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WGCNA combined with machine
learning algorithms for analyzing
key genes and immune cell
infiltration in heart failure due to
ischemic cardiomyopathy
XiangJin Kong1,2†, HouRong Sun1,2†, KaiMing Wei1,2, LingWei Meng1,2,
Xin Lv1,2, ChuanZhen Liu1,2, FuShun Lin1,2 and XingHua Gu1,2*
1Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 2Department of
Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, China

Background: Ischemic cardiomyopathy (ICM) induced heart failure (HF) is one of
the most common causes of death worldwide. This study aimed to find candidate
genes for ICM-HF and to identify relevant biomarkers by machine learning (ML).
Methods: The expression data of ICM-HF and normal samples were downloaded
from Gene Expression Omnibus (GEO) database. Differentially expressed genes
(DEGs) between ICM-HF and normal group were identified. Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment and gene ontology (GO)
annotation analysis, protein–protein interaction (PPI) network, gene pathway
enrichment analysis (GSEA), and single-sample gene set enrichment analysis
(ssGSEA) were performed. Weighted gene co-expression network analysis
(WGCNA) was applied to screen for disease-associated modules, and relevant
genes were derived using four ML algorithms. The diagnostic values of
candidate genes were assessed using receiver operating characteristic (ROC)
curves. The immune cell infiltration analysis was performed between the ICM-
HF and normal group. Validation was performed using another gene set.
Results: A total of 313 DEGs were identified between ICM-HF and normal group of
GSE57345, which were mainly enriched in biological processes and pathways related
to cell cycle regulation, lipid metabolism pathways, immune response pathways, and
intrinsic organelle damage regulation. GSEA results showed positive correlations with
pathways such as cholesterol metabolism in the ICM-HF group compared to normal
group and lipid metabolism in adipocytes. GSEA results also showed a positive
correlation with pathways such as cholesterol metabolism and a negative correlation
with pathways such as lipolytic presentation in adipocytes compared to normal
group. Combining multiple ML and cytohubba algorithms yielded 11 relevant genes.
After validation using the GSE42955 validation sets, the 7 genes obtained by the
machine learning algorithm were well verified. The immune cell infiltration analysis
showed significant differences in mast cells, plasma cells, naive B cells, and NK cells.
Conclusion: Combined analysis using WGCNA and ML identified coiled-coil-helix-
coiled-coil-helix domain containing 4 (CHCHD4), transmembrane protein 53
(TMEM53), acid phosphatase 3 (ACPP), aminoadipate-semialdehyde dehydrogenase
(AASDH), purinergic receptor P2Y1 (P2RY1), caspase 3 (CASP3) and aquaporin 7 (AQP7)
as potential biomarkers of ICM-HF. ICM-HF may be closely related to pathways such as
mitochondrial damage and disorders of lipid metabolism, while the infiltration of
multiple immunecellswas identified toplayacritical role in theprogressionof thedisease.
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1. Introduction

Heart failure (HF) is a complex clinical syndrome and the end-

stage manifestation of cardiovascular disease (1, 2). Ischemic heart

disease refers to myocardial degeneration, necrosis and fibrosis

caused by coronary artery disease, which leads to severe left

ventricular dysfunction (LVEF≤ 35%–40%) (3). The alterations

in neurohumoral, cellular, and molecular mechanisms are

triggered by the structural damage and decompensation of the

heart and act as a network to maintain its original normal

physiological functions. These coordinated, complex processes

lead to excessive volume overload, increased sympathetic activity,

and circulatory redistribution and result in the distinct, parallel

development of clinical signs and symptoms (4). Depending on

the cause, HF is divided into ischemic HF caused by ischemic

cardiomyopathy (ICM) and non-ischemic HF (5). ICM refers to

the damage to the heart muscle caused by ischemia, where the

heart is unable to pump blood properly. According to the WHO,

ICM is the leading cause of death worldwide (6). Despite new

drugs and surgical advances in the treatment of ICM, the

prognosis for ischemic HF caused by coronary artery disease

remains poor, with a five-year mortality rate of 40%–50% (7). A

recent report from China showed that the prevalence of HF

among residents aged ≥35 years was 1.3% (8). Thus, research

targeting HF, especially ischemic HF, is of great importance.

With the advancements in science and technology, we have

developed a new understanding of HF caused by ICM, i.e.,

genetic alterations and immune environmental factors are jointly

involved in the progression of the pathological process.

With the advancements in bioinformatics, the available

microarray data can be used to identify hub genes, interaction

networks, and pathways in ischemic HF. While traditional assays

have certain limitations, weighted gene co-expression network

analysis (WGCNA) is a highly systematic bioinformatics method

(9). WGCNA may be applied to construct expression profiles of

mRNAs in HF triggered by ICM by combining multiple

informatics approaches to screen for modules and genes that are

highly correlated with the disease to reveal potential molecular

mechanisms. It can help provide new ideas for the diagnosis and

treatment of the disease. WGCNA constructs scale-free networks

by linking gene expression levels to clinical features and is

commonly used for the bioanalysis of various systems. We first

normalized the samples and then removed outlier samples to

ensure reliable results in network construction. Soft threshold

power had to be selected according to the standard scale-free

network, and all differential genes were calculated using the

power function. Machine learning (ML) method has very

significant advantages in the processing of big data (10).

Algorithms for ML analyze training data to uncover hidden

patterns, build models, and then make predictions using the

most accurate of these patterns. In fact, existing technology, such

as support vector machine recursive feature elimination (SVM-

RFE) and random forest (RF), have been applied to problems in

genomics, proteomics, systems biology and other fields (11). ML

methods are distinguished by their capacity to examine large

amounts of data in order to discover correlations, provide
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explanations. These ML methods can assist in enhancing the

dependability, performance, predictability and precision of

diagnostic systems (12). Recent research suggests that the

application of ML techniques may have the potential to improve

heart failure outcomes and management by improving existing

diagnostic and therapeutic support systems (13).

In the past decades, high-throughput platforms for analyzing

gene expression, such as microarray technology, have been

widely used to screen for genetic alterations at the genomic level,

which helps us identify differentially expressed genes (DEGs),

functions and pathways associated with disease pathogenesis and

progression. We identified DEGs by using R (v4.0.1) software

with Limma package (14) between ICM-HF myocardial tissue

and normal tissue. WGCNA, gene ontology (GO), Kyoto gene

and genome encyclopedia (KEGG) pathway enrichment analyses

were performed and protein-protein interaction (PPI) networks

were constructed and various ML approaches were used for

further screening to explore the molecular mechanisms behind

ICM-HF. Subsequently, we screened the most important modules

of the PPI network built by DEG and the hub genes was

screened by ML for further discussion. The aim of this study is

to explore the underlying molecular mechanisms in ICM through

a combination of several common analytical methods and ML

approaches. Future research in the field of cardiovascular disease

may benefit from the ideas and methods generated by our work.
2. Materials and methods

2.1. Data acquisition and preprocessing

Figure 1 depicts the study flowchart. A sample of 136 normal

samples and 95 samples of ICM-HF from the GSE57345 (15)

dataset. The GSE42955 (16) dataset was downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/) for validation

of the results. ICM-HF was determined by medical history and

pathological examination of the explanted hearts (15).

Information on the datasets was displayed in Supplementary

Table S1. Batch effects were removed using R (v4.0.1). Gene

annotation was completed based on GPL9052 Illumina Genome

Analyzer (Homo sapiens) and GPL6244 Affymetrix Human

Gene 1.0 ST Array (Homo sapiens). It should be noted that if a

gene has multiple probe loci, the average value of the probe loci

is used as the gene expression level when converting probe ID to

gene symbol. On the basis of the annotation files from the

respective platforms, probe IDs were converted to gene symbols

and probes that did not correspond to gene symbols were removed.
2.2. Identification of differentially expressed
genes

We compared ICM-HF subjects with normal using R (v4.0.1).

We used the limma package in R to distinguish between

differentially expressed genes (DEGs) and then set |log2 (fold

change)|≥ 0.5 and adjusted p < 0.05 as the threshold for DEGs,
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FIGURE 1

Study flowchart, Figure 1 is a summary of our study as a whole.
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followed by WGCNA and identification of modules. We also used

the MIC algorithm implemented in the minepy class library in

Python to screen genes.
2.3. Protein–protein interaction analysis
network construction and module analysis

We entered DEGs into the STRING database (http://string-db.

org) to collect interactions of target proteins with a medium

confidence score >0.4 and constructed a protein–protein

interaction (PPI) network (v3.9.0) using Cytoscape software. In

addition, we used the Cytoscape plug-in software “cytoHubba” to

identify related genes based on mixed character calculations.
2.4. Functional enrichment analysis of DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis are two very
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important components of bioinformatics analysis. It is difficult to

describe the function and relationship among these genes only

by gene names. This allows for better insight into the pathways

behind the genes. Therefore, we performed a visual analysis in R

to analyze all genes in the modules of interest and to identify

possible mechanisms by which the module genes play a role in

the clinical features of interest. Cutoff criteria were set at a p-

value <0.05 and a false discovery rate (FDR) <0.1.
2.5. Machine learning analysis of disease
genes

Gene fetching intersections using DEGs and WGCNA were

used to select gene features using the minimum absolute

shrinkage and selection operator (LASSO) algorithms of the

glmnet R package (17) and the e1071 package (18), LASSO is a

regression method for selecting a variable to improve the

predictive accuracy and is also a regression technique for variable

selection and regularization to improve the predictive accuracy
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and comprehensibility of a statistical model (19), respectively, and

the support vector machine recursive feature elimination (SVM-

RFE) method (20). Support vector machines (SVM) are a

powerful tool to analyze data with a number of predictors

approximately equal or larger than the number of observations

(20). The “randomForest” R package (21) was used to perform

the random forest (RF) analysis. RF is an appropriate approach

with the benefits of no limits on variable conditions and better

accuracy, sensitivity, and specificity, which can be used to predict

continuous variables and provide forecasts without apparent

variations (22). The use of Maximal Information Coefficient

Maximum mutual information coefficient (MIC) to measure the

degree of association between two genes, linear or nonlinear, is

more accurate than Mutual Information (MI) mutual

information. Next, the intersection-related genes were derived.
2.6. The receiver operating characteristic
curve evaluation of candidate genes and
tests of relative expression of genes

Receiver operating characteristic (ROC) curves were established

to assess the diagnostic value of candidate genes and columnar

maps for ICM-HF, and the area under the curve (AUC) and

95% confidence interval (CI) were calculated to quantify their

value. AUC > 0.70 was considered the ideal diagnostic value.

Differential expression in the experimental and validation groups

was then assessed separately using a nonparametric test and

visualized through R.
2.7. Immune infiltration analysis

CIBERSORT is a computational method for determining the

proportion of immune cells in HF and controls using tissue gene

expression profiles to identify different immune cell proportions (23).

We performed immune cell infiltration analysis using the “Cibersort”

R software package (23). Bar graphs were used to visualize the

proportion of each immune cell type in different samples. A

comparison of the proportion of different types of immune cells

between HF and control groups was visualized by vioplot. Heatmaps

depicting the correlation of 22 types of infiltrating immune cells were

created using the “corrplot” R package (24).
2.8. GSEA analysis and ssGSEA analysis

For gene set enrichment analysis (GSEA), we obtained the

GSEA software (version 3.0) from the GSEA website (DOI:

10.1073/pnas.0506580102, http://software.broadinstitute.org/gsea/

index.jsp). We then divided the samples into two groups

according to the occurrence of HF and then downloaded the

GSEA software from the Molecular Signatures Database (DOI:

10.1093/bioinformatics/btr260, http://www.gsea-msigdb.org/gsea/

downloads.jsp) downloaded the c2.cp.kegg.v7.4.symbols.gmt

subset to evaluate relevant pathways and molecular mechanisms
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based on gene expression profiles and phenotypic groupings,

setting a minimum gene set of 5 and a maximum gene set of

5,000, with a p-value of <0.05 (as needed) and an FDR of <0.25

(as needed) were considered statistically significant.
3. Results

3.1. Transcriptome profile analysis of the
ICM samples and normal samples

A total of 313 DEGs were identified in GSE57345, and 184

upregulated and 129 downregulated genes were identified in the

ICM-HF group (Figure 2A). The heatmap shows the expression

profiles of the top 30 upregulated DEGs and the top 30

downregulated DEGs (Figure 2B). We performed GO and KEGG

pathway analysis to investigate the biological function of DEGs.

Our KEGG analysis revealed that differential genes were mainly

enriched in the p53 signaling pathway, cell cycle regulation, and

lipid metabolism pathway (Figure 3A). BP analysis revealed that

differential genes were mainly enriched in numerous immune

response pathways, intrinsic organelle damage regulation, and

protein transport (Figure 3B). CC analysis revealed that

differential genes were enriched in numerous organelle peroxidase

and organelle membrane regulation (Figure 3C). MF enrichment

the analysis showed that the differential genes were enriched in the

metabolism of nucleotides (Figure 3D).
3.2. Weighted gene co-expression network
analysis screens for key modules

Before constructing the weighted co-expression network, we

selected the soft threshold β parameter as the appropriate

weighting parameter for the neighbor-joining function. After

calculation, we set the soft threshold β to 6 and chose a

correlation coefficient close to 0.86 to construct the gene

modules (Supplementary Figure S1A,B). In total, about five

gene modules were identified using dynamic tree cutting in all

samples (Figure 4A). The sensitivity was set to 3. In addition, we

merged modules with a distance of less than 0.5, resulting in five

co-expression modules; notably, the gray module was regarded as

the set of genes that could not be assigned to any module and

the brown module was considered the most significant gene

module (Figure 4B). A total of 1,288 genes were identified in the

brown gene module. Brown module membership and gene

significance were significantly positively correlated (r2 = 0.82, p =

9.9E−324) (Supplementary Figure S1E).
3.3. Establishment of PPI protein
interactions network to screen out key HUB
genes

In order to obtain a protein interaction network map between

differential genes, the 313 genes from the limma analysis were
frontiersin.org
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FIGURE 2

Limma analysis of ICM-HF and the normal group. (A) Volcano plot of differentially expressed genes (DEGs) in GSE57345, set |log2(FC)| ≥ 0.5. Red dots are
upregulated genes, and green dots are downregulated genes. (B) A heatmap showing the top 30 upregulated and the top 30 downregulated genes in
ICM-HF and normal groups.
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entered into the STRING database and the PPI (https://cn.string-

db.org) network was obtained. The PPI network (v3.9.0) was

constructed using Cytoscape software (Figure 5), in order to

further screen for key hub genes, the Stress, MCC, Degree, EPC,

EcCentricity, Radiality, Closeness and Betweenness algorithms

were used to calculate the associated gene scores (Supplementary

Figure S2A–G). The UpSet graph was used to filter out five

common HF-associated genes (Supplementary Figure S3). They

are G protein subunit alpha O1 (GNAO1), cyclin H (CCNH),

caspase 3 (CASP3), mitotic arrest deficient 2 like 1 (MAD2L1)

and cyclin E1 (CCNE1).
3.4. Identification of key disease genes by
machine learning

A total of 114 disease genes were obtained by taking the

common genes of DEGs and WGCNA (Figure 6A). For further

training of the above mentioned genes, these 114 genes were

input into LASSO, RF algorithm and SVM-RFE algorithm were

performed on GSE57345. A total of 31 genes were derived from

the LASSO algorithm (Figure 6B). The top 16 genes from the

SVM-RFE calculation were the most significant, with an accuracy

of 0.758 (Figure 6C) and an error incidence of 0.242

(Figure 6D). The RF algorithm yielded 133 genes, and the top

20 in importance were taken as the resultant genes (Figures 7A,

B). The three algorithms were then intersected with the ML MIC

algorithm for a Venn diagram, and the genes with the
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intersection of the four algorithms were taken as the key disease

genes (Figure 8C), yielding a total of seven genes. They are

coiled-coil-helix-coiled-coil helix domain containing 4

(CHCHD4), transmembrane protein 53 (TMEM53), acid

phosphatase 3 (ACPP), aminoadipate-semialdehyde

dehydrogenase (AASDH), purinergic receptor P2Y1 (P2RY1),

caspase 3 (CASP3), aquaporin 7 (AQP7). Among them,

CHCHD4 and CASP3 genes are the causative genes common to

all ML algorithms, with CASP3 being the gene shared by

multiple cytohubba algorithm-related genes. We evaluated the

correlation between the genes derived from cytohubba and ML

algorithms (Figure 8D). Red dots represent negative correlation

between two genes, blue represents positive correlation between

two genes. The absolute value corresponding to the dot is the

correlation coefficient of the two genes.
3.5. Establishment of ROC to assess the
reliability of candidate genes and the
relative expression of disease and
experimental groups

We further evaluated the diagnostic values of TMEM53, ACPP,

AASDH, P2RY1, CASP3, AQP7, GNAO1, CCNH, MAD2L1 and

CCNE1 in GSE57345 using ROC curves, in order to improve

their diagnostic performance, so we chose AUC > 0.7 as inclusion

criteria. Demonstrating that these optimal feature genes have a

high diagnostic value for ICM-HF and permit the estimation of
frontiersin.org
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FIGURE 3

Functional enrichment of genes in the object module. The x-axis shows the number of ratios of genes, and the y-axis shows the pathway terms. The
−log10 (p-value) of each term is colored according to the legend. (A) Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. (B–D)
Gene ontology (GO) analysis.
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progression (Figures 8A,B). The relative expression of genes in the

experimental cohort was observed using a nonparametric test

(Figure 8C) and validated using a validation set, the expression

of GNAO1 was not statistically significant between the two

groups (Figure 8C). CHCHD4, CASP3, ACPP, AASDH, CCNH,

MAD2L1, and CCNE1 were all significantly upregulated in the

ICM-HF group, and TMEM53, P2RY1, and AQP7 were

significantly downregulated in the ICM-HF group.

In addition, for accurate and reliable results, we further

validated the expression levels of the optimal feature genes in

external validation dataset GSE42955 (Figure 9). In the dataset

GSE42955, the genes CCNH and MAD2L1 were not statistically

significant calculated by cytohubba method. Interestingly, the 7

(CHCHD4, CASP3, ACPP, AASDH, AQP7, P2RY1, TMEM53)

genes screened by ML methods all share the same trend in the

above-mentioned dataset, and at the same time, they are all

statistically significant.
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3.6. GSEA analysis and ssGSEA analysis

GSEA analysis showed that the enrichment pathway was

mainly positively correlated with pathways such as cholesterol

metabolism and negatively correlated with pathways such as

lipolysis presentation in adipocytes (Figures 10A,B). The

upregulated pathways in ssGSEA are shown in Figure 11A by

mountain range plots. The relative significance of each

pathway is shown by a box line plot (Figure 11B). The most

significant differential pathways are mainly focused on lipid

metabolism, organelle damage, and oxidative stress-related

pathways. We analyzed the correlations of individual genes

in the relevant pathways. The correlations of genes screened

by ML and genes screened by cytohubba with the

pathways are visualized in Figure 12C, with red representing

positive correlations and green representing negative

correlations.
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FIGURE 4

Demonstration of the WGCNA process. (A) Gene and trait clustering dendrograms. Gene clustering trees (dendrograms) obtained by hierarchical
clustering of neighbor-based differences. (B) Module feature association. Each row corresponds to a module feature, and each column corresponds
to a clinical feature. Each cell contains the corresponding correlation in the first row and the corresponding p-value in the second row. The table is
color-coded by correlation according to the color legend.
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3.7. Immune infiltration analysis

Since we observed enrichment of ICM-HF-related genes in

immune regulation, immune cell infiltration analysis was

performed to better elucidate the immune regulation of ICM-HF.

Regarding the infiltration of 22 immune cells in the ICM-HF

and the normal group controls shown in Figure 12A, the violin

plot indicates that patients with ICM-HF have higher levels of

plasma cells, naive B cells, and resting mast cells and lower

levels of activated NK cells and regulatory T cells

(Figure 12B). The correlation of individual immune cells is

shown in Figure 13A. In general, multiple immune cells are
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differentially expressed in patients with ICM-HF, which can be

used as potential therapeutic targets. Correlation analysis of

genes and immune cells (Figure 13B) revealed positive

correlations between resting mast cells and several related

genes, so we hypothesize that resting mast cells may play an

important role in HF due to ICM-HF and CCNH genes

correlate with several immune cells, such as negative

correlations with memory T cells and resting NK cells and

positive correlations with plasma cells and M2 type

macrophages. The CCNH gene is associated with several

immune cells, such as memory T cells and resting NK cells

and with plasma cells and M2 macrophages.
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FIGURE 5

Protein–protein interaction (PPI) analysis. PPI network of DEGs. The edges represent the interactions between two genes. Degrees are used to describe
the importance of protein nodes in the network; deep red colors indicate high degrees, whereas light red colors indicate low degrees.
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4. Discussion

The strong bioinformatics analysis community and technology

repositories that have driven advances in modern genetics.

Recently, an increasing number of examples of ML-driven

analysis are emerging in the field of cardiovascular genetics,

including coronary calcium studies (25), pulmonary hypertension

(26), and multiple clinically relevant variant assays from next-

generation sequencing or proteomic data (27). Modern medical

practice is awash with many types of data. In cardiovascular

medicine, the range and quality of diagnostic tests, such as non-

invasive imaging, such as computed tomography (CT)

angiography, physiological tests, and other fractional flow

reserves or biomarkers, have increased over the past few decades

(28). These tests provide physicians with additional

complementary information upon which to base diagnostic and

therapeutic decisions, which are widely accessible, less expensive

and low-risk. Overall, the high prevalence of cardiovascular

disease generates a large amount of patient data related to
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cardiovascular disease. This provides a large amount of data for

training ML models and gives ML the opportunity to assist in

more clinical work.

In our research, we used multiple independent algorithms. And

then we identified the important genes from dataset. These ML

methods are used to find valuable information from complex and

large gene expression data. This has enabled researchers to

explore potential influences in disease from different perspectives

and using different methods. For example, it can identify genes

that have not been studied in previous research and provide

researchers with new insights and ideas in the study of specific

diseases. We screened 7 disease-associated genes using ML

(CHCHD4, CASP3, TMEM53, ACPP, AASDH, P2RY1 and

AQP7). We used cytohubba to screen for 5 genes (GNAO1,

CCNH, MAD2L1, CASP3, CCNE1). Among them, CASP3 was

the common gene derived from cytohubba analysis and ML

analysis. Based on the results of our study, overall, the diagnostic

efficacy of the genes screened by ML may be better than that of

cytohubba.
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FIGURE 6

Screening of disease intersection genes and machine learning algorithm to identify the optimal feature genes. (A) Strong correlation module of WGCNA
and Limma analysis of differential genes to do a Venn diagram screening of intersecting genes. (B) LASSO coefficient profiles of the candidate optimal
feature genes and the optimal lambda was determined when the partial likelihood deviance reached the minimum value. Each coefficient curve in the left
picture represents a single gene. The solid vertical lines in right picture represent the partial likelihood deviance, and the number of genes (n= 30)
corresponding to the lowest point of the cure is the most suitable for LASSO. (C,D) The SVM-RFE algorithm was used to further candidate optimal
feature genes with the highest accuracy and lowest error obtained in the curves. The x-axis shows the number of feature selections, and the y-axis
shows the prediction accuracy. Sixteen gene features were identified through SVM-RFE analysis with an accuracy of 0.758 and an error of 0.242.
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CASP3 is a frequently activated death protease that catalyzes

the specific cleavage of many key cellular proteins and is

involved in apoptotic cell death (29). Studies have demonstrated

that CASP3 is involved in the inflammatory activation and

immune cell aggregation in cardiovascular disease through the

regulation of the Rho-kinase axis by vascular smooth muscle

cells (30, 31).

According to our results, CHCHD4 expression was

significantly higher in the ICM-HF group compared to normal

group, so it is speculated that elevated CHCHD4 may play an

important role in the ICM-HF. CHCHD4 plays a key role in

oxidative protein folding in the mitochondrial membrane gap,

representing a minimal thioredoxin-independent oxidoreductase,

which ensures its catalytic function in mitochondrial oxidative

folding (32). CHCHD4-based protein import mechanisms are

essential for the maintenance of normal mitochondrial functions

(33). Damaged mitochondria produce less adenosine
Frontiers in Cardiovascular Medicine 09
triphosphate (ATP) and generate dangerous amounts of ROS.

Accumulated ROS may damage mitochondrial DNA, cell

membranes, and respiratory complex proteins, leading to

catastrophic oxidative damage and cell death (34). We

hypothesize that the elevated CHCHD4 protein in the ICM-HF

group is a compensatory manifestation of mitochondrial damage

due to hypoxia in cardiomyocytes caused by myocardial

ischemia. It is expected to be a new target for the diagnosis and

treatment of ICM-HF.

Studies have shown that Aquaporins (AQPs) are involved in

the regulation of cardiovascular function and the development of

related diseases, particularly in cerebral ischemia, congestive HF,

hypertension, and angiogenesis (35). AQP7 in AQPs is a

hydroglycerol channel protein that is mainly distributed in

proximal renal tubules, cardiac muscles, and adipose tissue.

Studies have shown that the heart is the second most expressed

tissue after adipose tissue for AQP7 mRNA (36). However, the
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FIGURE 7

Machine learning algorithm and correlation heatmap. (A) Relative importance of overlapping candidate genes calculated in random forest (Top 10 genes’
importance >2). Importance indexes on the x-axis and genetic variables are plotted on the y-axis. (B) Relative importance of overlapping candidate genes
calculated in random forest. Importance indexes on the x-axis and genetic variables are plotted on the y-axis. (C) Four machine learning algorithm genes
screened for intersection genes using Venn diagram. (D) The correlation heatmap of machine learning algorithm-related genes and cytohubba algorithm-
related genes. Red dots represent negative correlation between two genes, blue represents positive correlation between two genes. The absolute value
corresponding to the dot is the correlation coefficient of the two genes.
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role of AQP7 in the myocardium has been barely investigated. In

the above study, AQP7 expression was significantly lower in the

disease group than in the control group. During periods of high

energy demand and metabolic stress, lipolysis increases and

converts triglycerides to free fatty acids and glycerol. AQP7

controls glycerol efflux under these conditions, and the exported

glycerol is then taken up by other cells and used as a backbone

for energy requirements during high energy demands (37). ICM-

HF is often accompanied by the loss of energy metabolic

function and disturbances in lipid metabolism. AQP7 is required

for carbohydrate metabolism, complex lipid biosynthesis, urea/

arginine metabolism, redox homeostasis, amino acid metabolism,

and nucleotide metabolism. Thus, AQP7 plays a critical role in

regulating lipid metabolism (38).
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The analysis with GO, KEGG, and GSEA pathways was

enriched in cholesterol metabolism, regulation of lipolysis in

adipocytes, and amino acid metabolism. The presence of a

significant downregulation of AQP7 in the ICM-HF group

relative to the control group was confirmed in our experimental

group and validation group. AQP7’s deficiency appears to impair

metabolic adaptation during cardiac overload by limiting glycerol

uptake and reducing intracellular ATP levels (39). This is of

fundamental importance because cardiomyocyte metabolism is

dependent on fatty acids, but they are converted to glucose and

glycerol as energy substrates when the heart is overloaded (40).

Overall, AQP7’s deficiency may exacerbate the damage to the

energy metabolism of the ischemic myocardium, ultimately

leading to HF.
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FIGURE 8

Verification of expression and diagnostic efficacy in predicting ICM-HF progression of optimal feature genes. (A) Validation of ROC of genes screened by a
machine learning algorithm. (B) ROC validation of genes related to the cytohubba algorithm. (C) Violin plot of the expression of the relevant genes in the
experimental set GSE57345. *p < 0.05, **p < 0.01, ***p < 0.001, Wilcoxon rank-sum test.
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P2RY1 is a G protein-coupled receptor in which ADP is a

physiological agonist that actively couples to phospholipase C via

Gαq, thereby triggering the release of intracellular stores of Ca2+

(41). HF is characterized by the reduced contractile function of

cardiac myocytes, resulting in reduced systolic left ventricular

contraction. Defective myocardial contractility is associated with

impaired excitation–contraction (EC) coupling, a mechanism that

converts electrical stimulation from pacemaker cells into

contraction through the release of large amounts of Ca2+ from

the sarcoplasmic reticulum (SR) (42). Interestingly, studies have

shown that the dysregulation of intracellular calcium homeostasis

in cardiac myocytes is an important factor in exacerbating the

cardiovascular disease (43). We found a significant

downregulation of P2RY1 in ICM-HF group. Therefore, we

consider that P2RY1 may play an important role in ICM-HF.

Growing evidence suggests that immune cell infiltration of the

myocardium has a detrimental effect on cardiac function (44–46).

Immune cell profiles differ significantly in healthy and diseased
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hearts (46). In this study, we found that naive B cells and resting

mast cells were significantly elevated in the disease genome.

Plasma cells, regulatory T cells, and activated NK cells were

significantly downregulated within the ICM-HF group. Mast cells

exacerbate the progression of ischemic HF by activating matrix

metalloproteinases and cardiac fibrosis (47). Myocardial fibrosis

and resistance to neo-angiogenesis caused by dysfunction of

regulatory T cells are, on the other hand, a very critical step in

the pathological progression of cardiovascular disease (48, 49).

Through our analysis, we consider that the infiltration of

immune cells may provide new ideas and insights in the

diagnosis and treatment of ICM-HF.

We identified 11 potentially significant pathogenic genes in

ICM-HF through ML and PPI analysis. We focused on the

possible roles of the mitochondrial damage and apoptosis genes

CHCHD4 and CASP3 and the lipid metabolism regulatory genes

AQP7 and P2RY1 in disease development. The differential

expression of TMEM53, ACPP and AASDH genes may also play
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FIGURE 9

Verification of expression and diagnostic efficacy for optimal feature genes using external validation dataset. (A) Validation of ROC of genes screened by a
machine learning algorithm. (B) ROC validation of genes related to the cytohubba algorithm. (C) Violin plot of the expression of the relevant genes in the
experimental set GSE42955.

FIGURE 10

Enrichment of GSEA pathway. (A) GSE57345 upregulated gene pathway enriched in GSEA. (B) GSE57345 enriched in GSEA for downregulated gene
pathway.
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FIGURE 12

Immune infiltration analysis. (A) Visualization of stacked plots of various infiltrating immune cells in GSE57345. (B) Visualization of violin plots of infiltrating
immune cells in the ICM-HF and normal groups. *p < 0.05, **p < 0.01, ***p < 0.001. Wilcoxon rank-sum test.

FIGURE 11

Plot of correlated differences in GSEA enrichment. (A) Mountain range plot of the correlation pathway of GSE57345 enrichment in GSEA. (B) The specific
distribution of the hallmark gene sets in ICM-HF and normal samples. (C) Correlation analysis of the hallmark gene sets with seven optimal feature genes.
Statistic tests: Wilcoxon rank-sum test (p < 0.2; *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance).#.
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FIGURE 13

Correlation analysis of immune-related infiltration analysis. (A) The relative proportions of 22 immune cells types between normal samples and ICM-HF
samples. in GSE57345. (B) Correlation analysis of 11 related disease genes and associated immune cells. *p < 0.05, **p < 0.01, ***p < 0.001.Wilcoxon rank-
sum test.
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an important role in ICM-HF, but these genes have been barely

investigated, so little is known about the function of these genes.

These genes may play a critical role in the development and

progression of the ICM-HF, and their functions and mechanisms

need to be further explored. This is a reflection of the innovation

and excellence of ML in the medical field, which has been able

to identify many influences that have not been identified by

previous studies. At the same time, it can also provide new
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directions and ideas for the study of ICM-HF. Overall, our study

demonstrates for the first time the promising potential of a

combined WGCNA and ML approach in transcriptomic data for

ICM-HF. Our findings suggest that ML modeling of genome-

wide transcriptomic data from cardiac samples collected by

clinical heart biopsy can explore potential biomarkers. Finally,

our study prioritizes previously unknown genes and genes that

have not been studied in ICM-HF as potential candidate
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biomarkers. Our work can serve as an important part of future

research in the field of ICM-HF. Interestingly, we found that

after validation by external gene set GSE42955, all seven genes

screened by ML were well validated, while CCNH and MAD2L1

of the five genes screened by PPI were not well validated. This

also reflects the superiority of ML compared to common

bioinformatics algorithms.

Some limitations of the present study should be noted. First,

this is a retrospective study, and further prospective experiments

need to be designed. Second, this study can further design

animal experiments to explore the mechanism of validating

related genes in ICM-HF. Third, the accuracy of our chosen

SVM algorithm is only 0.758. However, the use of multiple ML

algorithms to analyze the potential causative genes depicting

ICM-HF increases the credibility of the study to some extent and

explores the correlation between the status of immune infiltrating

cells in the tissues of ischemic HF and causative genes, which are

biomarkers that may provide guidance for the diagnosis and

treatment of patients with ICM-HF.
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