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Introduction: It is increasingly common to simultaneously determine a large

number of metabolites in order to assess the metabolic state of, or clarify

biochemical pathways in, an organism (“metabolomics”). This approach is

increasingly used in the investigation of the development of heart failure.

Recently, the first reports with respect to a metabolomic approach for the

assessment of patients with complex congenital heart disease have been

published. Classical statistical analysis of such data is challenging.

Objective: This study aims to present an alternative to classical statistics

with respect to identifying relevant metabolites in a classification task and

numerically estimating their relative impact.

Methods: Data from two metabolomic studies on 20 patients with complex

congenital heart disease and Fontan circulation and 20 controls were

reanalysed using random forest (RF) methodology. Results were compared to

those of classical statistics.

Results: RF analysis required no elaborate data pre-processing. The ranking

of the variables with respect to classification impact (subject diseased, or not)

was remarkably similar irrespective of the evaluation method used, leading to

identical clinical interpretation.

Conclusion: In metabolomic classification in adult patients with complex

congenital heart disease, RF analysis as a one-step method delivers the most

adequate results withminimum e�ort. RFmay serve as an adjunct to traditional

statistics also in this small but crucial-to-monitor patient group.

KEYWORDS
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Introduction

In biology and medicine, the metabolome, i.e., the concentration of metabolites in

tissue, body fluids, excrements, exhaled gas, or other biomaterial, reflects the metabolic

state of an organism (1). Modern to a high degree automated laboratory technology

allows for the simultaneous determination of a vast multitude of metabolites from
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minute specimens at moderate costs in order to assess the

metabolic state of, or clarify biochemical pathways in, an

organism (“metabolomics”) (2). One approach to interpret

the data is to assess both diseased subjects (“patients”) and

healthy controls. Any difference in the metabolomic pattern

between groups gives a hint at the metabolic pathways altered

in the patient group. Mathematically speaking, the individual

metabolomic pattern classifies the subject as either patient

or control. Using traditional statistical approaches such as

regression modeling, this study aims to rank various metabolites

with respect to their classification impact and to identify those

metabolites most promising to enlighten biochemical pathways

and pathophysiology underlying the disease. The ultimate goal

is to develop new concepts for diagnostics, monitoring, and

therapy. Such concepts play an important role in cardiology,

particularly with regard to the risk of the development of heart

failure in the small but increasing group of adult patients with

complex congenital heart disease (CHD). Classical statistical

analysis of such data typically comprising hundreds of variables

is a challenge, especially if the number of subjects to compare is

low, if relations between dependent and independent variables

are not linear, or if normal distributions or same variance are

not met, and while classical statistics’ strength is their power to

evaluate the accuracy of correlations, they are less accurate for

outcome prediction. With machine learning (ML) tools, which

can be able to learn from the actual data to analyse instead

of pre-programmed assumptions and instructions, there are

alternatives for the evaluation of big data, especially allowing for

outcome prediction.

Pattern recognition is a strength of artificial neural networks

(3) that performwell as a classification tool. However, presenting

to the user as “black box,” even from the underlying theory, it is

difficult to identify those input variables contributingmost to the

classification task (3).

The random forest (RF) approach seems to be more

promising (4–6). Following a sophisticated algorithm, a large

number of individual decision trees with respect to the

relationship between an input variable and classification result

are generated. Then, each subject’s metabolomic pattern is

subjected in sequence to all the decision trees, internally noting

each classification made. The majority vote of the trees is the

class the subject is ultimately assigned to (7). In addition to

subject classification, the algorithm delivers both the rank order

of the several input variables’ classification impact and their

numerical classification impact score (8). Thus, it should be easy

to identify the most promising metabolites deserving further

(statistical) analysis and interpretation.

Machine learning algorithms, among the RFs, have been

reported to offer an alternative approach to standard prognostic

modeling, especially in the field of adult cardiology (9), e.g., for

patients with heart failure for readmission prediction (10) (n =

977 patients, 472 input variables), or patients with angina for

ischemia prediction (11) (n = 932 patients, 43 input variables).

Data for the application of ML tools, including RF applied

to the growing but a much smaller group of adult patients

with CHD, are scarce. To date, the London group reported

the only large study on ML (neural network, no RF) applied

to >10,000 adult patients with various forms of CHD (<20%

of them with complex CHD) (12), which showed that ML

algorithms trained on large datasets are suitable to estimate

prognosis and potentially guide therapy in adult patients with

CHD. Chu et al. recently reported the benefit of ML tools,

including RF on pregnant women with CHD, to successfully

predict maternal or neonatal adverse events (13) (n = 318

patients; heterogeneous cardiac diagnoses, <20% of the patients

with complex CHD; 22 input variables). For adult patients

with complex CHD (n = 386, among them 40% with Fontan

circulation), the very first report on the successful application of

ML tools (recursive partitioning) to predict executive function

(14) has been recently published. The group of adults with

Fontan circulation, where the blood flows passively into the

lungs and where the single ventricle pumps the blood into

the system, is at the highest risk of all patients with CHD

to develop organ dysfunction over time. Thus, this group of

patients is crucial to focus on, and it is crucial to monitor and

predict outcomes to accurately develop timely interventions.

However, the major issue is that these patients are scarce and

that uniform monitoring among centers is challenging, as is

the application of standard (especially imaging) diagnostic tools,

which are designed for a biventricular heart. Using a traditional

regression approach (heatmap correlation), we recently reported

distinct patterns of serum analytes as derived by metabolomics,

taking into account more than hundreds of analytes (“big

data”). The hope is, with this large amount of serum data,

to ultimately find analyte patterns that early delineate adverse

function, hemodynamic, or organ alterations. Taking a step back

to the classification of Fontan patients vs. controls, we aim at

applying RF, which has not been done before, and proving the

RF’s performance and feasibility on real metabolomic data. We

hypothesized that for research on the metabolism of this small

but crucial to scrutinize patient group, RF may present a simple

adjunct, or even alternative, to classical statistics with respect to

identifying themost relevant variables in a classification task and

numerically estimating their relative impact.

Materials and methods

Data from two recent metabolomic studies on 20 adult

Fontan patients (univentricular palliation of an underlying

complex CHD) and 20 healthy controls matched for age and

sex (15, 16) were reanalysed. While in our previous analysis

(15, 16), we used a heatmap correlation model to evaluate

our hypothesis, in this study, we used RF methodology for

classification (programme RF++ rel. 1.0) (17). We developed

two training models. Input data were all available raw data
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from our recently published work, comprising 30 [amino acids

(15)] and 110 [phospholipids (16)] metabolomic variables,

respectively. Output (prediction) was the classification of

patients as diseased (Fontan patient) vs. non-diseased (control

proband). The parameter settings—number of variables used,

number of candidate predictors randomly drawn for a split

(mtry, candidate predictors that are randomly drawn for a

split) (n = 6 for the amino acid model; n = 11 for the

phospholipid model), and number of trees (n = 12,000 for both

the amino acid and the phospholipid model)—were chosen as

suggested by the software used (8, 17, 18). On each dataset,

we performed several runs: for amino acids, we performed 9

runs: mtry, range 4–12 (default: 6); trees, range 1,000–40,000

(default: 12,000). For lipids, we performed 14 runs: mtry, range

6–15 (default: 11); trees, range 1,000–40,000 (default: 12,000)

(Supplementary material 1).

All calculations were done using an ordinary notebook

personal computer. The results were compared to those of

classical statistics (15, 16). Finally, the method’s feasibility

was judged.

Results

With respect to amino acids and derivatives, the RF run

comprised all 30 metabolites analyzed by classical statistics

(15). Subject classification (patient vs. control) was correct

in 80% (accuracy score). The ranking of the variables with

regard to classification impact given both as “permutation-based

proportion” (8) and the slightly more expressive “mean decrease

in the margin (MDM)” (19) was strikingly similar irrespective

of the evaluation method used: the metabolites with an RF rank

of 1–3 appeared among the topmost three metabolites as ranked

by classical statistics (Table 1, top), leading to identical clinical

interpretation (15).

With respect to phospholipids (16), the RF run

simultaneously comprising all 110 metabolites that had

been subjected to classical statistics resulted in a correct subject

classification of 85%. Compared to classical statistics, RF

analysis resulted in a similar ranking of the top variables with

regard to classification impact: the RF ranks 1–8 comprised the

topmost 3 metabolites ranked by classical statistics (Table 1,

bottom), again suggesting identical clinical interpretation (16).

The cumulative impact of amino acids and phospholipids is

shown in Figures 1A,B. With a cumulative impact normalized

to 100% (per group), it becomes obvious that already a small

number of analytes (the topmost ranked 6/30 as for amino acids

and the topmost ranked 21/110 as for phospholipids) account

for 80% of the classification optimum.

Doing repeated RF runs, all results proved robust with

regard to even wide variations in the RF parameter setting

(Supplementary material 1). Each run takes only a few seconds

to complete.

TABLE 1 Random forest analysis.

Random forest Classical statistics (15, 16) Metabolite

Rank Score Rank Fold change

AMS

1 0.0751 2 1.78 Met-SO/Met

2 0.0461 3 1.64 Met-SO

3 0.0405 1 1.83 Glu

4 0.0342 7 1.26 ADMA

5 0.0171 5 1.35 t4-OH-Pro

6 0.0130 11 −1.19 His

7 0.0123 6 −1.32 Tau

8 0.0122 10 −1.21 Thr

9 0.0099 13 −1.16 Asn

10 0.0030 4 1.44 Alpha-AAA

Lipids

1 0.0459 2 −1.83 PC aa C34:4

2 0.0303 18 −1.38 SM (OH) C22:1

3 0.0294 13 −1.41 PC aa C32:3

4 0.0245 38 −1.30 SM C24:0

5 0.0171 67 −1.21 PC ae C38:4

6 0.0155 1 −1.92 PC aa C36:6

7 0.0143 24 −1.36 SM (OH) C24:1

8 0.0141 3 −1.75 PC aa C32:2

9 0.0128 51 −1.26 PC ae C32:1

10 0.0121 9 −1.44 PC ae C30:0

11 0.0112 5 −1.52 PC aa C30:0

12 0.0112 32 −1.31 PC ae C40:3

13 0.0085 33 −1.31 PC ae C40:4

14 0.0075 25 −1.35 SM C26:0

15 0.0068 72 −1.18 SM C24:1

16 0.0065 17 −1.38 PC ae C40:1

17 0.0063 10 −1.43 PC ae C42:4

18 0.0054 22 −1.36 PC ae C40:2

19 0.0048 23 −1,36 PC ae C44:4

20 0.0045 35 −1.31 SM (OH) C22:2

Specific serum metabolite and its classification impact compared to classical statistics.

Only the topmost 10 (out of 30 for amino acids) and 20 (out of 110 for phospholipids)

ranks are given. AMS, amino acids/derivatives (random forest parameter setting: no. of

variables used, 30; the number of candidate predictors randomly drawn for a split (mtry),

6; no. of trees, 12,000). The first 10 ranks are given. Lipids, phospholipids (random

forest parameter setting: no. of variables used, 110; mtry, 11; no. of trees, 12,000). The

first 20 ranks are given. Random forest: rank, rank order; score, classification impact

score (MDM, mean decrease in margin). Classical statistics: rank, rank order according

to heatmap correlation analysis (15, 16); fold change, ratio between patients’ and the

controls’ serum concentration of metabolites, a positive (negative) value indicating a

higher (lower) metabolite concentration in patients. Metabolite, name of metabolite

[AMS, Met-SO/Met, ratio of methionine sulfoxide/methionine; Met-SO, methionine

sulfoxide; Glu, glutamic acid; ADMA, asymmetric dimethylarginine; t4-OH-Pro, trans-

4-hydroxyproline; Tau, taurine; His, histidine; Thr, threonine; Asn, asparagine; Alpha-

AAA, alpha aminoadipic acid. Lipids: PC, phosphatidylcholine; SM, sphingomyelin; aa,

diacyl group; ae, acyl-alkyl group; x in Cx, number of carbon atoms in the diacyl/acyl-

alkyl group; z in Cx:z, location of the double bond in the diacyl/acyl-alkyl group]. Note

the rather small differences in the ranking scores in their respective fold changes from

rank ≥5, indicating that the rank order of those less important metabolites inherits

some uncertainty.
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FIGURE 1

Cumulative classification impact (diseased vs. non-diseased)—normalized to 100%—of the respective metabolites (dotted curves) vs. absolute

impact rank. The linear line indicates the analyte’s rank normalized to 100%. %, percentage; MDM, mean decrease in the margin (variable

importance with respect to classification into diseased vs. non-diseased); NormCumMDM, normalized cumulated mean decrease in the margin;

rank, rank with respect to classification impact MDM, starting with the highest impact as rank 1. (A) Amino acids. The topmost ranked 6/30

amino acids (20% of analytes; open circle) account for 80% of the classification total. (B) Phospholipids. The topmost ranked 21/110

phospholipids (19% of analytes; open circle) account for 80% of the classification total.
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Classical statistics required elaborate pre-processing of

the data (logspline imputing of values < limit of detection;

log2 transformation/normalization; outlier detection and

elimination), and p-correction for multiple testing thus losing

sensitivity (15, 16). No such data pre-processing was required

for the RF analyses (8). While classical statistics required the

participation of an expert statistician as a prerequisite for

dependable results and sound interpretation, there was no such

requirement with respect to RF analysis.

Discussion

Machine learning algorithms have been reported to

successfully estimate prognosis and guide therapy for adult

patients with various CHD (9–14). As we have shown, also

in patients with complex CHD and Fontan circulation, where

patient numbers are low and input variable numbers may

be large, both ML algorithms (RF analysis in our case)

and classical statistics are potent classification tools. With

respect to amino acids (phospholipids), the RF topmost

ranking 6 (21) metabolites inherit more than 80% of the

classification competence. Both methods depict a heavily

overlapping (especially true for amino acids, functioning more

heterogeneously than phospholipids) albeit not identical bunch

of metabolites as most promising for classification (diseased

vs. non-diseased), deserving further analysis and interpretation.

Thus, the clinical conclusions to be drawn (15, 16) are identical.

The topmost ranked metabolites—ranked by either RF or

classical statistics—(Met-SO/Met, Met-SO, Glu; phospholipids

with medium and long alkyl chains) suggest that in Fontan

patients, the signaling and inflammatory pathways hinting at

oxidative stress and endothelial dysfunction, as well as energy

and structural metabolism are affected, as reported for other

cardiovascular circumstances as for patients with heart failure

(15, 16, 20, 21). The metabolites ranking ≥5 do not show but

small differences in their absolute fold change values between

successive ranks; beyond rank 20—particularly with the lipids

(as with a set of proteomics data, see performance analysis

as mentioned under limitations)—the differences are minimal,

rendering further rankingmeaningless for clinical interpretation

(biological variability, small sample size).

By no means, classical heatmap correlation analysis is an

objective method. Actually, its results to some degree depend

on the expert operator’s parameter setting according to clinical

judgement (22). Thus, it must not be regarded as the golden

standard for the analysis of such types of data as given here. It

might well be that RF analysis reveals interdependencies ignored

by traditional regression analysis and vice versa. Hence, both

types of analysis are complementing each other.

Although RF analysis is technically much easier to perform

than sophisticated classical statistics, it delivers dependable

results even to the statistically less experienced. RF parameter

settings are uncritical, even if the parameters are well beyond

the range suggested by the programme used. Contrary to

classical statistics, RF can handle huge numbers of variables

per case without performance loss (8). Its output is easy

to interpret. While each variable’s classification impact is

numerically scored as “permutation-based proportion” and

“mean decrease in margin (MDM)” (8, 19), classical indicators

of the grade of the significance of the various results—

equivalent to eta2 and p-value in classical statistics or the

here used fold change—are missing. If this is of importance,

it is debatable as long as the overall interpretation of the

results is the same. Insofar, metabolomic RF analysis should

be considered an alternative to classical statistics. In case one

feels uneasy about the lack of such measures of determination

and prefers classical statistics, in the first step one could

perform RF analysis as an adjunct in order to identify the

most promising variables, and in the next step subject a

set of selected variables to classical statistics thus reducing

processing effort.

Limitations, confounders

The analysis presented in this study depends on data of

only 40 subjects, hence one should be careful with generalizing

our findings on methodology. Independent internal validation

would have been desirable for both RF and classical statistics.

Two features might, however, compensate to some degree for

this missing internal validation: For RF, we used out-of-bag

(OOB) prediction, meaning that every tree in the RF results

from only a fraction of the data points in the dataset. OOB

predictions with respect to a specific variable are generated

by using only those trees that did not use that variable to

generate the predictions. This provides amore unbiased estimate

of the prediction error of the random forest and should give

a similar error rate to that when making predictions on a

new and independent dataset. Still, while the OOB error rate

in RF is quite acceptable, due to the lack of an independent

validation sample for classical statistics, an error rate cannot be

provided, thus precluding the comparison of the twomethods in

this regard.

For example, in another performance estimate on the same

40 subjects and a set of 526 proteomics-derived metabolites per

subject (work submitted), RF analysis tagged 4 of the 6 most

promising metabolites according to classical statistics as most

important (the odds of such a hit by guessing are <1 in a

million), underlining the potential of RF. As for the cumulative

impact, the topmost ranked 27/526 analytes accounted for 80%

of the classification total.

With RF, we used easy-to-operate software freely available

online and fully meeting our demands (8, 17). But, in other

settings, more sophisticated RF software might be more

adequate (23).
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Conclusion

Our preliminary data on a small patient group implies that

RF is applicable to the scarce but crucial to monitor group

of patients with complex diseases which impact metabolism.

In a metabolomic classification setting, RF analysis as a

one-step method delivers the most adequate results with

a minimum of effort. RF analysis is both a compelling

stand-alone tool and an adjunct to classical statistics. These

conclusions have to be proven by analysis of a larger

patient number.
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