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Editorial on the Research Topic

Mitochondria, metabolism and cardiovascular diseases

Mitochondria are intracellular organelle playing central roles in intracellular energy

metabolism and reactive oxygen species (ROS) production. Recently, much attention

has been focused on the role of mitochondria in the mechanisms of cardiovascular

and metabolic diseases such as atherosclerosis, heart failure, hypertension, and diabetes.

Mitochondrial metabolism, such as ATP production via β-oxidation, TCA cycle to

generate metabolites, and mitochondrial electron transport chain to generate ROS,

is essential for normal cell function. Of note, vascular endothelial cells mainly

depend on glycolysis to produce ATP in normal physiological conditions. Although

ROS at the physiological level are important for cell signaling, excess ROS derived

from dysfunctional mitochondria promote cardiovascular diseases (1). In addition,

mitochondrial autophagy (mitophagy) plays an important role in mitochondrial quality

control by removing damaged mitochondria (2). Mitochondrial dynamics regulated

by the balance of mitochondrial fission and fusion is important for maintaining

mitochondrial function and health. Emerging evidence suggests that mitochondrial

dysfunction, aberrations in mitochondrial metabolism, ROS levels and dynamics, and

impaired mitophagy are interconnected, which contributes to the pathophysiology of

cardiovascular diseases.

This Research Topic highlighted three original papers and three review articles in this

area. Shosha et al. examined the metabolic function and mitochondrial structure in the

retinas of control and diabetic mice. They demonstrated mitochondria fragmentation

in the retina of middle-aged diabetic Akita mice, which was associated with a decrease

in glycolysis and expression of 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3

(PFKFB3), a rate-limiting enzyme of glycolysis, in the retina. However, these changes

were not observed in old Akita mice at 10 months of age. As the authors have

mentioned, the role of age-specific suppression of glycolysis in the pathobiology of

diabetic retinopathy needs to be further examined. Mitochondrial respiratory function

determined by oxygen consumption rate (OCR) measurement showed no significant
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differences between the Akita and control mice. However, basal

respiratory activity was decreased in Akita mice under glucose-

free conditions, suggesting that the metabolic stress induced

by glucose deprivation and subsequent glycolysis inhibition

can unmask mitochondrial dysfunction in the diabetic retinas.

Future studies are needed to elucidate mechanisms underlying

the difference in mitochondrial respiration under glucose or

glucose-deprived conditions.

Ma et al. reported the role of iron in the mechanisms

of atherosclerosis. Authors have observed increased iron

content in the aorta of apolipoprotein-E−/− (ApoE−/−) mice,

accompanied by increased expression of transferrin receptor 1,

ferritin, iron regulatory protein 1, iron regulatory protein 2, and

heme oxygenase 1, all of which are related to iron metabolism.

In addition, they found that ApoE−/− mice had an increased

expression of aortic ICAM1, VCAM1, LOX-1, Gpx4, and CD36,

as well as increased levels of ROS in the blood. Importantly,

deferoxamine, an iron chelator, abrogated atherosclerotic plaque

formation and suppressed the induction of iron metabolisms-

related molecules. The authors concluded that the increased

uptake of iron and its accumulation in the aortic wall at

least partially promote the development of atherosclerosis in

ApoE−/− mice, likely through iron-mediated production of

ROS. It is reported that mitochondria play important roles in

intracellular iron metabolisms. For example, the final step of

heme biosynthesis occurs in the mitochondrial matrix (3). The

importance of iron metabolism in the cardiovascular systems is

largely unknown. Thus, further studies are warranted to develop

anti-atherosclerosis therapies targeting iron metabolism.

Dikalov et al. reported a novel, 15N- and deuterium-

enriched spin probe 15N-CAT1H, a highly sensitive and site-

specific probe for extracellular superoxide. In combination

with 14N-mitoTEMPO, phagocytic NADPH oxidase activity

and mitochondrial superoxide were visualized in immune cells

isolated from the spleen. Using these probes, the authors

demonstrated the coupling of phagocytic NADPH oxidase

activity and mitochondrial superoxide production. In splenic

immune cells isolated from angiotensin II-infused mice, basal

superoxide level was increased. The complex III inhibitor,

mitochondrial uncoupler, and NADPH oxidase activator

further increased superoxide levels in both extracellular

space and mitochondria, suggesting angiotensin II-induced

superoxide production by the cross-talk between NADPH

oxidase and mitochondria.

The three reviews summarize up-to-date information about

mitochondria’s role in cardiovascular diseases. Riascos-Bernal

et al. described atypical cadherin FAT1. They have reported that

FAT1 is an unpredicted negative regulator of mitochondrial

function, including mitochondrial metabolism, and suppresses

smooth muscle cell proliferation after vascular injury. In

addition, FAT1 interacts with the electron transport chain

complexes and suppresses mitochondrial respiration. As a

result of this action, DNA synthesis and proliferation of

smooth muscle cells are suppressed, indicating that FAT1 is

a potential therapeutic target for mitochondria-dependent

vascular disease. Zeng et al. summarized a review focusing

on the role of mitochondria in the process of vascular

calcification. First, they briefly summarized the mechanisms

of vascular calcification. Then, they discussed the role of

mitochondria in vascular calcification and related mechanisms.

For example, mitochondria are involved in intracellular

calcium homeostasis and cell death, including apoptosis,

which is considered relevant to the pathogenesis of vascular

calcification. The article also stated that the accumulation

of mitochondrial damage and inhibition of mitophagy, a

mitochondrial removal mechanism, can lead to mitochondrial

dysfunction and smooth muscle cell calcification. Lastly,

they discussed future research directions and the main

challenges. Uchikado et al. summarized the topic focused

on mitochondrial dynamics and cardiovascular diseases.

Recent evidence supports the hypothesis that mitochondrial

morphological changes, including fission and fusion, play an

important role in mitochondrial quality control mechanisms

(4). Impairment of these processes is related to various

cardiovascular senescence/diseases (5).

This Research Topic supports the notion that mitochondria

have emerged as central factors in various aspects of

cardiovascular diseases. Although this multifaceted nature

of mitochondria can be an obstacle in therapeutic development,

understanding and identifying key molecules involved in

mitochondrial dysfunction will lead to developing novel

effective therapies and targets required for the treatment of

various cardiovascular diseases.
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