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Atherosclerotic cardiovascular disease is the leading cause of deathworldwide.

Intense research in vascular biology has advanced our knowledge ofmolecular

mechanisms of its onset and progression until complications; however,

several aspects of the patho-physiology of atherosclerosis remain to be

further elucidated. Endothelial cell homeostasis is fundamental to prevent

atherosclerosis as the appearance of endothelial cell dysfunction is considered

the first pro-atherosclerotic vascularmodification. Physiologically, high density

lipoproteins (HDLs) exert protective actions for vessels and in particular for

ECs. Indeed, HDLs promote endothelial-dependent vasorelaxation, contribute

to the regulation of vascular lipid metabolism, and have immune-modulatory,

anti-inflammatory and anti-oxidative properties. Sex- and gender-dependent

di�erences are increasingly recognized as important, although not fully

elucidated, factors in cardiovascular health and disease patho-physiology. In

this review, we highlight the importance of sex hormones and sex-specific

gene expression in the regulation of HDL and EC cross-talk and their

contribution to cardiovascular disease.

KEYWORDS

HDL, endothelial cells, sex di�erences, cardiovascular disease, HDL-endothelial
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Introduction

The relationship between high-density lipoproteins (HDLs) and cardiovascular

disease (CVD) is a topic of intense investigation since decades (1).

Epidemiological studies have shown a correlation between low levels of HDL-

cholesterol (HDL-C) and increased incidence of CVD (2). Indeed, a U-shape correlation

has been recently reported whereby both low (<50 mg/dl in women and <40 mg/dl in

men; 0.8 and 1.3 mmol/L, respectively) and high (>80 to 90 mg/dl; >2.3 mmol/L) levels
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of HDL have been associated to increased all-cause and CV

mortality in both men and women without previous CVD (3–5).

Increasing evidence suggests that rather than cholesterol

levels present on HDL, HDL particle number, lipid

and protein composition play a key protective role in

reducing CVD risk (6–8). HDL particle composition

directly influences HDL vaso-protective functions (i.e.

reverse cholesterol transport (RCT), nitric oxide (NO)

production from endothelial cells (ECs), anti-oxidative and

anti-inflammatory properties).

ECs are a physical barrier between blood and body tissues,

which act as gatekeepers of cardiovascular homeostasis.

Indeed, EC-released vasoactive substances (in particular

NO) regulate hemostasis, control vascular permeability

and modulate both acute and chronic immune responses

to injuries (9). In light of its strong vasodilatory, anti-

inflammatory and anti-oxidative properties, NO plays

a central role in the maintenance of vascular health

(10). Reduction in NO bioavailability is the hallmark of

endothelial cell dysfunction (ECD), which in turn favors

atherosclerosis (11).

Sex-related inter-individual variability (hormonal levels,

hormone therapies, gene expression profiles etc.) can influence

CVD risk by acting on both HDLs and ECs (12–14).

Increasing evidence suggests that sexual hormone

levels—in particular testosterone and estradiol—and sex-

specific cellular gene expression profile can influence

not only HDL-C levels but also HDL subclasses and

function. Indeed, men display reduced levels of HDL-

C and a more pro-atherogenic phenotype compared to

women (15–17).

Furthermore, estrogens are well-recognized EC protective

molecules, able to stimulate NO production, EC growth and

wound healing mechanisms (18, 19). Of note, differences in

gene expression profile between female and male ECs appear

to influence EC susceptibility to insults, with the activation

in female ECs of more efficient stress-response mechanisms

compared to male ECs (20, 21). These differences could explain,

at least in part, why pre-menopausal women have lesser CVD

risk than age-matched men and could give useful hints for

personalized therapy development.

In this Review, we mainly focused on the influence of sex-

specific factors on both HDL and EC function and how sex-

dependent differences modulating HDL-EC cross- talk may

contribute to the CV protection of pre-menopausal women

compared to age-matched men (22–24). Indeed, sex closely

interacts with gender in the development of atherosclerosis

therefore, although not systematically addressed, some gender-

specific aspects (i.e., pertaining to the socio-economic and

cultural sphere) have been also mentioned in case of their

known influence on HDL and EC function and potential CV

patho-physiological impact (23–26).

HDL-targeting drugs: The failure of
cholesteryl ester transfer protein
inhibitors

The concept that HDL is the “good cholesterol” first

originated from the Framingham Heart Study, which showed

strong inverse association between HDL-C and coronary heart

disease (CHD) (27). However, this concept has been challenged

by results of following clinical trials in which cholesteryl ester

transfer protein (CETP) inhibitors, despite raising HDL-C

levels, failed to reduce CV morbidity and mortality. These

results suggested that beyond the simple increase of HDL-

C plasma levels, the modulation of HDL composition could

be more important to achieve cardiovascular benefits (28–30).

CETP is a plasma protein that transfers cholesteryl ester from

HDL to apolipoprotein B (ApoB)-containing lipoproteins in

exchange for triglyceride (TG). The inhibition of CETP leads

to higher cholesterol levels in HDLs. Indeed, species lacking

CETP and patients with CETP deficiency are characterized by

increased HDL-C levels and reduced risk for CVD (31–34). In

the Investigation of Lipid Level Management to Understand

its Impact in Atherosclerotic Events (ILLUMINATE) trial, the

CETP inhibitor Torcetrapib increasedHDL-C levels as expected,

but this increase was not paralleled by decreased CHD and

the trial was stopped due to elevated risk of cardiac and death

events (35).

In line with the notion that HDL-C alone may not be

a reliable marker of the cardio-protective quality of HDLs,

it has been recently shown in a sex-mixed pool of patients

that CETP inhibitors, Torcetrapib and Evacetrapib, not only

increased HDL-C but also enhanced the concomitant content

of apoC3/apoE in HDLs. These two proteins rendered HDLs

dysfunctional and were associated with higher CHD (36).

Different CETP inhibitors, such as Dalcetrapib and Anacetrapib

slightly reduced CHD risk, although this effect could have been

influenced by the concomitant reduction in non-HDL-C in

treated patients (37–42).

Genetic polymorphisms associated with increased HDL-

C levels also did not influence the risk score for myocardial

infarction (1, 43). Population studies carried out in Copenhagen

highlighted a dramatic enhancement of CHD risk in women

with CETP deficiency, in spite of the elevated HDL-C levels

(44). Furthermore, as result of rare genetic variants on scavenger

receptor BI (SR-BI) gene and reduced ability of HDLs to deliver

cholesterol to the liver, the consequent increased HDL-C levels

were linked to higher rather than lower risk of CHD risk in both

men and women (45, 46). Indeed, the increased cholesterol in

HDL in these specific circumstances was linked to an impaired

HDL-mediated RCT. Taken together; this evidence questioned

the rationale of using CETP inhibitors as treatment for CVD

and highlighted the need for a better characterization of the
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complexity of HDL, in particular focusing on HDL composition

as key determinant of function in health and disease.

Sex- and age-related di�erences in
HDL measurements

HDL-C is commonly used as a predictor marker for

CVD risk, as reported in SCORE (Systematic Coronary

Risk Evaluation) risk charts and the ASCVD Pooled Cohort

Equations (47, 48). So far, reference values for lipid profiles,

including HDL, used in clinical practice are the same for both

men and women, despite growing evidence on the influence

of sex differences in the discriminative performance of CVD

risk scores. Indeed, pre-menopausal women have higher HDL-

C levels and lower risk of CVD compared to men (Figure 1)

(12, 49–51). Phases of menstrual cycle may influence lipid

profile. While post-prandial serum TG were higher in women

during the follicular compared to the luteal phase of menstrual

cycle, HDL and ApoB levels were stable in both phases (54). In

another study, a significant decrease in the mean levels of TC,

LDL-C, TC/HDL-C, LDL/HDL and TG/HDL was observed in

the luteal compared to the follicular phase of menstrual cycle

(55). Some studies suggested assessing female parameters during

the follicular phase of menstrual cycle could help to minimize

differences due to sexual hormones fluctuations (55, 56).

Patient age is another important factor influencing sex-

dependent differences, since HDL-C levels can vary during

individual lifetime. Healthy pre-pubertal children had high

levels of HDL-C independently from their sex (56). HDL-C

levels then drastically decreased in boys after puberty (∼45

mg/dL/1.16 mmol/L), while remaining higher in girls (∼55

mg/dL/1.42 mmol/L) (57). These differences were lost in post-

menopausal women, independently from menopausal age (58,

59).

Hormonal therapies can also alter lipid parameters.

Transgender men (i.e., female to male) displayed a clear

reduction in HDL compared to women, but higher levels than

cis-gender men (25, 60).

These sex- and age-dependent differences need to be taken

into account when HDL-C levels are used as a CVD prognostic

marker. Moreover, when considering the relationship between

high HDL-C levels and increased all cause and CV mortality,

relevant factors to be evaluated are sex differences together

with the presence of CVD and other comorbidities. In fact,

the increased cardiovascular risk associated with high HDL-

C initially reported in a sex-mixed pool of patients without

previous cardiovascular conditions by the CANHEART Study

and others (3, 5) has not been confirmed afterwards in women

with hypertension (61). Another study analyzed six community-

based cohorts and showed that in men the inverse linear

association between HDL-C and CHD events has a broader

span compared to women. For HDL-C values >90 mg/dL

(>2.33 mmol/L) in men and HDL-C values >75 mg/dL (>1.94

mmol/L) in women, the association between HDL-C and CHD

events reached a plateau with no further reductions in CHD

risk (62).

All-cause mortality in healthy, smoking, middle-aged (50–

59 years) and older (>60 years) Finnish men was positively

associated with HDL-C in the middle-aged group, while there

was a U-shaped pattern in older men. Of note, the middle-

aged group had a higher reported alcohol intake than the older

individuals. Moreover, alcohol- and violence-related mortality

was strongly positively associated with HDL-C specifically in the

middle age group (63). Thus, alcohol may have influenced the

association of HDL-C and mortality through its HDL raising

effect and being a risk factor for behavioral-related non-natural

as well as alcohol-related deaths beyond coronary disease, such

as cancer, cardiomyopathy, stroke (5, 63).

Insights into sex-dependent and
independent di�erences in HDL
structure and composition

HDLs are heterogeneous lipoproteins formed by a

cholesterol ester and TG enriched hydrophobic core and

a surface lipid bilayer containing mainly free cholesterol,

phospholipids and various proteins (6, 64). The biogenesis of

HDLs starts from the synthesis and secretion of apolipoprotein-

AI (ApoA-I) in the liver and intestine (65). The interaction

between secreted ApoA-I and cell membrane protein ATP-

binding cassette transporter A1 (ABCA1), expressed by

hepatocytes and enterocytes (66), allows the acquisition of

lipids and formation of nascent HDLs. Nascent HDLs are

converted into mature particles via cholesterol esterification

performed by lecithin-cholesterol-acyl transferase (LCAT) (67).

Endothelial lipase and hepatic lipase are involved in the lipolysis

of phospholipids and TGs in HDLs, leading to smaller HDL

particles (68). Phospholipid transfer protein further exchanges

lipids between HDLs (69). HDL clearance is orchestrated by

SR-BI and CETP, which regulate the transfer of cholesteryl-ester

from HDLs to the liver and the exchange of ApoB-containing

lipoproteins with TGs (70).

Women have increased HDL-C and ApoA-I levels and lower

ApoB compared to men. These sex-related differences in plasma

lipoproteins start to be evident during puberty, in concomitance

with the increase in testosterone in males and estrogens in

females (Figure 1) (52).

Estrogens increased ApoA-I expression in the liver and

HDL-C levels in pre-menopausal women by modulating the

expression of SR-BI and hepatic lipase (71–73). On the contrary,

testosterone administration enhanced hepatic lipase activity,

increasing HDL catabolism (Figure 1) (52). Androgen therapy

was also associated with an unfavorable shift toward an

atherogenic lipid profile characterized by reduced ApoA-I and
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FIGURE 1

Sex-specific di�erences in lipoproteins and their e�ect on cardiovascular risk factors. Women (left) display increased levels of HDL-C and

ApoA-I and reduced levels of TG and ApoB compared to men (right) (12, 49–52). Men also display increased levels of hepatic lipase compared

to women, which in turn have higher SR-BI expression levels. These di�erences correlate with estrogens and testosterone levels and result in a

reduced risk for CVD and CHD in women compared to men (53). Sex-independent factors associated with increased risk for CVD and changes

in lipid profile have also been reported in this figure (bottom).

increased apo-B levels in men (74). Suppression of androgens

in men, in fact, leaded to an increase in HDL-C, ApoA-I

and reduced ApoB levels (75). It has also been shown that

hyperandrogenism, which is a common feature of polycystic

ovary syndrome, was associated with lower HDL-C levels and

dyslipidemia (76, 77).

Differences in lipid profile have also been associated with

sex-specific gene expression profile. The KDM6A gene encodes

for a histone-demethylase protein highly expressed in the female

liver and its expression levels positively correlated with HDL-

C (78, 79). In turn, KDM6A silencing in hepatocytes lead to

downregulation of genes regulating HDL-C levels (13).

Single nucleotide polymorphisms (SNPs) on the CETP gene

have been associated with higher HDL-C and ApoA-I levels (80,

81). TaqIB is the most common SNP variant of the CETP gene

and the TaqIB genotype can be expressed as either dominant

B1B1 homozygote, B1B2 heterozygote or recessive B2B2. In

particular, B2B2 carriers had higher HDL-C plasma levels and

20% lower risk of CHD vs. the B1B1 carriers (82). Of note, the

increase in HDL-C levels in CETP-TaqIB, B2B2 carriers seemed

to be independent from sexual hormones (81) and was lost in

obesity and type 2 diabetes (T2D). Indeed, other CETP SNP

variants in both sexes were not associated with HDL-C levels nor

with metabolic syndrome and obesity (83). A 16% increase in

HDL-C levels has been reported in men with B2 TaqIB variant

affected by T2D compared with those homozygous for the B1

allele (83).

ApoE, encoded by APOE gene, is the major ligand for

clearance of TG-rich lipoproteins and has anti-atherogenic

function (84, 85). APOE-e2 polymorphism has a sex-specific

effect on lipid profile and has been associated with high HDL-C

levels in woman and increased TG levels in men (86). There are

no sex-differences reported for ApoE isoform 4 in the context

of CVD risk, while the ApoE4 allele seems to confer a memory

advantage in midlife men and an increased risk of Alzheimer in

women (87, 88).

HDL-associated LCAT increased mass concentration and

higher LCAT activity have been correlated with CHD risk in

women but not in men (89, 90). However, mechanisms of

the sex-specific association of LCAT and CV risk need further

investigation given the conflicting results so far available, for

instance in patients with sickle cell anemia and proteinuria
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where a less pronounced reduction of LCAT activity in women

compared to men has been considered protective against

accelerated kidney disease progression in this patient population

(91). Moreover, LCAT deficiency led to the development of

spontaneous atherosclerotic lesions similarly in aged male and

female mice (92) and a female specific protection against diet-

induced obesity and insulin resistance has been described in

mice with combined LCAT and LDL receptor deficiency (93).

Inflammation decreases HDL-C levels and altered HDL

composition in a sex-independent manner (Figure 1) (94, 95).

Changes in the HDL-associated lipids include a decrease in

cholesterol ester and an increase in free cholesterol, TG, free

fatty acids and ceramide-enriched lipoproteins. Dysfunctional

HDLs show marked alterations in protein composition and

become pro-atherogenic. These changes include an increase of

serum amyloid A (SAA), a decrease apoA-I but also variations

in enzymes and transfer proteins, such as LCAT, CETP, PON-1,

and apolipoprotein-M (apoM) (94).

Central adiposity directly correlates with CVD risk (96,

97). Increase in central adiposity was able to alter HDL

subclasses distribution, but overall HDL-C levels seemed not

affected by this parameter (98). Obesity also affects HDL

composition, function and subclasses distribution (99, 100).

Obesity induces, most prominently in women compared to

men, a pro-atherogenic dyslipidemia characterized by increased

LDL and TG and reduced HDL-C, ApoA-I and ApoA-II levels.

We and others showed that in morbidly severe obese patients

bariatric surgery restores HDL endothelial-protective properties

by modulating HDL composition (101–104). Bariatric surgery

improves CV morbidity and mortality regardless of sex and

gender (105, 106). Indeed, in a small patient cohort, we also

showed after Roux-en-Y gastric bypass similar benefits on HDL

endothelial protective function for both sexes (103). Circulating

HDL-C levels increased in our patients after RYGB in agreement

with other studies (107) however concentrations usually remains

well below cut offs (80–90 mg/dL; 2.06–2.33 mmol/L) that are

associated with higher CVD risk (53, 108). Finally, it is worth

to consider that, in the context of obesity and bariatric surgery,

gender-dependent differences (e.g., differences between women

and men in the perception of their body weight in relation to

esthetic, health and therapeutic perspective) are very important

and need to be appraised when evaluating study results and

identifying gaps of existing knowledge (106).

Insight into sex-dependent
regulation of EC function

Women before menopause have lower risk of developing

CHD and endothelial-protective properties of estrogens can

be important contributors (Figure 1) (109). Aging-driven

reduction of flow-mediated dilation appears at the age

of menopause, more than a decade later than in men, in

concomitance with the loss of circulating estrogens (110).

Chronic treatment with estrogens improved endothelial-

dependent vasodilation in both ovariectomized animal

models and post-menopausal women (111–113). Moreover,

clinical studies suggested that estradiol treatment was able to

revert endothelial dysfunction in post-menopausal women

with atherosclerotic, non-stenotic arteries by preventing

acetylcholine-induced coronary vasospasm (114). At present

however, controversies still exist on the cardio-protective

effect of hormonal replacement therapy in post-menopausal

women (115).

At the molecular level, estrogens can stimulate ECs

primarily through estrogen receptors (ERα and Erβ, GPER1)

on EC surface. Activation of ERs increases eNOS activity

and NO production, thus promoting EC-mediated vasodilation

(Figure 2) (116, 123). EC glycocalyx protects ECs from second

insults after trauma hemorrhagic shock (T/SH) (117). Recently,

it has been shown that estrogen administration after T/SH

protects the EC glycocalyx from degradation by regulating tPA

and PAI-1 levels, making ECs more resistant to additional

damages (124). Furthermore, estradiol signaling attenuated

endothelial inflammatory response by reducing cytokine and

chemokine release (such as monocytes chemoattractant protein

1 (MCP-1) and IL-8) as well as EC adhesion molecule expression

(125, 126). Prolonged exposure to estradiol also created a new

homeostatic status in which immune cells were potentiated

and ECs were less sensible to pro-inflammatory stimuli and

apoptosis (Figure 2) (109).

While the EC protective role of estrogens have been well

established, the effect of androgens on ECs is still under debate.

Monocytes binding to aortic ECs seemed to be higher in

male than female rabbits with hypercholesterolemia, suggesting

a correlation between androgen levels and EC inflammation.

However, this sex-dependent difference was also evident in

non-hypercholesterolemic rabbits (127). Testosterone has also

been associated with impaired vascular function in women

(122, 128). This could be due to the fact that, although

testosterone production is 10 times higher in men compared

to women, women may be more sensitive to this hormone

(129). Indeed, several studies pointed out an important

sex-independent role of androgen receptors in regulating

EC viability, proliferation, and angiogenesis/repair likely via

upregulation of the VEGF-A, cyclin A, and cyclin D1 expression

(Figure 2) (121). Of note, abundance of testosterone in male

mice may favor its conversion into estradiol mediated by

aromatase P450, causing hyper-activation of ERs promoting

atherosclerosis (130, 131).

An overall marker of early atherosclerosis is the

transformation of macrophages into foam cells through

intracellular lipid accumulation. Treatment with testosterone

promoted foam cell formation in men (but not in women) by

increasing lipid loading, thus contributing to the development

of atherosclerosis (Figure 2) (132).
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FIGURE 2

Sex-specific gene expression patterns and sexual hormones influence EC response to stimuli and EC-HDL cross talk. ECs derived from female

donors (left) display reduced sensibility to stress and inflammation thanks to the activation of sex-specific pathways involved in stress response.

Estradiol is able to reduce inflammation by reducing MCP-1 release and VCAM-1 expression. Furthermore, estradiol bound to HDLs is able to

strongly activate SR-BI pathway increasing the NO production (53, 114, 116, 117). On the contrary, ECs derived from male donors (right) display

a stronger susceptibility to inflammation, increased levels of oxidative stress and autophagy (118–120). Testosterone also contributes to create a

pro-inflammatory environment by favoring the transformation of macrophages into foam cells (121). Estrogens stimulate NO production in

both sexes through the activation of ER receptors (114). In contrast, androgen receptors are able to increase the expression of genes involved in

cell viability, proliferation and angiogenesis/repair both in men and women ECs (122).

Interestingly, transgender men treated with testosterone

for 12 weeks displayed increased leukocytes-endothelium

interactions, expression of adhesion molecules on EC

surface, pro-inflammatory cytokine release, decreased HDL-C

levels and dyslipidemia (23, 26). Furthermore, the levels of

polymorphonucleate adhesion to ECs in transgender men were

similar to diabetic men with silent myocardial ischemia, which

highlight the need of a closer monitoring of cardiovascular

risk in these patients (26). Progesterone, instead, protected

ECs after cerebrovascular occlusion in male rats (133) and has

been associated with increased NO production in women (134).

However, administration of synthetic progesterone analogs,

such as medroxyprogesterone, correlated with increased risk

of coronary disease and stroke in women under hormonal

replacement therapy (115, 135). Indeed, it has been shown that

estrogen or progesterone and its synthetic analogs differently

affect plasma lipoproteins, in particular, estrogen increases

whereas progesterone and its synthetic analogs decrease HDL-C

concentrations (136). Accordingly, while 17beta-estradiol had

no effects, progesterone and three synthetic analogs suppressed

ApoA-I-mediated cellular cholesterol release from human

fibroblasts resulting in generation of less HDL particles (137).

Sex is a key variable in vascular biology and in particular,

EC function is influenced by sexual hormones, but also by

chromosomes resulting in sex-specific differences in gene

expression profile. Human umbilical vein endothelial cells

(HUVECs) derived from females and males were found

intrinsically different independently from their exposure to

sexual hormones, implicating a role for genomic sexual

dimorphisms in CV system (14, 138). Transcriptomic performed

in HUVECs in boy-girl twins or in non-twin adult ECs showed

that sex-differences were present either at birth and maintained

throughout life or acquired over life (118). As expected, sex

differences in adult EC transcriptome involved many genes

influenced by estrogens or androgens. Interestingly, androgen

and estrogen receptors were not differentially expressed in
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adult ECs. Intriguingly, half of the genes showing sex-specific

differences in HUVECs were sex chromosomal genes. Moreover,

coronary artery disease targets (derived using multiple genome-

wide association studies) were also enriched in the gene

set showing sex difference in HUVECs, making possible to

speculate about sex differences in CAD rooted in differential

gene expression in ECs already at birth (118). Gene hallmark

analysis showed increased expression of genes involved in

endothelial to mesenchymal transition, NF-kB pathway and

hypoxia in females, while increased expression in MYC

targets, oxidative phosphorylation and mTOR pathway were

reported in males (118). Other studies reported target-specific

differences comparing male and female non-twin HUVECs,

which may contribute to sex differences between males and

females in endothelial function. Higher cell proliferation,

migratory properties and endothelial NO synthase expression

were observed in female HUVECs, while in themale cells beclin-

1 and the LC3-II/LC3-I ratio, two widely accepted markers of

autophagy, were higher (119). Notably, cellular size, shape as

well as mRNA and protein expression of estrogen and androgen

receptors were similar among sexes (119). Proteomic analysis

of the secretome of serum-deprived HUVECs isolated from

healthy female and male newborns revealed higher expression

of proteins involved in cellular response to stress (e.g., several

members of Annexin and Heat Shock Protein families) and

apoptosis (e.g., PTX3) in male cells (120). These results are

in agreement with reports obtained in different cells (e.g.,

neurons or cardiomyocytes) challenged with stressor stimuli

and overall suggest lower resistance to oxidative stress and

higher propensity of male cells to undergo apoptosis. On the

contrary, female neurons/cardiomyocytes may be more resistant

to oxidative stress with a pro-autophagy predisposition (139,

140); the latter characteristic will need to be further investigated

in ECs as the above mentioned study on HUVEC transcriptome

in boy-girls twins shows a male and not a female pro-autophagy

gene signature (118).

Female HUVECs showed a stronger transcriptional

response after shear stress exposure compared to male cells

involving, for instance, upregulation of genes such as eNOS,

heme-oxygenase 1 (HO-1) downregulation of NADPH oxidase

4 (Nox 4), endothelin-1 (ET-1) or vascular cell adhesion

molecule 1 (VCAM-1), the latter downregulated by 22.2-fold in

female vs only 3.5-fold in males (141).

Regarding EC energy supply, similar baseline ratios of

glycolysis vs. mitochondrial respiration were observed in

HUVECs obtained from male/female twins, but female cells

performed better under starvation or under VEGF stimulation

with higher ATP and metabolite levels compared to male cells,

suggesting a more flexible modulation of energy production in

females (120, 142).

Further studies will need to elucidate whether the described

higher adaptability of female ECs to stress may confer

them protection against CVD risk. Conversely, a stronger

transcriptional response in female ECs might, in specific cases,

favor disease onset and progression (e.g., in the context of

the higher prevalence of autoimmune diseases in the female

population) (143–145).

Collectively, increasing evidence highlights the presence

of sex dependent differences in ECs at different stages of

life. However, there are very few studies in adult ECs (i.e.,

HAECs) compared to the studies in HUVECs, which makes

difficult to adequately investigate or compare changes in EC

gene expression acquired later in life. Moreover, it is important

to consider sex as a crucial biological variable not only in

cardiovascular clinical research but also in experimental studies

on EC biology to increase the quality and translational value

of results.

Insights into sex-dependent
di�erences in HDL and EC crosstalk

Lifestyle and CVD: Sex-dependent
di�erences

Smoking, alcohol consumption, diet and exercise are

modifiable CVD risk factors (Table 1).

The number of smoked cigarettes positively correlated with

increased CHD risk in both sexes. In fact, smoking induced

endothelial dysfunction and damage, increasing lipid oxidation,

decreasing HDL, and promoting inflammation, and a pro-

thrombotic state (146, 147). Furthermore, a worse lipid profile

characterized by increased ApoB and reduced ApoA-I and

ApoA-II was reported in smokers compared to non-smokers

independently from their sex (148). Interestingly, smoking was

reported as a stronger risk factor for CVD in women than inmen

accordingly to the Finnmark Study (149). This could be partially

attributed to the ability of smoking to alter estradiol metabolism

leading to the formation of inactive catechols (150, 151),

thus inhibiting estradiol vaso-protective properties. Moreover,

exposure to passive smoking from birth was associated with

reduced HDL-C levels in adolescent girls but not in boys (152).

The anti-estrogenic effect of smoking positively correlates with

increased CHD risk and strong reduction in HDL-C levels in

young compared to older women and men (150, 153). The

evidence that ex-smokers had higher HDL-C levels compared

to smokers of both sexes further confirm these results (154).

Furthermore, the Copenhagen City Heart Study reported that

smoking women had 9.4 higher risk of myocardial infarction

compared to non-smoking women, while the risk score was only

2.9 times higher in smoking men compared to non-smokers

(155). On the contrary, reduced levels of endothelial progenitor

cells (EPCs) have been reported in men compared to women.

Smoking further decreased EPCs inmen, while no difference was

found between smoking and non-smoking women. In this case,
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TABLE 1 Comparative description of the e�ect of lifestyle habits on HDLs and ECs in men and women.

Men Women

Smoking Increases CHD risk (147, 148) Increases CHD risk (147, 148)

Induces EC dysfunction (147, 148) Induces EC dysfunction (147, 148)

Reduces HDL number and functionality [147, 148] Reduces HDL number and functionality (147, 148)

Promotes inflammation (147, 148) Promotes inflammation (147, 148)

Reduces EPCs number (157) Alters estrogen metabolism (151, 152)

Increases risk of CVD and MI (152)

Alcohol Increases HDL-C levels (162) Increases HDL-C levels (162)

Prevents EC activation and inflammation (170) Reduces stroke risk (169)

Increases overall mortality (169)

Prevents EC activation and inflammation (170)

Diet Mediterranean diet: reduces small dense LDL and

increases medium LDL, reduces EC inflammation and

oxidative stress (174, 175)

Mediterranean diet: reduces medium dense LDL and increases

small LDL, reduces EC inflammation and oxidative stress.

Increases eNOS activity and reduces CVD risk. (174, 175, 192)

Dairy diet: Reduces insulin sensitivity (176, 177)

Physical activity Prevents EC dysfunction and atherosclerosis (194, 195) Prevents EC dysfunction and atherosclerosis (194, 195)

Increases HDL-C levels (198, 199) Increases HDL-C levels (198, 199)

CHD, Coronary Heart Disease; EC, Endothelial Cells; HDL, High-Density Lipoproteins; HDL-C, HDL-Cholesterol; CVD, Cardiovascular Disease; MI, Myocardial Infarction; LDL,

Low-Density Lipoproteins; eNOS, endothelial Nitric Oxide Synthase; EPCs, Endothelial Precursor Cells.

sex-differences on the effect of smoking were mostly attributed

to a protective effect of estradiol on EPCs (156).

Low to moderate alcohol consumption did not affect CVD

risk in both sexes (157). The CoLaus Study reported no

differences in expression of HDL-related genes (i.e., ABCA1,

APOE5, CETP, hepatic lipase and lipoprotein lipase) based on

alcohol consume in a sex-mixed pool of Caucasian patients

(158). CHD risk could perhaps vary depending on the ethnicity

of the patients. The Atherosclerosis Risk in Communities

(ARIC) study reported reduced CHD in whites but increased

disease in black alcohol consumer men independently from

levels of alcohol consumed (159). This was partially attributed to

different hepatic gene variants and expression levels (i.e., CETP,

hepatic lipase, LPL, and PON1) between these two ethnicities

(159, 160). Meta-analysis data suggested that HDL-C levels

increased an average of 0.06 mmol/L per 23 g/day of alcohol

consumed (161). The increase of HDL-C levels in alcohol

consumers have been attributed to enhanced HDL production

(hepatic and extra-hepatic), decreased CETP activity and lower

HDL-C clearance (162). However, this increase is strongly

influenced by alcohol-gene interactions (163). As an example,

men and post-menopausal women carrying the homodimeric

γ2 variant of the ADHIC gene had a slower rate of alcohol

clearance, which was associated with elevated HDL-C levels

(164, 165). It is worth specifying that sex differences in alcohol

consumption are difficult to detect, since generally women

can tolerate lesser amount of alcohol due to their sex-specific

absorption, body fat/water ratio, reduced levels of enzymes

involved in alcohol metabolism and glomerular filtration rate

(166). Furthermore, studies in the general population indicated

that among all alcohol consumers/abusers, only 1/3 were

women (167). Nevertheless, moderate alcohol consumption was

associated with lower risk of stroke in women compare to men

but also with a 10% increased risk of overall mortality (168).

Alcohol has also a direct effect on ECs. Indeed, moderate

levels of alcohol were able to prevent endothelial activation

and pro-inflammatory cytokine release in human coronary

artery ECs stimulated with the pro-inflammatory SAA (169).

Furthermore, a reduction in monocyte adhesion to TNF-α-

stimulated ECs was reported in moderate alcohol consumer

men compared to non-consumers (170). On the other hand,

heavy alcohol consumption (both measured and self-reported)

was associated with increased circulating vascular adhesion

molecules (i.e., E-selectin, intracellular adhesion molecule 1

(ICAM-1) and VCAM-1) and reduced flow-mediated dilation in

sex-mixed cohorts of patients, independently of alcoholic liver

disease (171, 172).

Diet also affects women and men in a different manner.

Mediterranean diet was able to reduce total cholesterol, LDL-

C, ApoB and ApoA-1 plasma levels in both sexes. However,

men under Mediterranean diet experienced a reduction in

small dense LDL and an increase in medium LDL, while the

opposite trend was observed in women (173, 174). Furthermore,

a comparison between red meat and dairy diet highlighted a

reduction in insulin sensitivity in women following the dairy

diet. Instead, no differences between the two diets were reported

inmen (175, 176). ABCA1 is one of themost sex-influenced gene

in the liver and its expression is higher in females (177). Indeed,
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estrogen levels and dietary components were able to regulate

ABCA1 expression in macrophages, leukocytes and liver in

human and rodents, increasing ApoE-positive HDL particles

and improving cholesterol efflux (178–181). Among all the

genetic variants, ABCA1/R230Cwas associated with lowHDL-C

(182). It has been shown that dietary macronutrient proportions

regulated the effect of ABCA1/R230C in premenopausal women

by directly interacting with ABCA1 gene (183). In particular,

metabolically unfavorable pattern was found in ABCA1/R230C

premenopausal women following high carbohydrates and low

fat diet, while the opposite pattern was found in women

following high fat and low carbohydrates diet (183).

On the contrary, lowering dietary fat intake was able

to restore HDL functionality (in particular HDL-CEC) in

hypercholesterolemic female pigs by reducing cholesterol

plasma levels (184).

There is some evidence that diet could directly affect

EC function. Transitory disruption of endothelial function

and reduction in vasorelaxation have been reported after

acute administration of high-fat meal, in concomitance with

increased triglyceride-rich lipoproteins in plasma (185, 186).

On the contrary, chronic consumption of low-fat diets

(i.e., Mediterranean diet) was associated with improved

endothelial function and reduced markers of endothelial

activation in plasma in men (187–189), most likely through

changes in cholesterol metabolism and the presence of oleate

and decosahexanoic acid, which were able to reduce pro-

inflammatory molecule expression and monocyte adhesion in

ECs in vitro (190). Same results were shown also in women.

Indeed, a pilot study demonstrated that specific components of

Mediterranean diet (i.e., legumes, redmeat, and overall proteins)

were associated with reduced inflammation and oxidative stress,

increased eNOS activity and reduced CVD risk in a cohort of

ethnically mixed women (191).

Physical activity is well known as protective factor against

CVD (192). Evidence showed that physical activity was able to

slow down EC dysfunction and atherosclerosis progression in

both sexes (193, 194). However, how physical activity differently

influence CVD risk in women and men is still under debate.

A systematic review focused on physical activity and stroke

incidence claiming that, among all the analyzed studies, 35%

of them reported a strong association between physical activity

and stroke incidence in women, while the same correlation

in men was evident only in few studies (195). Even so, the

Framingham Study reported that physical activity conferred

protection against stroke in men, but not in women (196).

The correlation between physical activity and reduction in

CVD risk could be partially attributed to increased HDL-C

levels in physically active individuals compared to sedentary

ones. However, the increase in HDL-C seemed to be significant

only when a threshold volume of physical activity was reached

(197, 198). Even if the threshold level has not been accurately and

systematically estimated yet, epidemiological and cross-sectional

studies suggested that the threshold value was 1,500 kcal/week

in men and 1,200 kcal/week in women independently from their

menopausal status (199–201).

Reverse cholesterol transport

The best-known property of HDL is RCT, which consists in

the ability of HDL to accept excess cholesterol from peripheral

cells, in particular macrophages, and transport it to the liver

for excretion or re-utilization. RCT is considered the most

important anti-atherogenic function of HDLs. Components of

cholesterol efflux include the passive diffusion of cholesterol

from cells as well as the active cellular cholesterol transfer by

ABCA1, ABCG1, and SR-BI. In this context, ECs may represent

a potential barrier to HDL in reaching macrophages within

the vessel wall. However, HDL and lipid-free ApoA-I are able

to cross intact aortic EC monolayers from the apical to the

basolateral compartment in a transcytosis process, involving

ABCG1 and SR-BI (202). Contrary to other cells that form the

atherosclerotic plaque (smooth muscle cells and macrophages),

ECs do not accumulate cholesterol (203) and have a strong

ability to efflux cellular cholesterol to HDLs independently

of ABCA1, ABCG1, and SR-BI expression or activity (204).

On the other hand, it has been shown that in conditions

of hyperlipidemia ECs can metabolize LDLs into cholesterol

crystals, which accumulate intracellularly and confer a foam

cell-like morphology to ECs (205).

HDLs derived from healthy normolipidemic men and

women had different RCT capacities due to the activation of sex-

specific mechanisms for cholesterol efflux (206). The rs1799837

(APOA1) and rs1800588 (LIPC) SNP variants represented

the major determinants of HDL cholesterol efflux capacity

in women, while rs2230806 (ABCA1) and rs5082 (APOAII)

variants were key determinants in men (207). Furthermore,

serum isolated from women displayed an enrichment in large-

HDL-particles (L-HDL-P) and increased capacity to mediate

cholesterol efflux through SR-BI receptors. On the other hand,

serum isolated from men showed increased preβ-HDL particles

and cholesterol efflux through ABCA1 receptors (206). Both

low and high HDL-C levels were associated with reduced

free cholesterol transfer on HDLs in both sexes, especially in

women, in patients with acutemyocardial infarction and Tangier

disease (208).

These findings not only suggest that HDL composition

differs in men compared to women, but also that these

differences in HDL pool may have an impact in their

ability to stimulate cholesterol efflux. Estradiol levels, in fact,

positively correlated with HDL cholesterol efflux capacity

(HDL-CEC) from macrophages in pre-menopausal women and

were associated with increased concentration of L-HDL-P and

lower concentration of small-HDL-particles (S-HDL-P) (209).

However, HDL-CEC decreased in transgender women (men
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to women) under estradiol hormone therapy, suggesting that

reduction of testosterone and increase in estradiol may act

synergistically in reducing HDL-CEC (24). This hypothesis is

in line with the evidence that testosterone deprivation in men

increased HDL-C levels but not HDL-CEC, while estradiol

treatment had the opposite effect (210). The correlation between

androgen levels and CVD in men is controversial. Low levels of

androgens were associated to increased CVD in older men (211).

On the other hand, testosterone administration in hypogonadal

men can blunt EC-mediated vasorelaxation (212, 213). Thus,

age and type of androgen used are important factors to

be considered.

Inflammation

Increased expression levels of specific adhesion molecules—

such as VCAM-1 and ICAM-1 and E-selectin—are a well-

recognized marker of EC inflammation and oxidative stress.

HDL particle concentration is inversely correlated with

the expression of cellular adhesion molecules, as well as

inflammatory mediators C-reactive protein (CRP) and TNF-α.

The underlying mechanism can be partly attributed to HDL-

associated sphingosine 1 phosphate (S1P). S1P signaling through

S1P receptor has been shown to protect against TNF-α-induced

monocyte binding to ECs preventing the activation of NF-

kB and c-Jun pathways as well as reducing the secretion of

pro-inflammatory chemokines (214).

OxLDLs can induce MCP-1, which is involved in the

recruitment of monocytes into the sub-endothelial space

and their differentiation into foam cells. It is an important

inflammatory process in the initial stages of atherosclerosis

(215). In vitro and in vivo experimental studies suggested that

HDL associated-PON1 inhibited LDL-oxidation by catalyzing

the breakdown of oxidized phospholipids, thus abolishing the

production of pro-inflammatory cytokines (MCP-1, IL-8 and

macrophage colony stimulating factor) from ECs (216–220).

HDLs are also able to transfermicroRNA to ECs (221). It was

shown that HDL-transferred microRNA-223 directly targeted

ICAM-1 gene at 3’UTR sites suppressing gene expression and

function in HUVECs stimulated with TNF-α thus reducing

leukocyte adhesion. Regulation of TNFα-induced ICAM-1

expression by HDLs was not found in fibroblasts, suggesting a

specific miR-223 delivery on ECs (222–224).

HDL-induced NO production also plays an important

role in the reduction of EC inflammation. The induction

of PI3K-Akt-eNOS signaling mediated by the binding of

ApoA-1 and SR-B1 up-regulates cyclooxygenase (COX-2)

expression and prostaglandin I2 (PGI2) release in ECs

(225). PGI2 is a potent inhibitor of inflammation, which

limits immune cell proliferation as well as inhibits platelet

aggregation, thus affecting smooth muscle relaxation and

vasodilation (226).

HDL-C levels also correlated with risk of infection. Similarly

to what was showed regarding all-cause mortality risk (3, 4),

both low and high levels of HDL-C were associated with

increased risk of infection (227). The increased risk of infection

associated with low levels of HDL-C could be in part due to the

loss of leucopoietic control and immune cell modulation from

HDLs (228, 229). The mechanism in case of high levels of HDL-

C is less clear, but particular genetic mutations associated with

increased HDL levels may also affect disease susceptibility. For

instance, in case of LIPC and SCARB1 (encoding for hepatic

lipase and SR-BI, respectively), whose mutations were associated

with increased risk of CAD (46, 230). Interestingly, several SNP

variants located in the promoter and intron 1 of LIPC gene

were associated with changes in HDL-C levels in women but not

in men (231). SCARB1 rs5888 SNP variant, instead, has been

associated with a greater reduction in total cholesterol, LDL-C

and ApoB in women treated with atorvastatin compared to men

in patients with acute coronary syndrome (232).

Peri-menopausal and menopausal women had increased

levels of TNF-α, CRP, TG and LDL compared to their pre-

menopausal counterparts, which may underline a reduction on

HDL functionality driven by the collapse in estrogen levels (233).

HDL anti-inflammatory properties are impaired or lost

in chronic inflammatory conditions. Concomitantly with

a decrease of HDL particle levels also changes in the

structure and function of HDLs are observed. Patients

with chronic inflammatory disorders, including rheumatoid

arthritis, systemic lupus erythematosus, and psoriasis, which are

associated with an increased risk of atherosclerotic CVD, exhibit

a consistent decrease in HDL particles and ApoA-1 levels and

HDL vaso-protective properties in a sex-independent manner

(234–236). However, in other diseases as in the antiphospholipid

syndrome, studies reporting a strong reduction in HDL

functionality were conducted comparing only affected and

healthy women (237). Thus, it will be important to further

elucidate with sex-matched comparisons whether or not men

and women HDLs are similarly affected also in those immune-

inflammatory diseases.

Interestingly, it has been recently shown that HDL-C

and ApoA-I levels measured before SARS-CoV-2 infection

negatively correlated with COVID-19 mortality and

hospitalization, independently of age, sex, comorbidities,

or statin treatment (238–240). Furthermore, HDL cargo was

profoundly altered in severe COVID-19 patients, with increased

abundance of SAA-1 and−2, SFTPB, ApoF, and inter-alpha-

trypsin inhibitor heavy chain H4 (241). These findings are

corroborated by the evidence that treatment with reconstituted

HDLs in COVID-19 patients reduced SAA-1, SFTPB, and ApoF

in HDLs (242). Of note, men with COVID-19 were more prone

to develop into the severe condition and die compared to women

(Figure 2) (243, 244). Indeed, no striking differences were found

between pre- and post-menopausal women, suggesting that

reduction in female mortality may be independent from
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estrogen levels (243, 244). In vitro experiments conducted

on ECs exposed to SARS-CoV-2 S1 spike protein showed a

significant increase in the overall inflammatory status in cells

treated with androgens (245). Recent findings showed that male

sex clinical-biological characteristics, rather than male gender-

related differences (i.e., pertaining to the socio-economic

sphere, such as education) were independently associated with

intensive care unit admission, invasive ventilation, and/or death

in COVID-19 (246).

Anti-apoptotic and anti-oxidative
properties

EC homeostasis relies on the balance between pro- and anti-

apoptotic stimuli coming from bloodstream and neighboring

cells (247, 248). Once the balance is disrupted, (pro)-apoptotic

ECs favor platelet aggregation and coagulation, creating a pro-

atherogenic environment (249, 250). OxLDL can promote EC

apoptosis by increasing intracellular Ca2+ levels (251–253),

favoring the onset and progression of CVD (114). In contrast

to LDLs, HDLs protect ECs from apoptosis by preserving

mitochondrial integrity and inhibiting the activation of the

caspase-downstream cascade (254–256). Indeed, HDLs isolated

from a mixed sex pool of healthy donors was able to reduce EC

apoptosis both in vivo and in vitro, while sex-matched HDLs

isolated from CAD patients showed opposite results (257).

In particular, HDL particles containing ApoA-I seemed to be

more cytoprotective than other HDL subclasses (258, 259).

Moreover EPCs can quickly differentiate into mature ECs

to rescue vascular integrity in conditions of high cell turnover

(260). HDLs can promote endothelial repair by increasing EPC

number and function in male mice (261, 262).

In addition to their anti-apoptotic properties, HDLs can also

reduce oxidative stress. PON-1 is an accessory protein of HDL

that, in coordination with ApoA-I, protect lipoproteins, ECs and

intimal macrophages from oxidative insults by hydrolyzing lipo-

lactones (263–266). High levels of oxidative stress can increase

HDL lipid peroxide loading, decreasing their protective activity

against LDL oxidation (267, 268). Significant differences in HDL

peroxide levels between men and women have been reported

as a readout of sex-specific reduction in HDL anti-oxidative

functions in men (269).

Decreased HDL anti-oxidative properties driven by high

glycemic burden have also been reported in both type 1 and

type 2 diabetic men and post-menopausal women (270, 271). In

this context, it has been shown that PON-1 activity was more

strongly impaired in T2D women compared to men (272).

Furthermore, women with hypertension, metabolic

syndrome or peri-menopause not only had higher levels

of oxLDLs compared to healthy middle-age or pre-

menopausal women, but also reduced defenses against

oxLDLs. However, the contribution of estrogens in this context

is still unclear (273–275).

HDLs can serve as carriers for other molecules, for instance

estrogens. It has been shown that the binding of estrogens

with HDLs increases their anti-oxidative properties due to

estrogen esterification performed by LCAT (276). Indeed, LCAT

was able to esterify HDL-bounded E2. Esterified E2 was then

transferred fromHDL to LDL thanks to CETP (276). Incubation

experiments demonstrated that E2 esterification and further

association with LDL was able to increase LDL resistance to

oxidation (276, 277). On the contrary, hyperandrogenism is

associated with increased oxidative stress and reduced HDL

anti-oxidative functionality in women (278, 279). To the best

of our knowledge HDLs have not been reported as carriers

for androgens.

HDL-mediated endothelial
NO-production

Several mechanisms account for the endothelial NO-

stimulating capacity of HDLs. In cultured ECs, HDLs directly

activate the production and release of NO by binding of

ApoA-I to SR-BI, leading to increased intracellular ceramide

levels and phosphorylation of endothelial NO-synthase (eNOS)

(280). Cholesterol efflux from ECs to HDLs via ABCA1 also

promotes NO synthesis by modulating cholesterol-binding

protein caveolin-1 and eNOS (281). Mechanistically, the binding

of HDLs to SR-B1 leads to tyrosine kinase Src-mediated

activation of phosphoinositide 3-kinase (PI3K), which in turn

stimulates Akt and Erk pathways. The activation of Akt directly

stimulates eNOS by phosphorylation at Ser-1179 (282) (see

Figure 2).

Estradiol is able to induce rapid arterial vasodilation by

stimulating eNOS activity by acting via ERs (18). HDLs isolated

from female mice and healthy women (but not male mice or

men) were able to enhance NO production. In addition to ERs,

estradiol bound to HDLs was also able to enhance eNOS activity

through the activation of SR-BI receptors (Figure 2) (283).

Specific lipid and protein components of HDLs have a

strong impact on NO production. S1P is a lipid carried

mainly on apoM-containing HDLs (>50% of circulating S1P).

S1P-apoM HDLs are involved in persistent activation of

Akt/eNOS pathway, thus leading to NO dependent vasodilation

through S1P receptor stimulation (284–286). Decreased levels of

ApoM/HDL correlated with increased CVD risk and have been

reported in type 2 diabetes in both sexes and in women (but not

in men) with type 1 diabetes (287–289).

Reduced HDL-associated PON-1 activity leads to the

activation of endothelial lectin-like oxidized LDL receptor

(LOX-1) and PKCαII, thus inhibiting the activity of eNOS (290).

Inflammation and metabolic syndromes can also drastically
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affect the ability of HDLs to stimulate NO production (291, 292),

thus promoting atherosclerosis (293).

Conclusions

Sex hormones and sex-specific gene expression are

important although still incompletely understood determinants

in the regulation of HDL and EC cross talk and their

contribution to cardiovascular health and disease. Despite

increasing evidence pointing out that sex-origin of cultured cells

and in particular ECs can strongly affect scientific results (294–

296), most of the articles do not report any information about

the sex of the cells or of the animals used in their experiments.

The use of sex-mixed cohorts of patients or imbalanced number

of women and men during clinical trials also represents a

potential source of bias. As highlighted in this Review, it is of

foremost importance to always consider the influence of sex as

biological variable in each step of research and to clearly report

and analyze this information.
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