04 5.07E-05 1.27E-08 1.11E-04 4.17E-02 1.82E-01

IL3RA −0.0549 0.0095 1.02E-06 7.16E-09 6.48E-08 2.61E-08 1.38E-02 3.93E-02

LRRN1 0.0689 0.0102 1.63E-07 3.03E-09 2.29E-10 1.59E-06 2.54E-01 9.43E-03

PSME1 −0.0771 0.0133 3.24E-06 3.96E-07 3.01E-08 2.65E-08 4.53E-03 5.48E-02

QSOX2 0.0567 0.0079 5.62E-09 7.25E-13 1.34E-10 2.14E-13 8.38E-04 1.01E-02

SELE −0.0663 0.0069 1.49E-11 4.29E-06 4.90E-13 9.32E-07 2.16E-02 4.19E-03

VIMP 0.0860 0.0143 9.38E-07 7.65E-11 1.66E-14 2.45E-13 2.00E-04 1.34E-02

VPS29 −0.0640 0.0104 2.88E-07 3.22E-08 6.42E-12 1.00E-08 9.47E-03 6.06E-02

AMI

ABO 0.0005 0.0003 1.10E-01 1.37E-01 7.38E-02 3.98E-01 9.90E-01 1.20E-01

C1GALT1C1 0.0010 0.0004 2.62E-02 1.84E-02 4.65E-04 8.71E-03 1.20E-01 1.41E-01

C5orf38 0.0020 0.0004 1.39E-04 2.66E-06 4.57E-08 3.71E-08 1.45E-02 1.20E-02

CD209 0.0013 0.0003 2.10E-03 1.17E-04 1.89E-04 1.42E-03 3.28E-01 4.24E-02

CEP57 −0.0013 0.0004 6.95E-03 1.97E-03 5.84E-08 4.91E-07 1.40E-03 3.96E-02

CTF1 0.0023 0.0004 2.32E-04 2.33E-08 7.84E-11 1.10E-09 9.91E-03 8.09E-03

F8 0.0018 0.0004 1.40E-03 1.56E-04 3.41E-04 1.73E-01 6.41E-01 1.75E-02

GNAI3 −0.0017 0.0006 3.31E-03 6.96E-03 3.69E-05 9.72E-04 5.20E-02 1.54E-01

GOLM1 0.0013 0.0006 3.59E-02 4.30E-01 3.73E-02 1.26E-01 1.94E-01 9.99E-01

IL3RA −0.0011 0.0005 6.41E-02 4.44E-02 4.65E-03 2.47E-01 8.60E-01 9.20E-01

LRRN1 0.0022 0.0003 5.35E-06 4.72E-11 8.07E-11 3.13E-08 2.11E-01 2.12E-02

PSME1 −0.0017 0.0004 1.81E-03 1.24E-04 1.40E-05 1.49E-07 2.04E-03 2.54E-01

QSOX2 0.0011 0.0004 9.03E-03 2.18E-03 1.67E-04 6.35E-04 6.16E-02 5.14E-02

SELE −0.0006 0.0005 2.10E-01 1.92E-01 2.24E-03 2.02E-03 6.58E-03 2.05E-01

VIMP 0.0021 0.0005 1.10E-03 6.46E-05 2.02E-08 6.07E-04 3.05E-01 8.41E-03

VPS29 −0.0014 0.0003 9.76E-05 2.66E-07 1.20E-08 7.58E-08 3.83E-02 1.11E-01

¶: The effect estimation was derived from the MR-PRESSO analysis.

Proteins causally associated with CAD

We tested whether circulating levels of these 44 proteins

were causally associated with CAD using five MR methods to

support the role of the RNAm-SNPs in CAD. Associations with

P < 1.14 × 10−3 were considered significant in this analysis.

We found that the associations between circulating levels of

ABO, C1GALT1C1, C5orf38, CD209, CEP57, CTF1, F8, GNAI3,

GOLM1, IL3RA, LRRN1, PSME1, QSOX2, SELE, VIMP and

VPS29 and CAD were significant in weighted median, IVW,

MR-Egger and MR-PRESSO analyses (Table 1). Proteins F8,

C1GALT1C1 andGNAI3were enriched in the blood coagulation

biological process (P = 2.30 × 10−2). We further examined

the potential causal associations between these 16 proteins and

AMI. The associations between circulating levels of 12 proteins,

including C1GALT1C1, C5orf38, CD209, CEP57, CTF1, F8,

GNAI3, LRRN1, PSME1, QSOX2, VIMP and VPS29, and AMI

were significant in weighted median, IVW, MR-Egger or MR-

PRESSO analyses (Table 1).Therefore, the associations between

circulating levels of these 12 proteins (including the three
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proteins enriched in blood coagulation biological process) and

CAD were strengthened.

In the CAUSE analysis, which accounted for correlated and

uncorrelated horizontal pleiotropic effects, circulating levels of

ABO, C5orf38, CD209, CEP57, CTF1, IL3RA, LRRN1, QSOX2,

SELE and VIMP were associated with CAD; C5orf38, CD209,

CEP57, CTF1, F8, LRRN1 and VIMP levels were found to be

associated with AMI (Table 1). The most significant protein was

CTF1 (cardiotrophin-1), which was associated with both CAD

(P = 1.10 × 10−4) and AMI (P = 8.09 × 10−3) in the CAUSE

analysis (Figure 5).

Discussion

In the present study, we integrated information from the

RMVar database, CAD GWAS and QTL studies to identify

CAD-associated RNAm-SNPs related to m6A, m1A, m5C, m7G

and A-to-I modification types. Some of the RNAm-SNPs were

associated with the expression of the local genes in CAD-

relevant tissues, and the genes were differentially expressed in

CAD. We also found some of the RNAm-SNPs to be associated

with circulating protein levels, and the related proteins were

associated with CAD and AMI. This study highlighted the

importance of detecting RNAm-SNPs in CAD susceptibility

genes by excavating the conveniently available SNP association

data of GWAS, and the findings indicated that RNAm-SNPs

might be potential functional variants for CAD.

Hundreds of genomic loci associated with CAD have been

identified in GWASs. However, the identification of functional

variants, causal gene(s) or protein(s) remains a major challenge.

The role of m6A methylation in CAD has been shown (24).

Some genetic variants in CAD loci may alter m6A methylation

and then disturb gene expression regulation (39). Recently, a

study integrating m6A QTLs with disease genetics identified

184 GWAS-colocalized m6A QTLs, including 50 muscle/heart

m6AQTLs underlying CAD (40). Until now, the functional roles

and underlying molecular mechanisms of RNA modification

in CAD remained largely unclear. In the present study, we

identified many RNAm-SNPs in CAD susceptibility genes and

showed that the RNAm-SNPs may have functional roles in

gene expression at the mRNA and protein levels. In FTO-

overexpressing HASMCs, we showed that CAD susceptibility

genes were differentially methylated and that some of the m6A-

SNPs were located in a differentially methylated peak (e.g.,

rs216196 in SMG6). Differential methylation and expression

of CAD susceptibility genes between CAD cases and controls

were also found in PBMCs. These findings suggest that RNA

modification may play critical roles in the pathogenesis of CAD.

We found several RNAm-SNPs that were associated with

gene expression, and the gene expression levels were associated

with CAD. The m6A-SNP rs3739998 was associated with JCAD

expression in aortic artery tissue, and the expression levels of

JCAD in the aortic artery were associated with CAD. JCAD

(Junctional cadherin 5 associated, also known as KIAA1462),

which encodes the junctional protein associated with CAD,

is one of most important GWAS-identified genes for CAD.

Genetic variants in the JCAD gene region were significantly

associated with CAD and AM (7, 8, 41). A study (42) showed

an association of this nonsynonymous SNP with CAD in the

German MI Family Study with a combined P = 1.27 × 10−11.

Furthermore, Xu et al. (43) demonstrated that JCAD depletion

in endothelial cells inhibited the activation of the YAP/TAZ

pathway and the expression of downstream proatherogenic

genes. They also showed that JCAD regulates YAP/TAZ protein

activation by interacting with TRIOBP, an action-binding

protein. Therefore, JCAD stabilizes stress fiber formation and

thereby plays a functional role in the pathogenesis of CAD. Our

study highlighted rs3739998, which may affect JCAD expression,

as a potential functional variant for CAD and suggested the

possibility of attractive new therapeutic strategies for CAD by

targeting JCAD.

To avoid a large number of false positive results, previous

GWASs used strict significance thresholds. However, due to

the use of strict significance levels, many moderate association

signals in the GWAS dataset were ignored. In addition to

the genome-wide significant SNP in JCAD, RNAm-SNPs in

other important CAD susceptibility genes were also identified,

including MRAS and TCF21. These RNAm-SNPs are not

genome-wide significant, but they significantly affected the

expression levels of MRAS and TCF21, and the expression

levels of MRAS and TCF21 were genetically associated with

CAD. DHX36, which is involved in the regulation of cardioblast

differentiation and proliferation during heart development

and plays a role in many biological processes, such as

genomic integrity (44), transcriptional regulation (45, 46)

and posttranscriptional regulation (47), is another example.

We found that four m6A-SNPs in 3q25.2, rs12493885 and

rs357504 in ARHGEF26, rs403132 in DHX36 and rs701133 in

GPR149, were associated with the expression levels of DHX36.

The associations between these RNAm-SNPs and CAD are

not genome-wide significant. These variants are proximal to

previously described loci associated with CAD, specifically the

3’-UTR variant rs701145 (10) and the intron variants rs1727949

(48) and rs789294 (10). DHX36 expression levels in blood cells

were found to be genetically associated with CAD in our SMR

analysis. Hence, it is possible that RNA methylation may affect

DHX36 gene expression and then have a pathogenic effect on

CAD. Overall, these findings suggested that the RNAm-SNPs

may affect CAD risk by affecting gene expression and therefore

may be functional variants in the CAD loci.

Circulating proteins are druggable targets (49, 50). A

great number of studies have been conducted to identify

circulation proteins contributing to CAD. However, traditional

observational studies have limitations in disentangling which

factors causally affect CAD. MR-based studies can address these
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FIGURE 5

Association between circulating levels of CTF1 and CAD. (A) The m6A-SNP rs6859 in the NECTIN2 gene (PVRL2, in 19q13.32, reference

assembly: GRCh37.p13) was associated with CAD; (B) A total of 263 SNPs in 19q13.32 were significantly (P < 5.0 × 10−8) associated with the

circulating level of CTF1; (C) The association between CTF1 level and CAD in the CAUSE analysis. The causal model was significantly better than

both the null and the sharing models; (D) The association between CTF1 level and AMI in the CAUSE analysis. The causal model was significantly

better than both the null and the sharing models.
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limitations by use of genetic proxies of putative risk factors

when evaluating their associations with disease risk, as they are

not subject to reverse causation (51). More importantly, the

MR method allows the evaluation of the association between

gene expression levels and CAD risk in very large samples

by using data from large-scale GWAS. Some of the new MR

methods, such as CAUSE, avoid more false positives induced

by correlated and uncorrelated horizontal pleiotropic effects

(37). As we showed in this study, MR analysis provided robust

evidence of the vital roles of several proteins in CAD.

According to the pQTL analysis, we found that the

RNAm-SNPs were associated with circulating levels of many

proteins, including proteins involved in the Rap1 signaling

pathway, Ras signaling pathway, PI3K-Akt signaling pathway

and MAPK signaling pathway. Activation of the PI3K/Akt

signaling pathway is well known to accelerate the development

of atherosclerosis (52). As suggested by a recently published

study (53), this pathway plays an important role in the

pathology of CAD. The affected proteins play functional

roles in biological processes of peptidyl-tyrosine modification,

innate immune response-activating signal transduction, positive

regulation of cell migration, MAPK cascade, blood coagulation

and so on. Afterward, by applying several MR methods, we

showed that the proteins affected by the RNAm-SNPs were

causally associated with CAD, including proteins function in

the blood coagulation process (F8, C1GALT1C1 and GNAI3).

The strongest evidence was found for cardiotrophin-1, which

was significantly associated with both CAD and AMI in all

MR analyses using five methods. The associations between

SNPs in 19q13.32 (APOE,APOC1,NECTIN2,TOMM40, BCAM,

CEACAM16, CBLC, APOC4, BCL3, RELB, CLPTM1, NKPD1,

CEACAM19, PVR, IGSF23, CLASRP, TRAPPC6A and PPP1R37)

and CAD and circulating levels of CTF1 contributed to the

identification of the causal association between circulating levels

of CTF1 and CAD. CTF1 is a procardiogenic factor that has been

shown to play important roles in cardiovascular disease (54–56).

Identification of this key protein provided a better entry point

for studies on the pathological mechanism of CAD. Although

the m6A-SNP rs6859 was found in NECTIN2, which encodes

nectin cell adhesion molecule 2, functional genetic variants in

this locus need to be confirmed in future studies.

Some limitations of the current work need to be

acknowledged. First, the data used were mainly from European

populations; therefore, the results may need to be extrapolated

carefully. Second, although the m6A-SNP dataset was extensive,

information on other types of RNAmodification was still scarce.

Third, the sample size of the pQTL study was relatively small,

and therefore, the estimations of the effects of proteins on

CAD risk may not be so accurate. Finally, this work is based on

statistical evidence, and the functions of the identified RNAm-

SNPs and genes have not been validated experimentally. Further

experimental studies are required to determine their functions.

In conclusion, the present study identified CAD-associated

RNAm-SNPs and suggested that RNA modification may play

a role in the pathogenesis of CAD. RNAm-SNPs in CAD

susceptibility genes may regulate gene expression at the mRNA

(e.g., JCAD, MRAS, TCF21, and DHX36) or protein (e.g., ABO,

C5orf38, CD209, CEP57, CTF1, IL3RA, LRRN1, QSOX2, SELE

and VIMP) levels. The relationships between RNAm-SNPs,

RNA modification, gene expression and CAD have not been

clarified in previous studies. Therefore, this study increased our

understanding of the genetic association signals identified in the

CAD GWAS and identified additional risk factors for CAD.
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