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Echocardiography is the most frequently used imaging modality in cardiology. 
However, its acquisition is affected by inter-observer variability and largely dependent 
on the operator’s experience. In this context, artificial intelligence techniques could 
reduce these variabilities and provide a user independent system. In recent years, 
machine learning (ML) algorithms have been used in echocardiography to automate 
echocardiographic acquisition. This review focuses on the state-of-the-art studies 
that use ML to automate tasks regarding the acquisition of echocardiograms, including 
quality assessment (QA), recognition of cardiac views and assisted probe guidance 
during the scanning process. The results indicate that performance of automated 
acquisition was overall good, but most studies lack variability in their datasets. From 
our comprehensive review, we believe automated acquisition has the potential not 
only to improve accuracy of diagnosis, but also help novice operators build expertise 
and facilitate point of care healthcare in medically underserved areas.
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1. Introduction

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide and a major 
contributor to disability (1). Over the past few decades, significant advancements have been made 
in cardiovascular research and practice with the goal of improving the diagnosis and treatment of 
heart disorders as well as decreasing the mortality of CVD. Modern medical imaging methods are 
now widely utilized for cardiac diagnosis, illness monitoring, treatment planning, and prognosis. 
Examples include computed tomography, ultrasound (US), and magnetic resonance imaging (2).

Echocardiography in particular is the most often used non-invasive cardiac technique and is the 
imaging modality recommended by European Society of Cardiology for diagnostic and prognostic 
reasons of the majority of cardiac diseases (3). In the United States alone, 7.1 million echocardiograms 
are performed yearly, and approximately 20% of Medicare members receive at least one 
echocardiogram each year (4). In contrast with other imaging modalities, echocardiography is 
portable, has good temporal resolution, does not use ionizing radiation, and is inexpensive (3). 
Additionally, it is the only imaging technique that permits real-time imaging of the heart, allowing 
for the detection of multiple abnormalities instantly (5).

Nonetheless, echocardiographic analysis is associated with several challenges. Namely, lengthy 
procedures (usually longer than 20 min), multiple measurements that increase user subjectivity and 
duration, complex analysis during the echocardiographic assessment, high standards for individual 
evaluations, substantial operator subjectivity, and broad observational ranges and differences among 
observers that remain even under standardized circumstances. Due to these restrictions, there is 
high demand for medical specialists trained in the field of echocardiography (6). In this context, 
artificial intelligence (AI) can potentially reduce the inter observer variation and overcome the lack 
of extensive operator experience.
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Although AI was first introduced in the 1950s, the application of AI 
in echocardiography is still in its infancy. AI techniques can be used to 
recognize a wide range of patterns within echocardiograms, since it can 
account for each pixel and their relationship, as well as associated clinical 
metadata (5). AI for echocardiograms can be utilized in cardiology, 
primary care, and emergency clinics for low-cost, serial, and automated 
evaluation of heart anatomy and function by experts and non-experts. 
Additionally, it would allow for the customized longitudinal monitoring 
and preliminary diagnosis of patients with cardiovascular risk factors 
and the triage of arriving patients with chest discomfort in an emergency 
unit (7). AI applications in echocardiography, based on machine 
learning (ML) or deep learning (DL) frameworks, have recently been 
proposed for several tasks but significant limitations remain, such as 
inadequate clinical model generalization, poor robustness, and 
inadequate standardization of echocardiography (6). Furthermore, DL 
algorithms in echocardiography have the added challenge of demanding 
big data (8). The lack of interpretability of AI solutions is also often 
considered a major limitation towards the clinical implementation of 
these tools. Finally, while the automation of tasks in echocardiography 
has received considerable attention in the medical imaging community, 
most studies have focused on problems related to echocardiogram 
interpretation, such as left ventricle (LV) segmentation, overlooking 
tasks related to acquisition such as quality assessment (QA), cardiac 
view classification (CVC) and probe guidance. However, the automation 
of echocardiogram acquisition is of great value as it would offer 
standardization and open doors to less experienced US users, which 
could have a significant impact in disadvantaged settings.

In this review, we provide an overview of the current state of AI in 
echocardiography acquisition and the challenges that are being 
confronted. In recent years, there have been several review papers that 
presented overviews about applications of DL-based methods for US 
analysis. However, to our knowledge, none of them has provided a 
systematic overview focused on automated echocardiography 
acquisition. As such, this review paper aims at providing a 
comprehensive overview of the state-of-the-art of DL algorithms applied 
to echocardiography acquisition tasks, such as assessment/enhancement 
of image quality, CVC and assisted probe guidance (Section 3). Further, 
this paper analyzes the various challenges of incorporating AI in the 
clinical workflow and provides insight into the future of automated 
echocardiography (Section 4).

2. Review methodology

A thorough review of the literature was made using the Google 
Scholar and PubMed search engines. Initially, the terms “Machine 
Learning OR Deep Learning” along with “Echocardiography OR 
Echocardiogram” were used to search relevant articles. Search filters 
were then added with the inclusion of terms “quality,” “view 
classification” and “guidance OR assisted acquisition” to refine 
the search.

Peer-reviewed journal publications were included as well as 
conference proceedings in this field that describe the application of ML 
to echocardiographic images, before June 2022. A total of 35 papers that 
are relevant to the scope of this review (see Figure 1) were included. 
Furthermore, the reports were divided into three groups based on the 
acquisition task performed: assessment/improvement of 
echocardiographic quality, view classification and assisted probe 
guidance (see Figure 1 for the included articles under each group). It’s 

also worth mentioning that, although the main findings of this review 
focus on transthoracic echocardiograms (TTE), some studies on Fetal 
and Doppler cardiac USwere also included.

The article selection was based on the following inclusion (I) and 
exclusion (E) criteria: (I1) Articles that used AI techniques regarding 
echocardiography acquisition; (I2) Articles that were complete and 
written in English; (I3) Articles published since 2017; (E1) Articles that 
did not use 2D echocardiographic data; (E2) Articles that were 
incomplete or were abstracts.

A total of 51 publications were found during searches in the top 
scientific databases. Seven were eliminated after reading the abstracts 
and titles. Thus, 35 items remained. None of the articles passed the 
exclusion criteria (E1 and E2) after being read in their entirety, hence 
they were all included in the review.

3. Artificial intelligence applications for 
echocardiography acquisition

As previously discussed, AI and ML/DL are playing increasingly 
important roles in echocardiography, as they have been shown to 
facilitate multiple steps along the clinical care workflow and allow for a 
higher reproducibility. The process of echocardiographic AI acquisition 
involves several steps performed during each examination. When 
developing the application of AI, it is necessary to divide these steps into 
separate tasks. In this section, we  provide a summary of machine 
learning based applications for the three main echocardiographic tasks 
regarding acquisition: (1) assessment/improvement in image quality; (2) 
classification of the cardiac window; and (3) assisted US probe guidance.

3.1. Image quality

Echocardiography quality can be  described as a parameter that 
directly corresponds to the visibility of targeted anatomical structures, 
landmarks, and boundaries. The US equipment settings and the acoustic 
qualities of the patient have a significant impact on the quality of the 
acquired echocardiogram (9). Furthermore, the quality of an 
echocardiogram depends heavily on the sonographer’s skill and 
objectivity in obtaining the most optimal intersection of the imaging 

FIGURE 1

Summary of the article selection process and sorting of the included 
articles by acquisition tasks.
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plane with the heart structure. While competent operators, such as 
imaging technicians and cardiologists, are capable of discovering the 
optimum acoustic window resulting in high-quality images, less-
experienced users are more likely to acquire data with suboptimal image 
quality (10).

Accurate diagnosis can be significantly impacted by poor quality 
echocardiographic imagescaptured by inexperienced 
ultrasonography operators (11) (Figure 2). In fact, clinical metrics 
are more reproducible in high-quality echocardiogram data, whereas 
even experienced cardiologists may find it difficult to evaluate 
low-quality scans (9). As a result, poor image quality can impact 
cardiac chamber segmentation, leading to a misclassification of the 
patient’s treatment requirements (10). Several studies have made 
significant attempts to develop automatic systems that can provide 
real-time image quality feedback to the operator and thus aid the 
sonographer in obtaining optimal quality views. The areas of research 
regarding echocardiogram quality mainly focus on QA, quality 
control and quality enhancement.

3.1.1. Quality assessment
Image quality assessment is currently a subjective procedure in 

which an echocardiography specialist visually inspects and scores an 
image based on certain features. Since this step is performed by a 
qualified professional, it has certain shortcomings, such as reliance on 
the operator’s experience, substantial workload, and high inter- and 
intra-observer variability (13). The subjectivity associated with this 
process may result in inconsistency in diagnostic interpretation and 
decision-making (11). As a result, an automated and objective 

quantitative technique for assessing image quality would be beneficial 
to research and clinical practice (14).

Most recently proposed methods to estimate US image quality are 
based on DL (Table  1). For instance, Abdi et  al. (10) aimed to 
automatically estimate a score of echocardiogram quality (between 0 
and 5) for operator feedback in apical 4 chamber (A4C) view. To achieve 
this, the authors used Particle Swarm Optimization (PSO) and a custom 
deep convolutional neural network (CNN), and reported an absolute 
error (0.71 ± 0.58) comparable to the measured intra-rater reliability. 
However, the evaluation was limited to end-systolic frames and the 
proposed method did not make use of the data presented in subsequent 
echocardiography frames. As a result, the authors expanded on their 
earlier research (15) and developed a DL model for QA and used 2,450 
echocardiography cine loops over 5 standard imaging views. The 
researchers achieved an accuracy rate of 85% for quality scores on 20% 
of the dataset. With the rise of Point- of- Care Ultrasound (POCUS) 
technology, mobile compatible solutions for quality estimation are more 
present than ever. In this context, Van Woudenberg et al. (17) proposed 
an Android application to provide the user with real-time feedback of 
both CVC and image quality. The authors used a single DL network with 
a DenseNet model and Long Short Term Memory (LSTM) features, 
trained on a dataset of over 16,000 echocardiogram cines distributed 
across the 14 cardiac views. While the authors report the models speed 
and latency (30 frames per second and 352.91 ± 38.27 ms, respectively), 
the evaluation metrics of the model were not shared in this paper. 
Nonetheless, the system is compatible with Android mobile device and 
could be used together with POCUS.

On the other hand, Luong et al. (16) aimed to automatically assess 
the quality score of TTEs in hospitalized patients across 3 clinical 
groups: mechanically ventilated patients and two matched spontaneously 
breathing controls. For this purpose, the authors used the model 
previously published in (17), and used 16,772 2D TTE videos. The 
overall estimated maximum quality score was significantly poorer for 
mechanically ventilated TTEs (0.55) compared with either control group 
(Control 1: 0.64, Control 2: 0.61). The authors also sought to investigate 
the relation between image quality and completeness of TTE reporting 
(i.e., the proportion of standard parameters documented), finding that 
lower quality TTEs were associated with fewer reported parameters.

While existing automated methods for QA focus on conventional 
echocardiography, Zamzmi et  al. (18) proposed the first study for 
automatically detecting and classifying different blood flows in Doppler 
imaging, as well as assessing their quality. The authors achieved an 
overall accuracy of 88.9% for flow QA. Later, in (19), they used a 
different approach in TTE by developing a lightweight model 
(MobileNetV2-s) for retrieving echocardiograms of acceptable quality, 
thus automating the process of excluding low-quality echocardiograms 
performed by echocardiographers in clinical practice. Prior to training, 

FIGURE 2

Representative echocardiography images, across two different cardiac 
views, from good to poor quality ultrasound [images from (12)].

TABLE 1 Deep learning based studies for quality assessment.

Authors Year No. views DL model Dataset Performance

Abdi et al. (10) 2017 1 PSO + DCNN 6,916 end-systolic echocardiography images MAE 0.71 ± 0.58

Abdi et al. (15) 2017 5 VGG + LSTM 2,450 echo cines Acc 85%

Liao et al. (11) 2019 14 DenseNet + LSTM 14,443 echocardiography studies from 3,157 unique patients MAE 0.09 ± 0.08

Luong et al. (16) 2020 9 DenseNet + LSTM 14,086 echo video clips MAE 0.12 ± 0.09

Van Woudenberg et al. (17) 2018 14 DenseNet + LSTM 16,000 echo cines ----

Zamzmi et al. (18) 2019 ---- VGG-16 and ResNet-50 100 patients Acc 88.9%

MAE, mean absolute error; Acc, accuracy.
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the authors used self-supervised representation to learn low-level 
features. The performance of the QA algorithm was compared with 
VGG16 and ResNet18 models. The proposed approach outperformed 
the state-of the-art models and achieved a fast inference speed. 
Interestingly, Huang et al. (20) developed a QA method by quantifying 
echocardiographic video features, with the goal of improving precision 
in strain measurements. For this purpose, the authors first trained a 
CVC model (DenseNet-121) and assigned the quality score based on the 
aggregation of discriminative features learned by the convolution 
process (i.e., the more extracted features an input image has, the higher 
the quality). Their results suggest that this quality metric could serve as 
a quality index for assessing the reliability of strain values, for a specific 
cardiac view.

Despite recent progress in automating QA, the accuracy of deep 
neural networks may be directly impacted by the uncertainty of labels 
in clinical data resulting from the mapping of an expert’s assessment of 
quality to the echocardiogram image. In fact, the accuracy of the quality 
quantification might be impacted by observer variability in the expert’s 
evaluation (11). In order to model label uncertainty in data, Liao et al. 
(11) suggested a new method and showed that this modeling approach 
outperforms traditional regression approaches by 5.7%.

QA has the potential of transforming the training landscape for 
novice operators, as well as supporting more experienced scanners. 
However, there are still some challenges to overcome in this field of 
research, namely the lack of variability in the datasets used, which are 
often composed of single center and/or single vendor ultrasounds and 
annotated by one or few professionals. Further work should employ data 
from multiple sites using a variety of US vendors, and preferably 
annotated by several qualified experts to improve the inter- and intra- 
variability, respectively. Another common problem among some authors 
is the low number of cardiac views present in the dataset, restricting the 
usage of the model to one or few cardiac views. Thus, future research 
should attempt to incorporate a higher number of echocardiographic 
windows in the dataset.

As shown on Table 1, most approaches for automatic QA consist on 
the application of CNN to extract relevant features and LSTMlayer to 
extract the temporal information across echocardiographic frames. The 
most common employed CNN architecture in the reviewed papers is the 
Dense Convolutional Network (DenseNet), followed closely by the 
Visual Geometry Group (VGG) model. Although QA systems have their 
utility in clinical practice, these models only predict an overall image 
quality score and offer no clue as to why the image is being tagged as low 
quality or how to improve it to obtain optimal images. As such, future 
work could be improved by new strategies, such as quality control, that 
offer data regarding valve structure, image depth and gain, and further 
support the operator.

3.1.2. Quality control
Contrary to quality assessment, quality control (QC) offers a 

symbolic score to represent quality along with a more detailed report 
depicting quality attributes (e.g., gain, on-axis imaging), thereby 
ensuring a more interpretable model (14). Dong et al. (13) focused on 
real-time QCof fetal US cardiac 4 chamber views, by proposing a 
CNN-based framework to evaluate important imaging properties (e.g., 
gain and zoom) and the presence of key anatomical structures. The 
authors implemented 3 different networks: a basic CNN to classify the 
4 chamber views in the raw echocardiographic dataset; a deeper CNN 
to determine the gain and zoom of the US; and an aggregated residual 
visual block net to detect the anatomical structures on the image. The 

highest mean average precision achieved by the author’s framework was 
of 93.52% at a speed of 101 frames per second.

Smistad et al. (21) used a different method to measure image quality 
by employing 5 categories determining the criteria for a high-quality 
image, which included the lack of foreshortening. Apical foreshortening 
occurs when the US probe is positioned improperly by the operator and 
the imaging plane does not cut through the actual apex of the LV, leading 
to erroneous volume and, consequently, EF assessments. To specifically 
identify foreshortening, the author’s method employs segmented images 
from both A4C and apical two chamber (A2C) views at both the ED and 
ES time periods of the cardiac cycle. Similarly, Labs et al. (14) developed 
a hybrid model with CNN and LSTM layers to automatically rate the 
quality of the A4C view based on LV foreshortening, as well as other 
quality parameters, such as on-axis imaging and contrast/gain. The 
authors achieved an average accuracy of 86% on the test dataset, using 
1,039 echocardiographic patient datasets labeled by a professional 
cardiologist for model development and testing.

QC for the acquired US images would enrich quality classification 
systems and provide interpretability of the models. However, QC 
requires a more resource intensive annotation process, which can lead 
to more variability among annotators than a scoring system. To date, the 
number of articles published on QC is scarce, which may be due to the 
high volume of annotations required for these frameworks.

3.1.3. Quality enhancement
In addition to echocardiogram quality assessment and quality 

control, several groups have tackled medical image enhancement using 
DL. Jafari et al. (22) proposed generative adversarial networks (GANs), 
more specifically an anatomically constrained CycleGAN, to improve 
echocardiography quality in A4C view, for the purpose of LV 
segmentation. Their findings demonstrated that the suggested strategy 
increases the LV segmentation’s robustness, with the worst-case Dice 
score rising by 15% over the baseline. Later, using a fully convolutional 
deep translation model, the same group (9) sought to translate POCUS 
images to the superior quality of high-end cart-based US systems. The 
deep transfer model was once more trained using a constrained cycle-
consistent GAN, and the suggested technique increased the accuracy of 
LV segmentation in apical cardiac view.

Similarly, Liao et  al. (23) proposed an echocardiography image 
quality transfer network that can translate echocardiographic images 
towards a user-defined quality level using a multi-domain transfer 
approach known as StarGAN. The proposed quality transfer StarGAN 
utilizes the temporal information of echocardiogram images during the 
training phase and does not require pairs of low- and high-quality 
echocardiogram images. The authors demonstrated the effectiveness of 
the quality transfer by testing a CVC algorithm, and attaining a 
significantly improved classification accuracy. Furthermore, Diller et al. 
(24) examined the efficiency of DL algorithms for denoising TTE A4C 
images and eliminating acoustic shadowing artifacts, particularly in 
patients with congenital heart disease (CHD). A comparison was made 
between DL algorithms created on CHD samples and models trained 
only on structurally normal hearts. The models trained on congenital 
heart samples performed substantially better when exposed to instances 
from CHD patients, and the suggested network significantly improved 
image quality across diagnostic subgroups (p < 0.005 for all).

Quality enhancement techniques are essential in clinical practice, 
especially with the rise of POCUS imaging and the hardware limitations 
in compact pocket-sized US probes that result in low quality 
echocardiograms. Among the included studies, GANs are the 
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preferential method for quality enhancement. It’s also important to 
recognize that quality enhancement is not an independent step but an 
essential stage for the analysis of echocardiographic images and it can 
greatly impact measurement or interpretation of the US.

3.2. View classification

Similarly to other cardiac imaging modalities, echocardiography 
studies need several viewpoints of the heart structures (25). Although 
an unlimited number of various views are theoretically feasible, 27 views 
have been recognized as the views to be obtained during a full TTE 
evaluation (26). Additionally, sonographers purposefully focus on 
substructures within an image, providing a variety of different 
perspectives by rotating and adjusting the US probe’s zoom level (25). 
Despite the multitude of different cardiac views, clinicians frequently use 
six standard views in a routine cardiac examination to assess the 
structure and function of the heart: the A4C, A2C, apical three chamber 
(A3C), parasternal short-axis mitral valve, parasternal short-axis 
papillary muscle, and parasternal short-axis apex (27) (Figure 3). These 
images record both spatial and temporal discriminative information, 
and allow for the identification, measurement and examination of 
several relevant anatomical structures, such as the LV (29).

Cardiac view classification consists of determining the image plane 
through the heart, and is an important first step in analyzing an 
echocardiogram (30, 31). This is a tedious, manual process that involves 
specialized training and is subject to both inter- and intra-observer 
variability (32). Given that the European Association of 
Echocardiography advises a minimum of 350 tests to obtain basic 
competency for standard TTE (30), finding accurate cardiac images can 
be  particularly challenging for less experienced operators (30). 
Additionally, due to the echocardiography views’ noise and similar 
shape information, it may be difficult and tiresome to annotate huge 
databases, which could result in inaccurate or erroneous analysis (33).

As a result, reliable automatic classification of heart views offers 
several potential clinical uses, including workflow improvement, user 
guidance, a reduction in inter-user discrepancy, and increased accuracy 
for high throughput of echocardiographic data and subsequent diagnosis 
(32). Furthermore, by improving the automatic extraction of pertinent 

2-D image planes from volumes, such a solution could improve user 
experience in 3-D US acquisitions. It can also supplement patient 
database archives by automatically labeling recordings, improving 
search functionality as well as data mining and categorization tools. In 
addition to the need for specialized resources, real-time CVC based 
pedagogic tools may be able to provide standardization through active 
quality assurance and assistance on probe alignment (30).

Automated image analysis has improved in accuracy and speed 
thanks to the use of ML techniques in computer vision. Previous 
attempts to classify cardiac views using ML (27, 34) were limited by the 
inability to distinguish between more than a few views at once, the use 
of only “textbook-quality” images for training, the low accuracy, or the 
relation to a single equipment vendor. These drawbacks made these 
methods unsuitable for widespread use. When it comes to complicated, 
high-dimensional issues like image recognition, the versatility of DL 
training represents a substantial advantage over prior ML methods and 
opens more opportunities for automating cardiac view (35).

For instance, Kusunose et  al. (28) trained a CNN to classify 5 
different echocardiographic views in a dataset of 17,000 labeled images. 
The researchers used 5-fold cross validation to evaluate the model 
performance, and the model performed the best in classifying video 
views in the independent cohort with an overall test accuracy of 98.1%. 
Similarly, Ostvik et al. (30) developed a real-time CVC using CNNs, 
considering up to 7 of the most common cardiac views. The authors 
used a dataset of 41,450 images from 460 videos and performed a 
10-fold patient-based cross-validation. Their network surpassed the 
performance of other architectures (AlexNet and Inception), with 
accuracies of 98.3 and 98.9% on single frames and sequences, 
respectively.

Madani et al. (35) suggested a CNN based on labeled still photos 
and videos from 267 TTEs to simultaneously classify 15 standard views 
(12 video, 3 still). The model correctly identified 12 different video views 
with an overall test accuracy of 97.8% and, on still images drawn from 
15 views, the model achieved an overall accuracy of 91.7%, in contrast 
to board-certified echocardiographers’ accuracy of 79.4% Later, the 
authors expanded on their work (31) by testing the impact of view 
segmentation prior to the classification task, and explored semi-
supervised GANs to leverage learning from both labeled and unlabeled 
data. The segmentation pipeline shows an improvement of 1.59% in 
overall test accuracy when compared to the initial CNN model, and the 
semi-supervised GANs showed a potential for scenarios with large sets 
of unlabeled data (accuracy of 80% with less than 4% data).

On the other hand, Howard et  al. (36) aimed at improving the 
current state-of-the-art of view classification by exploring the efficacy of 
time-distributed networks and two stream networks. The dataset used, 
from Imperial College Healthcare NHS Trust’s echocardiogram database, 
consists of 8,732 videos classified as one of 14 views by an expert. They 
show that these architectures reduce traditional CNN error rates from 8.1 
to 3.9% by more than a factor of two. Additionally, they demonstrate that 
there is a similar pattern of discordance amongst views and that these 
networks’ accuracy is approaching expert agreement (3.6% discordance). 
Azarmehr et al. (32) used the same database to automatically identify 14 
echocardiographic views through CNNs. The authors used neural 
architecture search to automate the human process of creating network 
topologies with much fewer trainable parameters and equal accuracy. The 
presented models could be  employed for real-time detection of the 
typical echocardiographic views since they outperformed standard 
classification CNN architectures in terms of speed and classification 
performance (accuracy 88.4 to 96%, respectively). In (37), the authors 

FIGURE 3

Sample of typical cardiac views: apical 2-chamber, apical 4-chamber, 
apical 3-chamber, parasternal long axis (PLAX), and parasternal short 
axis [PSAX; image from (28)].
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developed a RetinaNet-based method for identifying 3 cardiac views and 
simultaneous detecting the LV. The dataset was collected from 2 hospitals 
in China and then augmented, resulting in a total of 1,238, 1,011, 404 
images of the A4C, A2C and A3C view, respectively. For each view, the 
dataset was divided into a training set, a validation set, and an 
independent testing set using the ratio of 7: 1: 2. Their results show a 
classification accuracy of 1.00, 0.94, and 0.99 for the A2C, A3C, and A4C 
view, respectively. Additionally, Gao et al. (29) proposed a fused CNN 
architecture that incorporates both spatial and temporal information 
sustained by the video images of the beating heart. This design uses hand-
crafted features within a data-driven learning framework. A collection of 
432 image sequences collected from 93 patients was used. The best 
classification results for 8 viewpoint categories of echocardiographic 
recordings by this architecture were a 92.1% accuracy rate, compared to 
89.5% when only one spatial CNN network is used.

To accommodate real-time POCUS solutions, Vaseli et  al. (38) 
introduced a lightweight deep learning model based on knowledge 
distillation of 3 popular state-of-the-art architectures, VGG-16, 
DenseNet, and Resnet, for classification of 12 echocardiogram views. A 
collection of 16,612 echo cines from 3,151 different patients was used to 
create and evaluate their networks, achieving an accuracy of 88.1%.

Since CNNs developed in general cohorts may underperform in the 
setting of altered cardiac anatomy, Wegner et al. (25) aimed to classify 
17 cardiac views in datasets depicting structural and congenital heart 
disease (C/SHD). For this purpose, the authors proposed a 
non-congenital CVC model trained on 14,035 echocardiograms, and a 
CNN trained and tested on 139,910 and 35,614 frames from patients 
with C/SHD, respectively. The non-congenital model performed worse 
in patients with C/SHD when compared to patients without cardiac 
disease (accuracy of 48.3 and 66.7%, respectively). In contrast, the model 
trained and tested specifically in patients with C/SHD achieved an 
accuracy of 76.1% in detecting the correct echocardiographic view, 
highligthing the importance of specific datasets. More recently, Zamzmi 
et al. (39) proposed an open world active learning framework for CVC, 
more specifically, the proposed network classifies images of known 
views into their respective classes and identifies images of unknown 
views. Then, a clustering approach is used to cluster the unknown views 
into various groups to be labeled by cardiologists, and consequently 
added to the initial set of known views thus updating the classification 
network. The authors developed a VGG-based autoencoder and trained 
it to learn echocardiographic features. Their framework was built and 
evaluated on the publicly available EchoNet-Dynamic dataset and a 
private dataset. Their findings corroborate that the performance of open 
world classifiers is higher than a traditional closed world classifier, in 
addition to significantly increasing the efficiency of data labeling and the 
robustness of the classifier.

Some authors attempted to develop a fully automated pipeline for 
echocardiographic interpretation, including the view classification task. 
For instance, Smistad et al. (21) reported a QA (refer to Section 3.1.1.) 
and view classification network as a step to ultimately measure LV 
volume and ejection fraction. The authors used the CVC network of 
Ostvik et al. to recognize 8different cardiac views. The view classification 
network was trained using 2-D US recordings from multiple views of 
500 patients and evaluated in a dataset of 100 patients. Likewise, Zhang 
et al. (26) proposed a CNN to automatically identify 23 viewpoints as 
part of fully automated pipeline. The training data consisted of 7,168 
individually labeled videos, and a 5-fold cross-validation was used to 
assess accuracy. The overall accuracy of their model was 84% at an 
individual image level.

Regarding Doppler imaging, Akkus et  al. (40) presented a fully 
automated pipeline for mitral inflow Doppler analysis using 5 well-
known CNN architectures to classify echocardiographic studies into 24 
classes. The authors used a training and test dataset of 5,544 and 1,737 
still images, respectively. The model performed with an overall accuracy 
of 97% in the test dataset. Similarly, to discriminate between 15 different 
echo perspectives, Zamzmi et al. (18) created a deep learning-based 
technique for Doppler flow categorization. They obtained overall 
accuracy of 91.6% using their flow classification network, which took 
inspiration from the well-known VGG.

View identification is one of the most important steps of a fully 
automated echocardiography analysis pipeline. As shown in Table 2, 
there is an accuracy range of 80–99% for a varied number of views. In 
some studies, customized CNN models were used and outperformed 
state-of-the-art CNN models. However, most of the datasets used were 
considerably small for DL applications, in addition to often being from 
a single center and/or single vendor.

3.3. Probe guidance

As previously mentioned, in echocardiography the operator must 
gather images at several standardized viewpoints. These 
echocardiographic views are acquired by scanning the patient while 
positioning the transducer at particular angles and positions with 
respect to the heart. These clinical procedures require specialized 
personnel to manually navigate the probe towards the correct imaging 
plane, which can be challenging for a novice operator (41). Moreover, 
the sonographers’ intense workload has put them at risk for health 
problems such work-related musculoskeletal illnesses (42). To lessen the 
heavy workload of sonographers, speed up examinations, and produce 
high-quality, standardized, and operator-independent imaging results, 
the automation of the US scanning process holds considerable promise.

Additionally, an assisted probe guidance system has the potential of 
improving access to care in remote or rural communities by reducing 
the level of necessary expertise (43). POCUS in particular is envisioned 
to be operated by inexperienced users who may have not received any 
formal training, as such an automated system could reduce the risk of 
non-diagnostic and misleading imaging (44, 45). However, the 
interpretation of the extremely complex and changeable US images 
acquired throughout the scan as well as their spatial correlations makes 
autonomous probe guidance towards the typical scan planes a difficult 
challenge (43).

Recently, several authors have attempted to develop an automated 
probe guidance system for scanning US images (43, 46–48). In this 
regard, Milletari et al. (44) presented a reinforcement learning strategy 
via a Deep Q-Network, to provide instructions (9 supported actions) to 
scan the LV through the PLAX cardiac window. Their approach is 
trained using 22 different simulated US acquisition environments 
(corresponding to approximately 160,000 US images) and tested on 5 
distinct environments with about 40,000 scans each. The authors also 
train a classifier to learn from the same data in a fully supervised manner 
as a mean of comparison. Their approach correctly guided the user in 
86.1% of the cases in the test set, while the classifier obtained a correct 
prediction in 77.8% of the data.

On the other hand, Gu et al. (41) used view conversion, US image 
characteristics and anatomical knowledge to anticipate what an unseen 
view might resemble as the user moves the transducer. Based on a 
learned A4C-to-A2C mapping, the team suggested a novel constrained 
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conditional GAN to produce geometrically accurate and aesthetically 
pleasing A2C images. They utilized the 450 pairs of A4C/A2C echo cines 
synced by heart rhythm from the public CAMUS challenge dataset. The 
segmentation mask area of the produced and ground-truth images 
exhibits an 84% correlation in their quantitative analysis of the images, 
proving the framework’s capacity to make reliable predictions for a 
variety of cardiac shapes.

Commercial solutions for probe guidance are also available, notably 
Caption Health, which uses DL technology to give beginner users real-
time turn-by-turn instructions and thereby collect TTE images (45). The 
software, recently approved by the US Food and Drug Administration, 
uses several connected DL algorithms to make 3 estimates 
simultaneously: (1) the diagnostic quality; (2) the distance between the 
current probe location and the location anticipated to optimize the 
image; and (3) corrective probe manipulations to enhance diagnostic 
quality. More than 5 million observations from 15 registered 
sonographers were used to train these algorithms. However, details 
regarding the methodological implementation are not publicly available, 
hindering development in this area. The same software was later tested 
in (49), involving 19 first-year medical students who had no prior 
experience with US scanning patients. In the PLAX, A4C, and A2C, the 
novices acquired diagnostic-quality images in 58, 86, and 68% patients, 
respectively.

The field of assisted probe navigation in echocardiography is still 
in its early stages. Nevertheless, the current research shows great 
promise. Automated probe guidance can be addressed using different 
strategies, as reflected on the studies included in this review. The most 
consensual proposed solution is the prediction of a set of instructions 
in real-time to assist the user. One of the main obstacles to this 
approach is the lack of data, particularly the high volume of 
annotations from different experts required for the supervised models. 
To overcome this limitation, augmented solutions, e.g., 
echocardiography synthetization and simulated environments, could 
be used in future research.

In summary, AI guidance during data acquisition for the optimal 
angle, view, and measurements would make echocardiography less 
operator-dependent, overcoming human limitations of both distraction 
and fatigue, while standardizing data acquisition. Additionally, 
AI-assisted acquisition holds great promise on an educational level, 
since these systems can help beginner US operators build expertise, by 
recognizing off-axis acquisition and incorrect views, as well as provide 
guidance on how to move the probe and obtain diagnostic level 
echocardiograms. With the advance of POCUS technology, AI applied 
to echocardiography at point of care locations could increase the utility 
of these devices by non-experts in primary and emergency departments, 
as well as medically underserved areas.

TABLE 2 Deep learning based studies for cardiac view classification.

Authors Year No. views DL model Data/validation Performance

Akkus et al. (40) 2020 24 Inception, ResNet50, Densenet, 

inception_resnet, VGG16

Training: 5544 still images of 140 patients; 

Testing: 1737 still images of 40 patients

Acc 97%

Azarmehr et al. (32) 2021 14 DARTS 8,732 videos of 374 patients; Training/

Validation/Testing Ratio → 60:20:20

Acc 88.4 to 96%

Gao et al. (29) 2016 8 Fused CNN Train: 280 videos Testing: 152 Acc 92.1%

Howard et al. (36) 2020 14 Customized CNNs 9,098 echocardiographic videos; Train/Testing 

Ratio: 75:25

----

Kusunose et al. (28) 2020 5 Customized CNNs Training/Validation: 13,600 labeled images 

Testing: 3,400 views

Acc 98.1%

Madani et al. (31) 2018 15 3 CNN models Training: 325980 images Testing: 21746 images Acc 94.4% for the supervised 

model/ Acc 80% for the semi-

supervised model

Madani et al. (35) 2018 15 Modified VGG-16 Training/Validation: 200,000 images (240 

studies) Testing: 20,000 images (27 studies)

Acc 97.8% on videos; 91.7% on still 

images/AUC 0.996

Ostvik et al. (30) 2018 7 AlexNet, Inception, Proposed 

Model

Training/ Validation: 4582 videos (205 patients) 

Testing: 2559 videos (265 subjects)

Acc 98.3% on single frames; 98.9% 

on sequences

Smistad et al. (21) 2020 8 Ostvik et al. proposed network Training/Validation: 500 patients Testing: 100 

patients

----

Vaseli et al. (38) 2019 12 VGG-16, DenseNet, and 

Resnet

16,612 echo cines obtained from 3,151 unique 

patients Training/Validation/Testing Ratio → 

60:20:20

Acc 88.1% (for the lightweight 

models)

Wegner et al. (25) 2022 17 VGG 13 Non congenital model: 14,035 echocardiograms 

(five-fold cross-validation) Congenital Model: 

Train: 139,910 frames Test: 35,614 frames

Non-congenital model: Acc 48.3% 

in patients with C/SHD and 66.7% 

in patients with C/SHD Congenital 

model: Acc 76.1%

Zamzmi et al. (18) 2019 15 VGG Train: 70 patients Testing: 30 patients Acc 91.6%

Zhang et al. (26) 2018 23 DCNN Training/Validation Dataset: 7168 individually 

labeled videos (5-fold cross-validation)

Acc 84%

Acc, accuracy; AUC, area under the curve.

https://doi.org/10.3389/fcvm.2023.1056055
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Ferraz et al. 10.3389/fcvm.2023.1056055

Frontiers in Cardiovascular Medicine 08 frontiersin.org

4. Limitations in assisted 
echocardiographic acquisition

Although there is already significant and promising research on this 
subject, there are still limitations that will be explored in this chapter. Lack 
of large, widely accessible, and well-annotated echocardiographic datasets 
for neural network training is the biggest obstacle to advancement of AI 
applications in echocardiography. The majority of effective AI techniques 
are supervised, and their effectiveness relies on the meticulous labeling of 
input data, frequently involving technicians and cardiologists. 
Consequently, the performance of AI may be constrained by the intra- and 
inter-observer variability in data labeling. These databases must also 
contain sufficient “real-world” heterogeneity, reflecting the range of 
practice and imaging methods in the field, in order to apply AI into 
widespread clinical practice. As a result, in order to acquire generalization 
and boost the dependability of a suggested model, it is crucial to train and 
evaluate AI models on large multi-vendor and multi-center datasets. 
Recently, two initiatives to develop publicly available large 
echocardiographic databases, from Stanford University (50) and University 
of Lyon (12), have opened exciting opportunities. However, the data is not 
accompanied by relevant clinical patient data and outcomes, as well as 
limited by the number of available views (only A4C and A2C).

A potential method to overcome the limitation of having small 
training datasets would be  augmenting the dataset with realistic 
transformations that could help improve generalizability of AI models. 
On the other hand, realistic transformations need to be  used to 
genuinely simulate variations in cardiac US images and transformed 
images should not create artifacts. Alternatively, GANs, which include 
a generator and a discriminator model, are trained until the model 
generates images that are not separable by the discriminator and could 
be used to generate realistic echocardiograms. The introduction of these 
transformations during the training process could make AI models 
more robust to small perturbations in input data space. However, these 
techniques only mitigate the aforementioned limitations, and ultimately 
real data is always better since it has more variability.

Another challenge when facing echocardiographic datasets is the 
image quality. AI applications in echocardiography are notoriously 
challenging when compared to other medical imaging modalities, due 
to the nature of an echocardiographic exam, such as patient-specific 
variables (e.g., obesity and artifacts) and US speckle noise pattern. 
Hence, quality control and quality enhancement techniques are crucial 
to the clinical workflow, particularly for less experienced users.

Furthermore, AI applications in medical imaging are also limited by 
“black box” methods in ML and DL. Interpretability is of particular 
importance in medical imaging since the analysis of a medical 
examination inform medical decisions and could expose a patient to 
undue risk. Thus, machine errors will always need to be safeguarded by 
humans to ensure above all else to do no harm. In spite of the fact that the 

DL community has been actively researching the problem of making AI 
models transparent, much more research is still required in this field (51).

5. Conclusion

Fully automatic acquisition of echocardiograms has the potential of 
radically changing the workflow in clinical laboratories and more 
remote areas. The findings in this review demonstrate considerable 
improvements in image quality and cardiac view identification and 
suggest that DL approaches are promising to fully automated 
echocardiogram processes. However, some of the issues raised have yet 
to be resolved, and research is required to build public confidence in 
new technologies, backed by initiatives to create transparent and 
explainable models.
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