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Background: Although observational studies have demonstrated associations

between elevated plasma homocysteine levels and the risk of cardiovascular

diseases, controversy remains.

Objective: This study investigated the causal association of plasma homocysteine

levels with congestive heart failure and cardiomyopathy risk.

Methods: We performed a two-sample Mendelian randomization (MR) study of

congestive heart failure (n = 218,792), cardiomyopathy (n = 159,811), and non-

ischemic cardiomyopathy (n = 187,152). Genetic summary data on the association

of single-nucleotide polymorphisms with homocysteine were extracted from

the most extensive genome-wide association study of 44,147 individuals. MR

analyses, including the random-effect inverse variance-weighted (IVW) meta-

analysis, weighted median, simple median, maximum likelihood, penalized weighted

median, MR-PRESSO, and MR-Egger regression, were used to estimate the

associations between the selected single-nucleotide polymorphisms and congestive

heart failure or cardiomyopathy.

Results: The MR analyses revealed no causal role of higher genetically predicted

plasma homocysteine levels with congestive heart failure risk (random-effect IVW,

odds ratio [OR] per standard deviation (SD) increase in homocysteine levels = 1.753,

95% confidence interval [CI] = 0.674–4.562, P = 0.250), cardiomyopathy (random-

effect IVW, OR per SD increase in homocysteine levels = 0.805, 95% CI = 0.583

to 1.020, P = 0.189), or non-ischemic cardiomyopathy (random-effect IVW, OR per

SD increase in homocysteine levels = 1.064, 95% CI = 0.927–1.222, P = 0.379). The

results were consistent with other analytical methods and sensitivity analyses.

Conclusion: Genetically predicted homocysteine level was not associated with

congestive heart failure or cardiomyopathy risk. It is unlikely that homocysteine-

lowering therapy decreases the incidence or improves the outcomes of congestive

heart failure and cardiomyopathy.
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1. Introduction

Congestive heart failure is a significant public health problem that
causes considerable morbidity and mortality, accounting for over 1
million hospitalizations annually (1). Prevention of congestive heart
failure by identifying risk factors or indicators is crucial. Risk factors
for congestive heart failure include age, sex, coronary artery disease,
myocardial infarction, hypertension, diabetes mellitus, and obesity
(2–7). Perturbed myocardial energetics participate in mechanisms
leading to heart failure as myocardial adenosine trisphosphate
production is reduced by 30–40% (8). A recent study suggested that
the cardiomyopathy burden across the world increased substantially
from 1990 to 2019, and constituted a considerable global public
health problem with increasing prevalence, deaths, and disability-
adjusted life years over recent decades (9). The interrelationship
between congestive heart failure and cardiomyopathy is complex
yet close. Heart failure is highly influenced by heritability,
and there are nearly 100 genes linked to inherited forms of
cardiomyopathy; as clinically observed, heart failure is frequently
accompanied by cardiomyopathy and they present with similar
symptoms (10). Heart failure might be the common outcome
of an individual’s heart disease; however, many cases of heart
failure initially present with different forms of cardiomyopathy.
Therefore, it is hypothesized that intervention at the cardiomyopathic
stage may attenuate or prevent subsequent heart failure initiation
and progression.

Homocysteine, a sulfhydryl-containing non-proteinogenic
amino acid, is physiologically critical for cell cycle progression
and maintenance of cellular homeostasis (11). Elevated plasma
homocysteine concentrations are associated with increased risks
of various cardiovascular diseases (CVD), including congestive
heart failure (12, 13). Experimental studies underscored that the
myocardium is uniquely susceptible to homocysteine injury (14).
However, the causal relationship is uncertain, as some scholars
questioned the conclusion that a high homocysteine level is
not an independent risk factor for CVD due to the potential
confounding factors in observational studies (15). It is unclear if
high homocysteine levels are mechanistic risk factors for congestive
heart failure or only risk indicators without any direct effects
on the myocardium.

Mendelian randomization (MR) is an alternative approach
to inferring the causality of lifelong risk factors (exposure) on
diseases (outcome) using genetic variants as instrumental variables
(IVs) (16). In this study, we performed MR analyses to assess the
associations between genetically predicted plasma homocysteine
levels with congestive heart failure and cardiomyopathy risk.
We also explored the causal association between homocysteine
and non-ischemic cardiomyopathies including hypertrophic
cardiomyopathy, diabetic cardiomyopathy, arrhythmogenic
cardiomyopathy, and cardiomyopathy associated with rare
genetic diseases.

2. Materials and methods

This study was conducted according to STROBE-MR guidelines
(17), as in Supplementary Table 1. Formal ethical approval is not
required as this is an analysis of publicly available, deidentified and
summarized data.

2.1. Study design

We designed a two-sample MR (TSMR) analysis to evaluate
the causal effect of plasma homocysteine on diseases. The MR
approach seeks IVs based on three principal assumptions (Figure 1;
18). First, IVs are strongly associated with the risk factor of the
exposure (homocysteine). Second, IVs should not be associated with
confounders. Finally, IVs only affect the outcomes (congestive heart
failure, cardiomyopathy or non-ischemic cardiomyopathy) through
the homocysteine pathway and not other pathways.

2.2. Data sources

We accessed the publicly available genome-wide association
study (GWAS) summary statistics provided by the NHGRI-EBI
GWAS Catalog1 or the Integrative Epidemiology Unit GWAS
database.2 The exposure in this study was genetically predicted
plasma homocysteine levels. We selected genetic variants associated
with plasma homocysteine levels in a meta-analysis that included
data from ten independent cohorts of European ancestry, with up to
44,147 individuals (19). Genetic variants associated with congestive
heart failure were obtained from the most extensive published GWAS
which contained 897 congestive heart failure cases and 455,451
controls in the GWAS Catalog (20). We selected GWAS summary
statistics from the FinnGen cohort on the Integrative Epidemiology
Unit Open GWAS Project database for cardiomyopathy and non-
ischemic cardiomyopathy. The FinnGen study includes an expanding
repository of genomic and clinical data emanating from a nationwide
network of Finnish biobanks.3 For cardiomyopathy, we used the
GWAS with the specific ID “finn-b-I9_CARDMYO” consisting of
3,100 cases, 156,711 controls and 16,380,196 genotyped single-
nucleotide polymorphisms (SNPs). Publicly available data for non-
ischemic cardiomyopathy were available from a GWAS with the
specific ID “finn-b-I9_NONISCHCARDMYOP,” involving 11,400
cases and 175,752 controls. There was no overlap between the
participants included in the GWAS for homocysteine and these
outcomes. The datasets used in MR analysis include individuals
of European ancestry to reduce selection bias and improve the
robustness. The analytical procedure is shown in Figure 2.

2.3. Selection of genetic IVs

Single-nucleotide polymorphisms significantly associated with
homocysteine levels were selected as IVs (P < 5.0 × 10−8). These
SNPs were further linkage disequilibrium (LD)-pruned (distance
threshold = 10,000 kb, r2 < 0.001) to ensure independence among
the genetic variants (21). If the selected SNPs were not collected
in the GWAS of congestive heart failure or cardiomyopathy,
proxy SNPs in the LD (r2 > 0.8) were chosen for substitution.
Subsequently, we removed any palindromic SNPs with minor allele
frequencies above 0.3 to ensure that the effects of the SNPs
on the exposure corresponded to the same allele as did their

1 https://www.ebi.ac.uk/gwas

2 https://gwas.mrcieu.ac.uk/

3 https://finngen.gitbook.io/documentation/

Frontiers in Cardiovascular Medicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2023.1030257
https://www.ebi.ac.uk/gwas
https://gwas.mrcieu.ac.uk/
https://finngen.gitbook.io/documentation/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-10-1030257 January 21, 2023 Time: 15:20 # 3

Wang et al. 10.3389/fcvm.2023.1030257

FIGURE 1

Three key assumptions underlying Mendelian randomization study design. SNP, single nucleotide polymorphism.

FIGURE 2

Flow chart of this Mendelian randomization study. GWAS, genome-wide association study; IVW, inverse-variance weighted; MR, Mendelian
randomization; MR PRESSO, MR pleiotropy residual sum and outlier; SNP, single-nucleotide polymorphism.

effects on diseases (22). To minimize potential weak instrument
bias, we considered an F-statistic of at least 10 as sufficient for
performing an MR analysis. The F statistics can be calculated as

F = R2(N−1−k)
(1−R2)k

, where N stands for the sample size, k stands

for the number of IVs, and R2 stands for the percentage of the

variation explained by the SNPs (23). R2 was derived from the
original study or calculated according to the derived summary
statistics in line with what has been described previously, which
can be calculated as R2 = 2 ×

(
1 − minor allele frequency

)
×

minor allele frequency ×
(

β

SE×
√
N

)
2 (24).
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2.4. Statistical analysis

We harmonized the summary exposure and outcome data
based on a previously described method (25). The random-effect
inverse variance weighted (IVW) was employed as the primary MR
analysis to evaluate the causal effect between plasma homocysteine
levels and congestive heart failure, cardiomyopathy, or non-ischemic
cardiomyopathy, which assumes the absence of invalid genetic
instruments (26). The weighted median, simple median, maximum
likelihood and penalized weighted median methods were also
employed. Compared with the IVW, these methods are more robust
for individual genes with strongly outlying causal estimates and
generate a consistent causal effect estimate when valid IVs exceed 50%
(27). The MR-Egger method was used to detect directional pleiotropy,
violating the above assumptions (28). Directional pleiotropy was
assessed by evaluating the deviation of MR-Egger intercepts; a value
that differs from zero indicates that the IVW estimate is biased
(29). Cochran’s Q test was applied to assess the heterogeneity
of estimates of individual genetic variability. We also inspected
potential directional pleiotropy based on the asymmetry of the funnel
plots. MR-PRESSO (MR Pleiotropy RESidual Sum and Outlier) was
applied to validate the results in the IVW model, which detected
and corrected for horizontal pleiotropy by removing outliers (30).
The association was deemed causal when at least three methods
provided consistent results, which reduces the risk of false-positive
interpretations (31).

For sensitivity analysis, a leave-one-out sensitivity analysis
was conducted by removing a single variant from the analysis
each time to determine whether a single SNP disproportionately
affected the association. We excluded the SNPs significantly
associated with potential confounders by searching genome-wide
traits (P < 5× 10−8) using the Phenoscanner website4 (32).

The odds ratios (ORs) and corresponding 95% confidence
intervals (CIs) of outcomes were scaled to a one-standard-deviation
(SD) increase in genetically predicted homocysteine. A two-sided
P < 0.05 was considered statistically significant for MR analyses.
All analyses were performed using the “TwoSampleMR” and “MR-
PRESSO” packages in the R software environment.

3. Results

3.1. IVs selection and validation

We obtained three IVs for congestive heart failure, 12 for
cardiomyopathy, and 12 for non-ischemic cardiomyopathy. The
details of the characteristics of all independent IVs in this study are
displayed in Supplementary Table 2. F statistics for all SNPs used
in this study were all above 10, indicating that they were robust
instruments. We used the intercept term to estimate the exposures
from MR-Egger regression and found that no horizontal pleiotropic
pathway existed in our TSMR analysis (congestive heart failure:
MR-Egger intercept = −0.1369, P = 0.257; cardiomyopathy: MR-
Egger intercept =−0.0278, P = 0.290; non-ischemic cardiomyopathy:
MR-Egger intercept = 0.0047, P = 0.687).

4 http://www.phenoscanner.medschl.cam.ac.uk

3.2. Results from TSMR

According to the IVW analysis results, for each SD increase in
genetically predicted homocysteine levels, the OR was 1.753 (95%
confidence interval (CI), 0.674–4.561; P = 0.250) for congestive heart
failure, 0.805 (95% CI, 0.583–1.020; P = 0.189) for cardiomyopathy,
and 1.064 (95% CI, 0.927–1.222; P = 0.379) for non-ischemic
cardiomyopathy (Figure 3). The weighted median, simple median,
maximum likelihood, and penalized weighted median methods
yielded almost consistent results, except the MR-Egger regression
results. Based on prespecified causality adjudication rules (31). These
results suggest that genetically predicted plasma homocysteine levels
are not associated with congestive heart failure, cardiomyopathy,
or non-ischemic cardiomyopathy. The causal effect estimates of
genetically determined homocysteine on the risk of congestive heart
failure and cardiomyopathy are shown in Figure 4. No significant
heterogeneity was detected using Cochran’s Q statistics among SNPs
of homocysteine (congestive heart failure: Q = 5.532, P = 0.063;
non-ischemic cardiomyopathy: Q = 12.751, P = 0.310, respectively),
except for cardiomyopathy (Q = 20.478, P = 0.039). The funnel plots
revealed an absence of directional pleiotropy, with a symmetrical
distribution of variants effects (Supplementary Figure 1). No outlier
was observed in the MR-PRESSO test regarding homocysteine-
cardiomyopathy and homocysteine-non-ischemic cardiomyopathy
MR analysis, and the SNPs of homocysteine-congestive heart failure
are insufficient for MR-PRESSO test (only three SNPs).

3.3. Results from sensitivity analysis

The leave-one-out analysis showed that the negative results for
the relationship between homocysteine and congestive heart failure,
cardiomyopathy and non-ischemic cardiomyopathy were not driven
by any individual SNP exclusion, confirming the lack of associations
(Figure 5).

The Phenoscanner database revealed one SNP associated with
confounding factors for congestive heart failure and five for
cardiomyopathy and non-ischemic cardiomyopathy, including BMI
(33), cholesterol (34), hemoglobin concentration (35), coronary heart
disease, and blood pressure (36; Supplementary Table 3). After
excluding these pleiotropic SNPs, similar results were observed
(Supplementary Table 4), and no significant directional pleiotropy
(Supplementary Table 5) was found. No significant heterogeneity
was detected, except for SNPs on cardiomyopathy (Q = 15.842,
P = 0.014).

4. Discussion

We evaluated the relationship between plasma homocysteine
level and congestive heart failure or cardiomyopathy risk using
TSMR. We found that genetically predicted homocysteine level is
unlikely to be a causal determinant of congestive heart failure,
cardiomyopathy, or non-ischemic cardiomyopathy risk.

Homocysteine is a common amino acid that directly damages
the vascular endothelium (37). Several lines of evidence suggest
the associations between elevated plasma homocysteine levels and
increased congestive heart failure risk. Prospective data from
the community-based prospective Framingham Study analyzing
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FIGURE 3

Two-sample Mendelian randomization of plasma homocysteine levels and the risk of diseases. (A) Congestive heart failure. (B) Cardiomyopathy and
non-ischemic cardiomyopathy. CI, confidence interval; SNP, single nucleotide polymorphism.

2491 adults demonstrated an increased incidence of congestive
heart failure in individuals with elevated homocysteine levels
(13). A recent observational study found that the homocysteine
level was positively correlated with left ventricular end-diastolic
diameter and New York Heart Association grade, and was negatively
correlated with left ventricular ejection fraction (38). Increased
homocysteine levels are prevalent in heart failure with reduced
ejection fraction and heart failure with preserved ejection fraction
(39). Clinical studies suggested that hyperhomocysteinemia (i.e.,
fasting plasma homocysteine > 10 µmol/l) is related to the
incidence and severity of chronic heart failure (40, 41). A recent
meta-analysis drew similar conclusions (42). Cardiomyopathy is
the most frequent genetic cause of congestive heart failure owing
to untreated and uncontrolled systolic dysfunction at a later
stage. Although the number of studies exploring the association
between homocysteine and cardiomyopathy is limited, there were
sufficient hypotheses. The experimental evidence supports the
findings that myocardium is uniquely susceptible to homocysteine-
induced injury and high homocysteine levels increase the risk
of cardiomyopathy (43, 44). In addition, selective homocysteine-
lowering gene transfer potently attenuates pressure overload-induced
cardiomyopathy, improves infarct healing, attenuates remodeling,
and enhances diastolic function after myocardial infarction in mice
(45, 46).

Although much evidence shows strong associations, randomized
controlled trials (RCTs, the most powerful method of demonstrating
the etiology hypothesis) showed contradictory results. Folate
and vitamin B12 are commonly used to reduce homocysteine,
although this effect is not selectively targeted. Several RCTs
attempting to reduce serum homocysteine concentrations with
folate supplementation (thereby reducing the detrimental effect of
hyperhomocysteinemia on CVD) have not met their expectations
(47). The third update of the Cochrane review reported uncertain

effects of homocysteine-lowering interventions in preventing
cardiovascular events, suggesting that hyperhomocysteinemia
should not be regarded as an independent risk factor (48). RCTs of
homocysteine-lowering as an intervention to treat cardiomyopathy
are lacking; however, folate treatment in diabetic mice with
hyperhomocysteinemia did not alleviate the development of diabetic
cardiomyopathy (49). Though homocysteine levels can be used as
biomarkers to improve the predictive ability of CVD prediction
models, the diagnostic accuracy of the working characteristic
curve only slightly improved when homocysteine was added to
the traditional risk factors used for prediction in several cohort
studies (50). The initial and extended follow-up of the B-PROOF
trial indicated that folic acid and vitamin B12 supplementation did
not affect CVD (51). The renal Hope-2 study showed that active
treatment with B6, B12, and folic acid lowered homocysteine levels
in participants with chronic kidney disease but did not reduce
cardiovascular risk, and more participants in the active treatment
group were hospitalized for heart failure (52). Based on current
evidence, elevated homocysteine levels are unlikely to serve as
independent risk factors for heart failure or even CVD.

Studies suggested that elevated plasma homocysteine levels
were associated with an increased risk of other CVD, including
coronary heart disease (53), hypertension (54), atrial fibrillation
(55), and stroke (56). Nevertheless, like our study, several MR
studies failed to identify a causal relationship between elevated
plasma homocysteine and CVD. Sun et al. performed an MR study
suggesting plasma homocysteine levels were not causally associated
with atrial fibrillation (24). Miao et al. conducted a TSMR study
estimating the role of increased plasma homocysteine levels on the
etiology of coronary heart disease and acute myocardial infarction
and found no causal relationship (57). Borges et al. performed
an MR analysis to assess the causal influence of homocysteine
on systolic and diastolic blood pressure, and the findings did
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FIGURE 4

Forest plot of the potential effects of plasma homocysteine level–associated SNPs on outcomes. (A) Congestive heart failure. (B) Cardiomyopathy.
(C) Non-ischemic cardiomyopathy. CI, confidence interval; IVW, inverse variance-weighted; MR, Mendelian randomization.

not corroborate the hypothesis that homocysteine has a causal
role in blood pressure (58). Another MR analysis indicated that
circulating total homocysteine was associated with small vessel
stroke but not with other subtypes such as large artery stroke
and cardioembolic stroke (59). Regarding the association between
homocysteine and heart failure, the results are compelling. Consistent
with our findings, an MR analysis that evaluated the association
between genetically predicted homocysteine, vitamin B12 levels,
and indistinguishable types of heart failure also showed negative
results (60). Strauss et al. used MR to examine the associations
of the methylene tetrahydrofolate gene and paraoxonase 1 gene
variants as a proxy for lifelong exposure to high homocysteine
and homocysteine-thiolactone concentrations with the development
of heart failure in men aged ≤ 60 years, providing evidence that
hyperhomocysteinemia is a causal factor for non-ischemic heart
failure in dilated cardiomyopathy (61). Facing the results of lacking
causality, there are several possible explanations. The association

of homocysteine and congestive heart failure or cardiomyopathy,
even CVD, shown in observed studies may result from confounding
factors. Although these studies adjusted for some confounders,
it is impossible to control unmeasured risk factors completely.
In MR analysis, unmeasured confounding factors were equally
distributed between the exposure and control groups to avoid the
influence of possible confounding factors. The sample size might
not be large enough in traditional observational studies to detect
the exact association. The side effects of elevated homocysteine
levels on CVD may be due not to homocysteine itself but to
the downstream products of homocysteine metabolism. Moreover,
the elevated plasma homocysteine may be a consequence of
CVD. Aksoy et al. proposed a hypothesis that a diminished
clearance rate caused by impaired renal function was a prominent
pathophysiological mechanism in the elevation of homocysteine
concentration in heart failure (62). Finally, we should recognize that
research on the role of hyperhomocysteinemia in the occurrence
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FIGURE 5

Sensitivity analyses using the leave-one-out approach for the association of plasma homocysteine level with outcomes. (A) Congestive heart failure.
(B) Cardiomyopathy. (C) Non-ischemic cardiomyopathy. CI, confidence interval; IVW, inverse variance-weighted; MR, Mendelian randomization.

and progression of heart failure should be performed under specific
etiologic scenarios.

This TSMR analysis provides genetic evidence that homocysteine
level is not significantly associated with congestive heart failure or
cardiomyopathy risk, which supplements the existing evidence that
homocysteine has no causal relationship with CVD. Strengths of
the present study include the TSMR study design and the large
sample size. Another strength is that though folic acid and B-vitamins
supplementation normalize homocysteine levels, it is unwise to
use them to prevent or treat heart failure and cardiomyopathy in
clinical practice because they may provide no benefit. Previous MR
analysis only investigated the association between homocysteine and
indistinguishable types of heart failure, which may cause significant
heterogeneity. A recent GWAS and MR analysis exploring the
pathogenesis of heart failure suggested further MR analysis of heart
failure subtypes to reduce the effect of heterogeneity (63). Though
ischemic and non-ischemic congestive heart failure shares a similar
clinical presentation, the underlying pathophysiological mechanisms

differ. In this study, we precisely selected the congestive heart
failure population for analysis and shed light on the relevance of
homocysteine and heart failure. The following potential limitations
also require attention. First, we did not conduct MR analyses
stratified by other heart failure subtypes (e.g., heart failure with
reduced ejection fraction and heart failure with preserved ejection
fraction), and cardiomyopathy subtypes (e.g., hypertrophic, dilated,
and restrictive cardiomyopathy) due to limited available summary
data; nevertheless, MR analysis for homocysteine and non-ischemic
cardiomyopathy was conducted to exclude the influence of ischemic
cardiomyopathy caused by coronary atherosclerosis. Second, it is
impossible to be certain that the variants used in this study do
not have pleiotropic effects, despite a lack of evidence in favor of
strong pleiotropy. Third, we cannot perform the reverse analysis
because the GWAS for homocysteine is not publicly available.
Fourth, the published data we used are summary-level statistics;
therefore, we cannot examine any potential non-linear relationships
or stratification effects that differ by age, gender or other conditions.
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Fifth, our study relied on genetic data conducted in a population
primarily of European descent for greater genetic homogeneity,
limiting the applicability of results for other ethnic backgrounds.
In addition, the limited number of SNPs (especially in the analysis
for congestive heart failure) may cause some bias. Nevertheless, we
selected the GWAS with the largest sample size for the analysis.
Finally, MR analysis provides evidence supporting a causal effect but
does not directly demonstrate causation (58). We only revealed the
relationship between homocysteine and diseases from a genetic point
of view without involving other environmental factors.

5. Conclusion

This TSMR analysis revealed that genetically predicted
homocysteine level was not associated with congestive heart failure
or cardiomyopathy risk. It was plausible that simply reducing plasma
homocysteine levels could not decrease the incidence or improve the
outcomes of congestive heart failure and cardiomyopathy in clinical
practice. More work is warranted to confirm our results further.
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