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Background: Left ventricular systolic dysfunction (LVSD) characterized by a reduced 
left ventricular ejection fraction (LVEF) is associated with adverse patient outcomes. 
We aimed to build a deep neural network (DNN)-based model using standard 12-
lead electrocardiogram (ECG) to screen for LVSD and stratify patient prognosis.

Methods: This retrospective chart review study was conducted using data from 
consecutive adults who underwent ECG examinations at Chang Gung Memorial 
Hospital in Taiwan between October 2007 and December 2019. DNN models 
were developed to recognize LVSD, defined as LVEF <40%, using original ECG 
signals or transformed images from 190,359 patients with paired ECG and 
echocardiogram within 14 days. The 190,359 patients were divided into a training 
set of 133,225 and a validation set of 57,134. The accuracy of recognizing LVSD and 
subsequent mortality predictions were tested using ECGs from 190,316 patients 
with paired data. Of these 190,316 patients, we further selected 49,564 patients 
with multiple echocardiographic data to predict LVSD incidence. We additionally 
used data from 1,194,982 patients who underwent ECG only to assess mortality 
prognostication. External validation was performed using data of 91,425 patients 
from Tri-Service General Hospital, Taiwan.

Results: The mean age of patients in the testing dataset was 63.7 ± 16.3 years (46.3% 
women), and 8,216 patients (4.3%) had LVSD. The median follow-up period was 
3.9 years (interquartile range 1.5–7.9 years). The area under the receiver-operating 
characteristic curve (AUROC), sensitivity, and specificity of the signal-based 
DNN (DNN-signal) to identify LVSD were 0.95, 0.91, and 0.86, respectively. DNN 
signal-predicted LVSD was associated with age- and sex-adjusted hazard ratios 
(HRs) of 2.57 (95% confidence interval [CI], 2.53–2.62) for all-cause mortality 
and 6.09 (5.83–6.37) for cardiovascular mortality. In patients with multiple 
echocardiograms, a positive DNN prediction in patients with preserved LVEF 
was associated with an adjusted HR (95% CI) of 8.33 (7.71 to 9.00) for incident 
LVSD. Signal- and image-based DNNs performed equally well in the primary and 
additional datasets.
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Conclusion: Using DNNs, ECG becomes a low-cost, clinically feasible tool to 
screen LVSD and facilitate accurate prognostication.
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Introduction

Heart failure (HF) is a major health issue affecting over 26 million 
people worldwide. It causes a significant increase in both morbidity 
and mortality and imposes a financial burden on society (1). Echouffo-
Tcheugui et al. have classified left ventricular dysfunction into two 
categories: left ventricular systolic dysfunction (LVSD) and left 
ventricular diastolic dysfunction. LVSD is characterized by a reduced 
left ventricular ejection fraction (LVEF) and is associated with three 
times the risk of developing overt HF (2). Early identification of 
individuals with asymptomatic LVSD can lead to effective 
interventions, such as lifestyle changes, and medications, including 
angiotensin-converting enzyme inhibitors, angiotensin II receptor 
blockers, mineralocorticoid receptor antagonists, and beta-blockers 
(3–7), which can delay the onset of HF, reduce the rate of cardiac 
events, and improve survival (8–10).

The most commonly used method to assess LVSD is the 
transthoracic echocardiogram (TTE), but its limitations, including 
portability, cost, and operator dependency, restrict its use as a 
screening tool. To address this, there is a need for more accurate and 
accessible screening tools to identify LVSD in asymptomatic patients, 
such as a weighted scoring model incorporating clinical characteristics 
and plasma natriuretic peptides. However, these tools lack the 
specificity to predict LVSD in asymptomatic populations (11, 12).

The electrocardiogram (ECG) is an inexpensive and widely 
available method that measures the collective electrical activity of the 
heart and may contain information related to LVSD. While ECG 
recording is a standardized process, the accuracy and consistency of 
human interpretation can vary widely based on the experience and 
expertise of the interpreter. In addition, subtle ECG features that are 
invisible to the human eye may be useful for LVSD detection and 
prognostication. To overcome these challenges, the use of deep neural 
networks (DNNs) is proposed.

In recent years, DNNs have been applied successfully in the 
healthcare industry, including image analysis (13), predictive 
modeling (14), natural language processing (15), and drug discovery 
(16). They are superior to traditional pattern recognition methods (17) 
and form the foundation of clinical applications such as fracture 
detection (18), retinopathy grading (19), and lung nodule 
identification (20). DNN tools can interpret ECGs with similar 
accuracy to experienced physicians. Attia et  al. developed a 
DNN-based ECG screening tool to identify individuals with LVEF 
≤35% (21). A subsequent pragmatic clinical trial showed that a 

DNN-based intervention increased the likelihood of identifying 
patients with low LVEF during routine primary care (22). However, 
the effectiveness of DNN-based models in predicting incident LVSD 
and mortality has not been studied in a large clinical setting.

With data from approximately 1.7 million individuals, 
we conducted this study to evaluate the feasibility of using DNN-based 
ECG interpretation as a screening tool for LVSD and to assess its 
utility in risk assessment. The primary outcome was the ability of the 
DNN model to accurately identify individuals with LVSD (defined as 
LVEF <40%) based solely on the ECG. The secondary outcome was 
the ability of the DNN model to identify individuals at increased risk 
of death and at increased risk of developing LVSD.

Materials and methods

Data sources and study population

This study was conducted at Chang Gung Memorial Hospital 
(CGMH), the largest private hospital system in Taiwan. The study 
population included consecutive adult patients (age ≥ 18) who 
underwent standard 12-lead ECG at CGMH between October 2007 
and December 2019 (1,777,039 individuals, 5,148,718 ECG tracings). 
ECGs with poor recording quality or unavailable leads were 
excluded. The ECG data were linked to the Chang Gung Research 
Database (CGRD), which included the electronic health records of 
all patients who visited any one of the following seven hospitals: 
Keelung, Taipei, Linkou (headquarters), Taoyuan, Yunlin, Chiayi, 
and Kaohsiung.

The patients’ survival status was confirmed by linking the CGRD 
to the National Death Registry. Valid internal patient record linkage 
was achieved by using unique patient identifiers, and these were 
encrypted before the data were released to researchers to protect 
patient confidentiality. This study was approved by the Institutional 
Review Board of CGMH and Tri-Service General Hospital. This study 
used anonymous and nontraceable data, so the need for patient 
consent was waived.

Collection of data

Standard 12-lead ECGs with 10-s voltage-time traces were 
acquired at a sampling rate of 500 Hz using a MAC 5000, MAC 5500, 
or MAC5500HD ECG machine (GE Healthcare, Chicago, IL, 
United States) and stored using the Marquette Universal System for 
Electrocardiography (MUSE). Each standard 12-lead ECG was stored 
as a 12 × 5,000 matrix. Both the raw ECG signal data and processed 
ECG images at a 400 × 600-pixel resolution were obtained.

Abbreviations: AI, artificial intelligence; DNN, deep neural network; ECG, 

electrocardiogram; HF, heart failure; LVEF, left ventricular ejection fraction; LVSD, 

left ventricular systolic dysfunction; TTE, transthoracic echocardiogram..
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Transthoracic echocardiograms were performed and interpreted 
in accordance with the guidelines set forth by the American Society 
of Echocardiography and the American College of Cardiology/
American Heart Association. Comprehensive two-dimensional (2D) 
or three-dimensional (3D) Doppler echocardiographic profiles and 
quantitative measurements were recorded in Chang Gung’s health 
information system. For this study, we only extracted LVEF values for 
analysis. LVEF was routinely measured using standardized 
methodologies. If different methods were used to measure LVEF in a 
report, the order of data preference was as follows: 3D echocardiogram, 
the Simpson biplane method, 2D method, linear measurement using 
M-mode. If multiple LVEF values  were obtained using one method, 
the mean value was used for analysis.

To achieve proper correlation between ECG and TTE data, only 
TTEs obtained within 2 weeks of the index ECG were used for DNN 
model creation.

Development of DNN models for 
identification of LVSD

In this study, we  implemented two types of DNNs using the 
Pytorch framework and Python 3.6. All training was performed on 
an NVIDIA DGX-1 platform with 8 V100 GPUs and 32 GB of RAM 
per GPU. For the DNN that used signal inputs (DNN-signal), 
we used the deep residual network (ResNet) (23) modified to fit the 
signal input (Supplementary Figure 1). We used a wider kernel for 
the first convolution layer compared with the original ResNet 
framework as used for images. This architecture used skip 
connections, which allowed information to pass directly to the next 
layer to avoid the degradation caused by deeper neural networks. 
The network consisted of a convolution layer followed by eight 
residual blocks. Each residual block contained two convolution 
layers. The output of the last block was fed into hybrid pooling 
because combining max- and average-pooling methods improved 
the generalization ability while reducing dimensionality (24, 25). 
The output of hybrid pooling was subsequently sent to a fully 
connected layer to perform the final classification. The output of 
each convolutional layer was followed by batch normalization for 
distribution normalization and fed into a rectified linear activation 
unit (26). Cross-entropy loss with an Adam optimizer (27) was used 
in the model. Dropout was applied to reduce the overfitting by 
breakup co-adaptation on the training data (28).

For the DNN using the image inputs (DNN-image), we prepared 
a 400 × 600-pixel image similar to standard 12-lead ECG images 
(Supplementary Figure 2) using the signal data (12 × 5,000 matrix). 
The resolution was determined by a series of experiments using 
different image resolutions. The images were fed to ResNet-18 (23), 
and the output layer had two classes (Softmax function). The 
validation set was used to optimize the network architecture and 
network hyperparameters. The DNN-signal and DNN-image used 
the same training and validation sets for model building and were 
tested on the same testing set. A receiver operating characteristic 
(ROC) curve was plotted to assess the performance. The model with 
the highest area under the ROC curve (AUROC) was selected as the 
final model. We used the validation dataset ROC to select optimal 
threshold for the probability of LVSD by applying the Youden index 
(J) method.

We further assessed the network performance in different age, sex, 
and comorbidity strata. The odds ratio (OR), sensitivity, and specificity 
were calculated for each strata.

Division of dataset

Among 1,684,298 adult patients with ECG tracings, 380,675 had 
at least one TTE data within 2 weeks of the index ECG during the 
study period (Figure 1). For patients with multiple ECG–TTE pairs, 
the earliest pair with the shortest ECG–TTE interval was selected for 
model development. Total 380,675 ECG–TTE paired datasets were 
used for the primary analysis. These ECG-TTE pairs were randomly 
allocated into a training, validation, or testing set using simple random 
sampling in which each dataset had an equal probability of selection 
without replacement. The final DNN development cohort included 
133,225 patients in the training set, 57,134 in the validation set, and 
190,316 in the testing set. No patient was allocated to more than one 
group (Figure 1).

We further conducted an external validation using paired 
ECG-TTE data from the Tri-service General Hospital. The external 
validation cohort included 91,425 consecutive adults between April 
2010 and September 2021. The criteria of patient selection and 
echocardiographic performance methodology were the same as for 
the derivation cohort. Different from the ECG machine used at 
CGMH, ECGs from Tri-service General Hospital were obtained using 
the Philips system.

Performance evaluation of the DNN 
models in predicting mortality

The ability of DNN to predict all-cause and cardiovascular 
mortality was assessed. According to the differences between the 
results of echocardiographic measurements and DNN predictions, 
we defined the following names: (i) ‘true positive’ DNN prediction 
represents both DNN-predicted and echo-measured LVEF <40%; (ii) 
‘true negative’ DNN prediction represents both DNN-predicted and 
echo-measured LVEF ≥40%; (iii) ‘false positive’ DNN prediction 
represents DNN-predicted LVEF<40% and contemporaneous echo-
measured LVEF ≥40%; and (iv) ‘false negative’ DNN prediction 
represents DNN-predicted LVEF≥40% and contemporaneous echo-
measured LVEF <40%. The associations of different groups with 
all-cause or cardiovascular mortality were also assessed. The National 
Death Registry was linked to the study dataset. In Taiwan, it is 
mandatory for physicians to report deaths and causes of death to the 
Department of Health and Welfare. Therefore, death records within 
the National Death Registry are considered complete and accurate. A 
previous validation study estimated the effect of the misrecorded 
causes of death in the National Death Registry on cardiovascular 
mortality rates. The effect was less than 4%, suggesting accurate cause-
of-death coding in Taiwan (29).

Sensitivity analyses

We conducted sensitivity analyses in patients who were not 
included in the primary analysis. These patients were included in the 
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following sub-analyses (Figure 1): (i) among patients with multiple TTE 
examinations in the original testing dataset (dataset A1, n = 49,564), the 
incidence of LVSD and mortality were compared in patients with ‘false-
positive’ versus ‘true-negative’ predictions of LVSD; (ii) among patients 
who underwent TTE after more than 2 weeks of the index ECG (dataset 
B), the incidence of LVSD and mortality were compared in patients with 
positive versus negative predictions of LVSD; and (iii) among patients 
without echocardiographic data (dataset C), mortality rate was 
compared in patients with positive versus negative predictions of 
LVSD. Age- and sex-weighted Kaplan–Meier analysis was used to 
determine the incidence of LVSD or mortality. Cox proportional hazard 
regression was used to estimate the age- and sex-adjusted hazard ratios 
(HR; 95% confidence intervals [CI]) for LVSD and mortality.

Statistical methods

Only the testing datasets were evaluated for performance measures. 
The model’s diagnostic performance was evaluated by calculating the 
AUROC, sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). The F1 score, harmonic mean of the 
PPV, and sensitivity based on the selected threshold were also 
computed. Continuous variables are expressed as means ± standard 
deviation (SD). Categorical variables are expressed as numbers and 
percentages. Adjusted odds ratios (OR; 95% CI) were calculated. For 

comparisons of population characteristics, the chi-square test was used 
for categorical variables and the unpaired Student’s t-test for continuous 
variables. Cox proportional hazards models were used to estimate 
hazard ratios (HR; 95%CI) for LVSD, all-cause, and cardiovascular 
mortality. A value of p < 0.05 was considered statistically significant. 
Statistical analyses were conducted using SAS 9.4 software.

Results

The testing dataset contained 190,316 patients (46.3% females), 
and 8,216 patients (4.3%) had LVSD. The mean age was 
63.7 ± 16.3 years. The median follow-up time was 3.9 years 
(interquartile range 1.5–7.9 years) for testing dataset. Table 1 shows 
the characteristics of the patients in the training, validation, and 
testing sets. There were no significant differences between groups.

Performance of the DNN models in 
identifying LVSD

The AUROC values of DNN-signal and DNN-image for 
identifying LVSD in the testing dataset were 0.95 and 0.94, respectively 
(Supplementary Figure 3). When selecting a threshold maximizing the 
Youden’s index, the overall accuracy of DNN-signal was 0.86, with a 

FIGURE 1

Data flow for ECG and TTE data pairing.
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sensitivity of 0.91, specificity of 0.86, PPV of 0.22 and NPV of 0.995. 
The DNN-image model performed with similar robustness to 
DNN-signal (sensitivity, 0.91; specificity, 0.84; PPV, 0.20; NPV, 0.995). 
The similarly robust DNN performances across different age, sex, and 
comorbidity strata in both DNN-signal and DNN-image are shown 
in Figure 2. External validation using ECG obtained by the Philips 
system was conducted. The AUROC of the DNN-signal for data from 
Tri-service General Hospital was 0.95. The overall accuracy of 
DNN-signal was 0.87, with a sensitivity of 0.90, specificity of 0.87, 
PPV of 0.19 and NPV of 0.99. Supplementary Tables 1, 2 show the 
patient characteristics and the performance of DNN-signal using data 
from Tri-service General Hospital.

Performance of the DNN models in 
predicting mortality

Age- and sex-weighted Kaplan–Meier curves for mortality of 
patients with DNN signal-predicted LVSD and echo-derived LVSD are 

shown in Figure 3. A total of 8,216 LVSD patients were identified 
using echocardiographic data, and 33,535 LVSD patients were 
identified using DNN-signal. DNN signal-predicted LVSD was 
associated with age- and sex-adjusted HRs (95% CI) of 2.57 (2.53–
2.62) for all-cause mortality and 6.09 (5.83–6.37) for cardiovascular 
mortality at a median follow-up of 3.9 years. Echo-derived LVSD was 
associated with age- and sex-adjusted HRs (95% CI) of 2.68 (2.60–
2.76) for all-cause mortality and 7.79 (7.39–8.22) for cardiovascular 
mortality. The DNN-image performed similarly to DNN-signal with 
age- and sex-adjusted HRs (95% CI) of 2.70 (2.66–2.75) for all-cause 
mortality and 6.47 (6.19–6.77) for cardiovascular mortality 
(Supplementary Figure 4).

Compared with ‘true negative’ DNN predictions, ‘true positive’ 
DNN-signal predictions were associated with HRs (95% CI) of 3.27 
(3.17–3.38) for all-cause mortality and 12.46 (11.75–13.21) for 
cardiovascular mortality. ‘True positive’ DNN-image predictions were 
associated with HRs (95% CI) of 3.47 (3.36–3.58) for all-cause 
mortality and 13.8 (13.03–14.67) for cardiovascular mortality 
(Figure 4).

TABLE 1 Patient characteristics and comorbidities.

Characteristics Training 
(n = 133,225)

Validation 
(n = 57,134)

Testing 
(n = 190,316)

P 
value

Additional 
A-1 

(n = 49,564)

Additional B 
(n = 83,787)

Additional C 
(n = 1,194,982)

Age years, mean ± SD 63.7 ± 16.3 63.8 ± 16.3 63.7 ± 16.3 0.480 65.9 ± 14.5 57.1 ± 15.8 50.6 ± 16.1

Age groups, n (%) 0.083

<40 12,483 (9.4) 5,222 (9.1) 17,717 (9.3) 2,687 (5.4) 12,648 (15.1) 326,015 (27.3)

40–49 11,893 (8.9) 5,224 (9.1) 17,098 (9.0) 3,621 (7.3) 11,796 (14.1) 240,076 (20.1)

50–59 21,276 (16.0) 9,189 (16.1) 30,251 (15.9) 7,687 (15.5) 18,446 (22.0) 242,396 (20.3)

60–69 27,820 (20.9) 11,741 (20.5) 39,454 (20.7) 11,157 (22.5) 16,700 (19.9) 168,833 (14.1)

70–79 27,298 (20.5) 11,516 (20.2) 38,732 (20.4) 11,742 (23.7) 12,261 (14.6) 97,981 (8.2)

80+ 32,455 (24.4) 14,242 (24.9) 47,064 (24.7) 12,670 (25.6) 11,936 (14.2) 119,681 (10.0)

Sex, n (%) 0.248

Female 61,569 (46.2) 26,233 (45.9) 88,139 (46.3) 21,665 (43.7) 43,483 (51.9) 625,408 (52.3)

Male 71,656 (53.8) 30,901 (54.1) 102,177 (53.7) 27,899 (56.3) 40,304 (48.1) 569,574 (47.7)

EF, mean ± SD 66.8 ± 11.9 66.7 ± 12.0 66.8 ± 11.9 0.845 64.2 ± 13.9 69.4 ± 8.9 N/A

EF < 40%, n (%) 5,745 (4.3) 2,498 (4.4) 8,216 (4.3) 0.825 3,698 (7.5) 899 (1.1) N/A

Medical history, n (%)

Diabetes mellitus 37,454 (28.1) 15,898 (27.8) 53,608 (28.2) 0.277 18,730 (37.8) 18,034 (21.5) 127,042 (10.6)

Hyperlipidaemia 5,087 (3.8) 2,114 (3.7) 7,074 (3.7) 0.260 3,137 (6.3) 3,517 (4.2) 14,978 (1.3)

Renal disease 20,471 (15.4) 8,618 (15.1) 29,100 (15.3) 0.292 12,585 (25.4) 8,073 (9.6) 33,241 (2.8)

Hypertension 71,628 (53.8) 30,471 (53.3) 102,060 (53.6) 0.223 35,250 (71.1) 41,790 (49.9) 234,683 (19.6)

Coronary artery 

disease

28,741 (21.6) 12,309 (21.5) 41,077 (21.6) 0.980 20,394 (41.1) 12,018 (14.3) 20,569 (1.7)

Myocardial infarction 10,186 (7.6) 4,354 (7.6) 14,484 (7.6) 0.933 7,827 (15.8) 1,406 (1.7) 2,134 (0.2)

Without any 41,416 (31.1) 17,770 (31.1) 59,113 (31.1) 0.976 5,700 (11.5) 32,207 (38.4) 885,789 (74.1)

Death, n (%)

Within 1 year 17,379 (13.0) 7,497 (13.1) 24,950 (13.1) 0.838 3,479 (7.0) 2,747 (3.3) 48,625 (4.1)

Within 3 years 27,541 (20.7) 11,786 (20.6) 39,264 (20.6) 0.954 8,868 (17.9) 6,459 (7.7) 80,156 (6.7)

Within 5 years 33,060 (24.8) 14,172 (24.8) 47,189 (24.8) 0.992 12,412 (25.0) 9,301 (11.1) 100,746 (8.4)

Anytime 39,440 (29.6) 16,917 (29.6) 56,290 (29.6) 0.981 16,727 (33.7) 15,297 (18.3) 139,905 (11.7)

P values were derived from ANOVA for comparisons of continuous variables and Pearson’s chi-squared test for comparisons of categorical variables.
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Among patients with ‘false positive’ DNN prediction, a higher 
mortality rate was also observed during follow-up. ‘False positive’ 

DNN-signal predictions were associated with HRs (95% CI) of 2.43 
(2.38–2.47) for all-cause mortality and 4.78 (3.55–5.03) for 

A

B

FIGURE 2

Deep neural network sensitivity, specificity, and odds ratio for detecting LVSD across different subgroups. The neural network’s sensitivity and 
specificity for detecting LVSD is tabulated across subgroups. The odds ratio (OR), which is the ratio of the positive ratio [sensitivity / (1−specificity)] to 
the negative likelihood [(1−sensitivity) / specificity], with the 95% CI, are shown for the subgroups and overall study sample. (A) LVSD prediction using 
signal. (B) LVSD prediction using image.
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cardiovascular mortality. ‘False positive’ DNN-image predictions were 
associated with HRs (95% CI) of 2.57 (2.52–2.61) for all-cause 
mortality and 5.16 (4.92–5.42) for cardiovascular mortality (Figure 4).

Sensitivity analyses

Table  2 summarizes the performance of the DNN models in 
additional datasets. Subset A1 included 49,564 patients with multiple 
echocardiograms. Within this subset, ‘false positive’ DNN-signal 
predictions were associated with HRs (95% CI) of 8.33 (7.71–9.00) for 
incident LVSD, 1.99 (1.92–2.06) for all-cause mortality, and 3.51 
(3.25–3.80) for cardiovascular mortality compared to ‘true negative’ 
DNN-signal predictions. ‘False positive’ DNN-image predictions were 
associated with HRs (95% CI) of 8.19 (7.57–8.87) for incident LVSD, 

2.05 (1.98–2.12) for all-cause mortality, and 3.77 (3.49–4.07) for 
cardiovascular mortality compared to ‘true negative’ 
DNN-image predictions.

Within subset B, including 83,787 patients, positive DNN-signal 
predictions were associated HRs (95% CI) of 19.23 (16.56–22.33) for 
incident LVSD, 2.18 (2.09–2.26) for all-cause mortality, and 5.20 
(4.70–5.75) for cardiovascular mortality. Positive DNN-image 
predictions were associated HRs (95% CI) of 19.52 (16.72–22.80) for 
incident LVSD, 2.32 (2.24–2.41) for all-cause mortality, and 4.99 
(4.52–5.52) for cardiovascular mortality.

Within subset C, including 1,194,982 patients, DNN signal-
predicted LVSD was associated with a HR (95% CI) of 3.24 (3.19–
3.29) for all-cause mortality and 6.83 (6.51–7.16) for cardiovascular 
mortality. DNN image-predicted LVSD was associated with a HR 
(95% CI) of 3.46 (3.40–3.51) for all-cause mortality and 6.82 

LVSD No. of 
patients

Incidence rate a

(95% CI)
Adjusted HR 
(95% CI) LVSD No. of 

patients
Incidence rate
(95% CI)

Adjusted HR 
(95% CI) LVSD No. of 

patients
Incidence rate
(95% CI)

Adjusted HR 
(95% CI) LVSD No. of 

patients
Incidence rate
(95% CI)

Adjusted HR 
(95% CI)

Negative 
(LVEF≥40%) 182,100 70.2

(69.7-70.6)
1.00
(Reference)

Negative 
(LVEF≥40%) 156,781 58.5

(57.9-59.1)
1.00
(Reference)

Negative 
(LVEF≥40%) 182,100 8.9

(8.7-9.1)
1.00
(Reference)

Negative 
(LVEF≥40%) 156,781 6.0

(5.9-6.2)
1.00
(Reference)

Positive 
(LVEF<40%) 8,216 233.4

(226.8-240.0)
2.68
(2.60-2.76)

Positive 
(LVEF<40%) 33,535 182.5

(179.8-185.2)
2.57
(2.53-2.62)

Positive 
(LVEF<40%) 8,216 84.8

(80.8-88.7)
7.79
(7.39-8.22)

Positive 
(LVEF<40%) 33,535 44.1

(42.8-45.4)
6.09
(5.83-6.37)

A B C D

FIGURE 3

Associations of echocardiogram and DNN-signal predictions with all-cause and cardiovascular mortalities. Age- and sex-weighted Kaplan–Meier 
curves, death rates, and adjusted HRs (95% CI) stratified by (A) echo-derived LVSD for all-cause mortality (blue line, LVEF≥40%; yellow line, LVEF<40%), 
(B) DNN signal-predicted LVSD for all-cause mortality (blue line, LVEF≥40%; yellow line, LVEF<40%), (C) echo-derived LVSD for cardiovascular mortality 
(blue line, LVEF≥40%; yellow line, LVEF<40%), (D) DNN signal-predicted LVSD for cardiovascular mortality (blue line, LVEF≥40%; yellow line, LVEF<40%). 
a Adjusted K-M curves were adjusted by the inverse probability of treatment weighting, which calculated using sex and age. b The unit of incidence rate 
was 1,000 person-years. CI, confidence interval; DNN, deep neural network; LVEF, left ventricular ejection fraction.

No. of 
patients

Incidence rate a

(95% CI)
Adjusted HR 
(95% CI)

No. of 
patients

Incidence rate
(95% CI)

Adjusted HR 
(95% CI)

No. of 
patients

Incidence rate
(95% CI)

Adjusted HR 
(95% CI)

No. of 
patients

Incidence rate
(95% CI)

Adjusted HR 
(95% CI)

TN 156,052 58.1 
(57.5-58.6)

1.00 
(Reference) TN 152,927 55.1 

(54.6-55.7)
1.00 
(Reference)

TN 156,052 5.9 
(5.7-6.1)

1.00 
(Reference) TN 152,927 5.4 

(5.2-5.6)
1.00
(Reference)

FN 729 209.2 
(188.8-229.5)

2.59 
(2.35-2.86) FN 738 171.8 

(154.3-189.4)
2.36 
(2.52-2.61)

FN 729 50.6 
(40.6-60.6)

6.20 
(5.08-7.58) FN 738 39.3

(30.9-47.7)
5.61
(4.52-6.96)

FP 26,048 169.8 
(167.0-172.7)

2.43 
(2.38-2.47) FP 29,173 182.5 

(179.6-185.3)
2.57 
(2.52-2.61)

FP 26,048 33.6 
(32.3-34.9)

4.78 
(4.55-5.03) FP 29,173 35.3

(34.0-36.5)
5.16
(4.92-5.42)

TP 7,487 235.9
(229.0-242.8)

3.27 
(3.17-3.38) TP 7,478 240.5 

(233.4-247.5)
3.47 
(3.36-3.58)

TP 7,487 88.3 
(84.0-92.5)

12.46 
(11.75-13.21) TP 7,478 90.0

(85.7-94.3)
13.8
(13.03-14.67)

A B C D

FIGURE 4

Associations of DNN-signal and DNN-image predictions with all-cause and cardiovascular mortalities. Age- and sex-weighted Kaplan–Meier curves, 
death rates, and adjusted HRs (95% CI) stratified by both echocardiography and DNN (true negative: blue line, both echo-measured and DNN-
predicted LVEF ≥40%; false negative: green line, echo-measured LVEF <40% and DNN-predicted LVEF ≥40%; true positive: red line, both echo-
measured and DNN-predicted LVEF <40%; and false positive: yellow line, echo-measured LVEF ≥40% and DNN-predicted LVEF <40%) for all-cause 
and cardiovascular mortality (A) DNN-signal predictions and all-cause mortality, (B) DNN-image predictions and all-cause mortality, (C) DNN-signal 
predictions and cardiovascular mortality, and (D) DNN-image predictions and cardiovascular mortality. a Adjusted K-M curves were adjusted by the 
inverse probability of treatment weighting, which calculated using sex and age. b The unit of incidence rate was 1,000 person-years. CI, confidence 
interval; DNN, deep neural network; EF, ejection fraction; FN, false negative; FP, false positive; HR, hazard ratio; K-M, Kaplan–Meier; LVSD, left 
ventricular systolic dysfunction; No., number; TN, true negative; TP, true positive.
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(6.51–7.14) for cardiovascular mortality. Supplementary Figures 5–12 
show Kaplan–Meier curves for incident LVSD, all-cause and 
cardiovascular mortality for subsets A1, B, and C.

Discussion

The prevalence of LVSD ranges from 2 to 8% in adults depending 
on the study population and cut-off value used (8–10). In both 
symptomatic and asymptomatic cases, LVSD is associated with 
increased morbidity and mortality. The Framingham cohort study 
showed that individuals with asymptomatic LVSD (LVEF <40%) have 
around eight-fold increased risk of developing HF (30). The 
combination of definite treatment and primary prevention of incident 
HF can reduce the disease burden. One such strategy is to screen for 
asymptomatic LVSD; however, the best method for this is unclear (11, 
31, 32). Our study demonstrated the potential of DNNs for screening 
asymptomatic LVSD. In addition, comprehensive real-world testing 
demonstrated the robustness of DNN to identify LVSD and patients at 

risk of future LVSD and mortality. Furthermore, we constructed DNN 
models based on both raw ECG signals and transformed images. In 
clinical settings in which raw ECG signals are not available, this 
method can digest ECG image tracing and provide similar 
performance. Consequently, the applicability of DNN-enabled ECG 
is broadened.

ECG is a ubiquitous and economical point-of-care diagnostic tool 
in cardiology. Previous research has demonstrated that LVSD might 
be characterized by specific ECG changes, such as Q-waves (33, 34), 
left bundle branch block (35), and wide QRS duration (>120 ms) (36). 
However, no single feature had high enough predictive value to offer 
clinical utility. These various features seemed to interact in a 
non-linear fashion that could not be  accounted for by traditional 
statistical methods or algorithmic approaches. DNNs afford the ability 
to consider complex datasets in the context of all of the contained data 
rather than preselected discrete data elements. Identifying these 
features may offer novel findings that can provide new diagnostic 
approaches or therapeutic targets. Finding ways to understand what 
drives the network’s interpretation is also the direction of future efforts.

TABLE 2 Sensitivity analyses of model performance to identify patients with future left ventricular systolic dysfunction (LVSD) and those at risk of all-
cause and cardiovascular mortalities.

Datasets/
predictions

Incident LVSD All-cause mortality Cardiovascular mortality

Rate (95% CI) HR (95% CI) Rate (95% CI) HR (95% CI) Rate (95% CI) HR (95% CI)

Subset A1: 45,866 patients with preserved LVEF by TTE in the testing dataset with multiple echocardiograms

Negative by DNN-signal 

(n = 36,920)

8.6 (8.1–9.1) 1.00 (Reference) 54.6 (105.7–112.3) 1.00 (Reference) 7.9 (7.5–8.3) 1.00 (Reference)

Positive by DNN-signal 

(n = 8,946)

75.9 (72.3–79.5) 8.33 (7.71–9.00) 109.0 (105.7–112.3) 1.99 (1.92–2.06) 27.7 (26.1–29.4) 3.51 (3.25–3.80)

Negative by DNN-image 

(n = 35,604)

8.0 (7.5–8.5) 1.00 (Reference) 51.9 (50.9–52.9) 1.00 (Reference) 7.1 (6.7–7.5) 1.00 (Reference)

Positive by DNN-image 

(n = 10,262)

69.9 (66.7–73.2) 8.19 (7.57–8.87) 114.4 (111.3–117.6) 2.05 (1.98–2.12) 28.7 (27.1–30.3) 3.77 (3.49–4.07)

Subset B: 83,787 patients who had TTE > 14 days after index ECGs

Negative by DNN-signal 

(n = 74,928)

1.5 (1.3–1.7) 1.00 (Reference) 22.9 (22.5–23.3) 1.00 (Reference) 1.9 (1.8–2.0) 1.00 (Reference)

Positive by DNN-signal 

(n = 8,859)

30.6 (28.2–32.9) 19.23 (16.56–22.33) 62.6 (60.5–64.8) 2.18 (2.09–2.26) 12.1 (11.2–13.1) 5.20 (4.70–5.75)

Negative by DNN-image 

(n = 73,795)

1.4 (1.2–1.5) 1.00 (Reference) 21.7 (21.3–22.1) 1.00 (Reference) 1.8 (1.6–1.9) 1.00 (Reference)

Positive by DNN-image 

(n = 9,992)

28.3 (26.2–30.5) 19.52 (16.72–22.80) 69.8 (67.7–72.0) 2.32 (2.24–2.41) 12.2 (11.3–13.1) 4.99 (4.52–5.52)

Subset C: 1,194,982 patients without TTE

Negative by DNN-signal 

(n = 1,155,523)

– – 16.9 (16.8–17.0) 1.00 (Reference) 1.1 (1.0–1.1) 1.00 (Reference)

Positive by DNN-signal 

(n = 39,459)

– – 100.3 (98.8–101.8) 3.24 (3.19–3.29) 14.3 (13.7–14.9) 6.83 (6.51–7.16)

Negative by DNN-image 

(n = 1,151,691)

– – 16.3 (16.2–16.4) 1.00 (Reference) 1.0 (1.0–1.0) 1.00 (Reference)

Positive by DNN-image 

(n = 43,291)

– – 120.5 (118.9–122.2) 3.46 (3.40–3.51) 15.9 (15.4–16.5) 6.82 (6.51–7.14)

Data are rates (95% CI) and HRs (95% CI) of LVSD, all-cause mortality, and cardiovascular mortality. CI, confidence interval; DNN, deep neural network; ECG, electrocardiogram; HR, hazard 
ratio; K-M, Kaplan–Meier; LVEF, left ventricular ejection fraction; LVSD, left ventricular systolic dysfunction; TTE, transthoracic echocardiogram.
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We used DNN algorithms to perform binary classification of LVEF 
in a hospital-based population, with excellent performance (AUROC, 
0.95) superior to known screening tests (e.g., natriuretic peptides) (11). 
The DNN performed well across all age, sex, and comorbidity groups 
(Figure 2). In addition, the model performance was validated externally 
using data from the Phillips system, suggesting its robustness across 
different machine types. The diagnostic performance was characterized 
by a high NPV, which helps exclude LVSD with high confidence. The 
‘false positive’ rates were high. However, we further demonstrated that 
‘false positive’ DNN predictions were associated with an eight-fold 
increased risk of incident LVSD (confirmed by TTE), a two-fold 
increased risk of all-cause mortality, and a five-fold increased risk of 
cardiovascular mortality compared to ‘true negative’ DNN predictions. 
This means that DNN could detect early, subclinical, electrical or 
structural abnormalities shown on the ECG. These abnormalities may 
include cardiac arrhythmias, left ventricular deformation, valvular 
heart disease, or metabolic derangements and thus increase the risk of 
LVSD incidence and death. In this case, DNN-enabled ECG is an 
effective screening tool to identify patients at risk.

Several studies have demonstrated the potential of AI in turning 
ECGs into functional screening and diagnostic tools for various heart 
disorders. For instance, Mayo Clinic researchers have applied AI to 
automatically detect LVSD and even tried to identify atrial fibrillation 
through sinus rhythm. Compared with prior studies (21, 37), we not 
only verified the diagnostic effectiveness of AI-assisted ECG reading 
on LVSD screening, but also explored the use of ECGs as an outcome 
prediction tool with the assistance of AI. Individuals with a positive 
DNN prediction were associated with a two-fold increased risk of 
all-cause mortality and a six-fold increased risk of cardiovascular 
mortality at a median follow-up of 3.9 years. This finding suggested 
that some trivial electrical abnormalities due to metabolic or 
myocardial disturbances may precede LVSD. It was speculated that 
some of these disturbances might be  irreversible or progressive, 
eventually causing long-term adverse effects.

While this study reveals that DNN-enabled ECG interpretation is 
a reliable method of detecting LVSD, the selection of target populations 
for screening remains to be  addressed. Galasko et  al. evaluated a 
variety of LVSD screening strategies and demonstrated that LVSD 
screening is more cost-effective in high-risk subjects than in the 
general population (38). High-risk subjects were defined as those with 
hypertension, diabetes, atherosclerotic cardiovascular disease, and 
heavy alcohol consumpton (39). Our research included individuals 
who visited the hospital for various reasons, not just for known heart 
disease. This hospital-based population did have higher prevalences 
of diabetes mellitus (28.2%), hypertension (53.6%), and coronary 
heart disease (7.6%), which fits the definition of a high-risk group.

Based on this study, we  propose a prototype approach for 
in-hospital LVSD screening. Step one involves ECG screening using 
the DNN-enabled classification of individuals who will undergo high-
risk invasive treatment or those with pre-existing cardiovascular risk. 
Step two involves TTE evaluation of individuals identified as abnormal 
by DNN models. This DNN-enabled screening strategy offers an 
advantage, as ECG machines and internet services are widely available 
in modern hospitals, and the strategy is also financially sustainable. 
This DNN model also provides a potential complementary care 
approach to plasma natriuretic peptide measurement for primary 
LVSD screening. Further studies are needed to assess the impacts of 
the proposed DNN-enabled screening strategy on the incidence and 

prognosis of in-hospital HF-associated adverse events. Furthermore, 
a comprehensive analysis may be conducted to examine the cost-
effectiveness of the proposed strategy.

In summary, DNN-enabled ECG is a valuable tool to screen for 
LVSD and predict outcomes. Given the low cost of DNN-enabled 
ECG, serial screening is possible, which also helps optimize screening 
strategy for LVSD without using invasive laboratory testing, 
particularly in settings with limited medical resources.

Limitations of the study

There are several limitations to this study. First, some of the LVEF 
data used for analysis were measured using M-mode way. The major 
limitation of M-mode is its one dimensional nature and lack of direct 
spatial information. When regional LV deformation exists, the 
M-mode-derived LVEF is not reliable. Although most operators 
choose the 2D or 3D methods when performing LVEF measurements 
in patients with structural heart disease, we cannot completely rule 
out this potential bias. Second, echocardiographic parameters other 
than LVEF, such as left ventricular diameter, left ventricular diastolic 
function, right ventricular function or valvular heart disease, also 
affect mortality risk. However, the present study did not introduce 
these parameters to analyze and evaluate their impact on prognosis. 
Further research should be  conducted to assess the differences 
between clinical characteristics of patients with DNN-predicted 
LVSD compared to those without DNN-predicted LVSD. Third, the 
study was conducted in an academic medical center in patients with 
more complex diseases. The primary analysis consisted of patients 
with a higher prevalence of HF and other cardiovascular 
comorbidities, whom clinicians identified as needing a TTE 
evaluation. Considering these cohort characteristics, the findings 
may not be generalizable to relatively healthy and truly asymptomatic 
populations. To verify the generalizability of our DNN models, 
we conducted multiple additional analyses in more than 1 million 
patients with different clinical characteristics. In addition, the 
stratified analysis of patients without known comorbidities showed a 
similar performance of the models. Finally, although the sensitivity 
and specificity were both satisfying in our study, we  observed a 
relatively lower PPV. The performance of PPV is highly correlated to 
the proportion of positive subjects in the testing group. The low 
likelihood of LVSD (4.3%) in testing dataset caused a low PPV. Despite 
this, an appropriate sensitivity is more critical in applying ECG as an 
LVSD screening tool. The purpose of this screening tool is to detect 
all potential subjects who are at risk of developing LVSD for following 
echocardiogram exams.

Conclusion

The established DNN algorithms in this study enable rapid LVSD 
detection and represent an essential step in transforming the ECG 
into an effective, real-time screening tool. Its ability to predict LVSD 
incidence and long-term mortality may help stratify patient risk and 
initiate relevant interventions. With good accuracy and accessibility, 
DNN-enabled ECG has the potential to optimize the screening 
process for LVSD among at-risk populations and to advance HF 
care significantly.\
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