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Background: Intracranial aneurysm (IA) is an uncommon but severe subtype of

cerebrovascular disease, with high mortality after aneurysm rupture. Current risk

assessments are mainly based on clinical and imaging data. This study aimed to

develop a molecular assay tool for optimizing the IA risk monitoring system.

Methods: Peripheral blood gene expression datasets obtained from the Gene

Expression Omnibus were integrated into a discovery cohort. Weighted gene co-

expression network analysis (WGCNA) and machine learning integrative approaches

were utilized to construct a risk signature. QRT-PCR assay was performed to validate

the model in an in-house cohort. Immunopathological features were estimated using

bioinformatics methods.

Results: A four-gene machine learning-derived gene signature (MLDGS) was

constructed for identifying patients with IA rupture. The AUC of MLDGS was 1.00 and

0.88 in discovery and validation cohorts, respectively. Calibration curve and decision

curve analysis also confirmed the good performance of the MLDGS model. MLDGS

was remarkably correlated with the circulating immunopathologic landscape. Higher

MLDGS scores may represent higher abundance of innate immune cells, lower

abundance of adaptive immune cells, and worse vascular stability.

Conclusions: The MLDGS provides a promising molecular assay panel for identifying

patients with adverse immunopathological features and high risk of aneurysm

rupture, contributing to advances in IA precision medicine.
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Introduction

Intracranial aneurysms (IAs) are local saccular dilatations
within cerebrovascular driven by complex pathological factors,
with low prevalence but high mortality and disability rate (1).
The high mortality and disability rate can be mainly attributed
to intrinsic adverse molecular pathological changes and aneurysm
rupture (2). Preventive endovascular or neurosurgical treatment
can pronouncedly reduce the rate of aneurysm rupture and
improve overall survival (3–5); however, these treatments also
carry a substantial risk of procedural complications (6) and a
heavy economic burden. In some patients with “low-risk” IAs, the
aneurysms are only dynamically observed without being treated
as the risk of complications is evaluated to be higher than the
risk of rupture. Hence, recognizing patients with “high-risk” IAs is
critical for clinical management decisions. In the current clinical
setting, the risk and treatment demands of a specific patient are
usually assessed by clinical and imaging characteristics, such as
age, hypertension, morphological parameters, and specific magnetic
resonance angiography features (7–10). Yet, these approaches are
limited by moderate accuracy, radiation exposure, and disregard
of molecular pathological heterogeneity, which is intimately related
to the risk of rupture and the onset of relevant complications
such as cerebral vasospasm (CVS) (11, 12). In the era of
precision medicine, it is imperative to identify available molecular
biomarkers for optimizing individualized risk assessment system in
patients with IAs.

Intracranial aneurysms is a complex disease with incompletely
ascertained molecular pathophysiology. According to the current
knowledge, immune inflammation, extracellular matrix (ECM)
metabolism, and vascular smooth muscle cell loss have essential
roles in vessel wall disruption, which is closely associated with the
progression and rupture of IAs (1, 13). In addition, dysregulation
of vasomotor regulation-related molecules, such as endothelial nitric
oxide synthase (eNOS) and endothelin-1, is an important pathogenic
mechanism for CVS after aneurysmal subarachnoid hemorrhage
(14–16). Mastery of these molecular pathological data will facilitate
more precise individualized risk assessment in patients with IAs.
In recent years, progress in high-throughput and bioinformatics
technologies has provided novel opportunities for decoding the
detailed molecular alterations of IAs, thereby identifying a range of
potential causative genes or biomarkers (17–19). However, tissue-
based biomarkers are usually difficult to apply in clinical settings
because of the limited sampling. Considering the convenience of
sampling and the multimolecular driving properties of the disease,
a blood-based multigene panel might be an ideal molecular detection
technique for IA auxiliary diagnosis or risk evaluation.

Taken together with the aforementioned considerations, the
present study attempted to develop and validate a novel machine
learning-derived gene signature (MLDGS) for assessing aneurysm
rupture risk and circulatory immunopathological landscape in
patients with IAs. Combined machine learning approaches were
applied to fit models in an integrated public dataset, and an in-house
clinical cohort was recruited for model validation. Our findings may
contribute to optimizing the precise diagnosis and treatment system,
and further improving the clinical outcomes of IA patients.

Materials and methods

Publicly available datasets collection and
preprocessing

The overall workflow of this study is illustrated in Figure 1.
Peripheral blood gene expression datasets GSE36791 (43 RIA patients
and 18 IA-free subjects) and GSE159610 (25 UIA patients and 22
IA-free subjects) were collected from the Gene Expression Omnibus
(GEO)1 database. The detailed baseline information is listed in
Supplementary Table 1. The RNA-seq raw read counts in GSE159610
were converted to transcripts per kilobase million (TPM) values
and further log-2 transformed, which is more similar to those
resulting from microarrays and more comparable between samples.
The GENCODE (Homo sapiens GRCh38) was utilized for RNA
annotations. The microarray dataset GSE36791 based on Illumina

R©

platforms (GPL10558) was quantile normalized and further log2
transformed via the limma R package. Subsequently, GSE36791
and GSE159610 were integrated into one cohort (denoted as the
public cohort) after removing batch effects via the ComBat algorithm
implemented in the sva R package (20). Only patients with RIAs or
UIAs were included in this study.

Weighted gene co-expression network
analysis (WGCNA)

Weighted gene co-expression network analysis (WGCNA),
an advanced bioinformatics method capable of identifying gene
interrelationships and gene-phenotype relationships, was utilized
to recognize gene co-expression modules intimately related to IA
rupture. Similar to previous studies (21, 22), top 5,000 genes selected
according to the median absolute deviation were employed to
construct co-expression networks based on weighted correlation
adjacency matrix and cluster analysis via the WGCNA R package
(23). An appropriate soft threshold β was calculated via the
“pickSoftThreshold” function to meet the criteria for scale-free
network and construct a weighted adjacency matrix. Next, the
weighted adjacency matrix was converted into a topological overlap
matrix (TOM), and the corresponding dissimilarity (1-TOM) was
generated. The dynamic tree cutting approach (corType = "pearson",
minModuleSize = 50) was utilized for module recognition, and
modules with less than 0.25 dissimilarity were merged. Modules
that displayed the highest correlation with IA rupture were
extracted for further investigation. To identify hub genes within
the modules, genes with both high gene significance (>0.5)
and module membership (>0.5) were extracted as hub rupture-
associated genes (RAGs).

Gene differential expression analysis

The limma R package was utilized to identify differentially
expressed genes (DEGs) between RIAs and UIAs, with the absolute
value of log2 fold change (logFC) > 1 and false discovery rate
(FDR) < 0.05 as the screening criteria. DEGs overlapping with the

1 http://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

The overall workflow of this study.

RAGs were selected as input feature gene variables for subsequent
machine learning modeling.

Machine learning-based integrative
approaches for signature generation

Prior to constructing the MLDGS model, gene relative expression
values were transformed into z-scores in the public cohort, thus

enhancing the comparability between different datasets. To develop
an accurate machine learning-derived model for recognizing RIAs,
we integrated three classic machine learning algorithms and 12
algorithm combinations, similar to Liu et al. (22, 24). The three
basic algorithms included random forest (RF), support vector
machine (SVM), and least absolute shrinkage and selection operator
(LASSO) regression. Considering these algorithms possessed the
ability of dimension reduction and feature selection, we combined
these algorithms to generate several integrative models, including
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RF + SVM, RF + LASSO, SVM + RF, SVM + LASSO, LASSO + SVM,
LASSO + RF, RF + SVM + LASSO, SVM + LASSO + RF, and
RF + LASSO + SVM. Briefly, in each combination, the feature
variables were pre-screened using the top-ranked algorithms, after
which the model was constructed using the last algorithm. The
detailed signature development procedure was as follows: (a) The
public cohort was randomly divided into training set and validation
set at a 7:3 ratio. (b) 12 algorithm combinations were performed on
the input feature gene variables to fit dichotomous models based
on the leave-one-out cross-validation (LOOCV) framework in the
training set. (c) All models were also detected in the validation set
and all set. (d) For each model, the number of model genes, and
the accuracy, sensitivity, specificity, precision, and negative predictive
value (NPV) for distinguishing RIAs were calculated in the training
set, validation set and all set, respectively. The model with the highest
average accuracy and the least number of model genes was considered
optimal. Furthermore, receiver operating characteristic (ROC) curve,
calibration curve and decision curve analysis (DCA) were employed
to evaluate the performance of the optimal model. The SVM, RF, and
LASSO regression were implemented via the e1071, randomForest,
and glmnet R packages, respectively. The ROC curve, calibration
curve, and DCA were implemented via the pROC, rms, and rmda R
packages, respectively.

Blood sample collection

This study was approved by the Ethical Committee of Zhengzhou
University People’s Hospital, China. All patients were aged >18 years
and gave written informed consent. A total of 28 peripheral
blood samples (RIAs vs. UIAs = 13:15, denoted as in-house
cohort) were collected from the Department of Cerebrovascular
Disease, Zhengzhou University People’s Hospital. Blood samples
were collected and temporarily stored in the EDTA anticoagulant
tubes prior to subsequent RNA extraction. All patients with UIA
or RIA were diagnosed by digital subtraction angiography and were
not previously treated for IA. Patients who had a fever, tumor
or autoimmune diseases, had recently invasive surgery, or were
receiving chemotherapy or immunomodulating drugs, as noted
in their medical records, were excluded. The detailed baseline
information is listed in Supplementary Table 1.

Quantitative real-time polymerase chain
reaction (qRT-PCR)

Quantitative real-time polymerase chain reaction (qRT-PCR)
was applied to detect the expression of model genes in peripheral
blood samples from our in-house cohort. Total RNA was isolated
from peripheral blood samples using RNAprep Pure Hi-Blood Kit
(TIANGEN, China) according to the manufacturer’s instructions.
An aliquot of 1 µg of total RNA was reverse-transcribed into
complementary DNA (cDNA) using HiScript R© III RT SuperMix for
qPCR (Vazyme, China) according to the manufacturer’s protocol.
ChamQ Universal SYBR qPCR Master Mix (Vazyme, China) was
applied in qRT-PCR experiments. The expression level was quantized
by 2−11Ct mode. GAPDH serves as an internal reference for
normalization. The primer sequences for qRT-PCR are illustrated in
Supplementary Table 2.

Estimation of immune cell infiltration

According to the expression level of immune cell-specific marker
genes (25), the relative abundance of 28 immune cells in each
sample was quantified by single sample gene set enrichment analysis
(ssGSEA) algorithm implemented in the GSVA R package (26), which
is broadly utilized in immune infiltration-relevant bioinformatics
studies (27–30). The detail of the gene sets marking 28 immune cells
was listed in the Supplementary Table 3.

Collection of immune-related gene sets
and genes regarding vascular stability and
brain injury

To investigate the expression patterns of immune-related genes
in the peripheral blood of IA patients, we searched the ImmPort
database2 and collected 17 immune-related gene sets (Additional
file: Supplementary Table 4) encompassing antigen processing and
presentation, BCR signaling pathway, TCR signaling pathway, NK
cell cytotoxicity, chemokines, cytokines, interferons, interleukins,
TGF-b family members, TNF family members, and corresponding
receptors. Moreover, some vascular stability relevant genes including
IL1B, TLR4, VEGFA, MMP9, TIMP1, NOS3, EDN1, ANGPT1 and
ANGPT2 (1, 31–36), as well as brain injury relevant biomarkers
such as UCHL1, S100B and MBP (37), were recruited from previous
studies to explore the ability of the MLDGS to assess vascular
stability and brain injury. Among these genes, IL1B, TLR4, VEGFA,
MMP9, and TIMP1 were associated with vascular inflammation
and extracellular matrix metabolism; ANGPT1 and ANGPT2,
encoding angiopoietin (Ang) I and II, were associated with vascular
homeostasis; NOS3 and EDN1, encoding eNOS and endothelin-1,
respectively, were associated with vasomotor function and CVS; and
UCHL1, S100B and MBP were reported to be prognostic biomarkers
for brain injury.

Gene set variation analysis (GSVA)

Gene set variation analysis (GSVA) was performed according to
the immune-related gene sets via the GSVA R package. Each sample
obtained a set of enrichment scores corresponding to these gene sets
based on the gene expression profile. And then, the limma R package
was employed to compare GSVA enrichment scores between RIAs
and UIAs, identifying dysregulated immune-related gene families.

Gene set enrichment analysis (GSEA) for
the MLDGS

A total of 7,667 gene sets were obtained from the
MSigDB resource (version 7.4, c2.cp.kegg.v7.4.entrez.gmt and
c5.go.bp.v7.4.entrez.gmt). The correlation coefficients between the
MLDGS score and all mRNAs were calculated. Subsequently, all
mRNAs were sorted in descending order based on their correlations
with the MLDGS score. The ranked gene list was further subjected to

2 https://www.immport.org/
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the clusterProfiler R package to perform GSEA. Permutations were
set to 10,000 to obtain normalized enrichment scores in GSEA. Gene
sets with an FDR < 0.01 were considered to be significantly enriched.

Statistical analysis

All data processing, statistical analysis, and plotting were
conducted in R 4.1.0 software. Significance was assessed via Student’s
t-test or Wilcoxon rank-sum test for comparisons of two groups
and Kruskal–Wallis test for comparisons of three or more groups.
Correlations between two continuous variables were determined
using Pearson correlations. All heatmaps were created via the
ComplexHeatmap R package. All statistical tests were two-tailed and
P < 0.05 was considered statistically significant.

Results

Identification of rupture-associated gene
modules by WGCNA

The publicly available datasets GSE36791 and GSE159610 were
integrated into one cohort (denoted as public cohort) after removing
batch effects, and the principal component analysis before and after
batch-correction was shown in Figure 2A. Only patients with RIAs
or UIAs were included in this study. Ultimately, a total of 68 patients
and 14070 genes were retained for subsequent analysis.

Weighted gene co-expression network analysis was performed
on top 5,000 genes selected according to the median absolute
deviation in the public cohort. The soft power of β = 3 (scale-
free R2 = 0.91) was determined as an appropriate soft threshold to
acquire gene co-expression modules (Figures 2B, C). Subsequently,
the “blockwiseModules” function was utilized to carry out dynamic
tree clipping and average hierarchical clustering (Figure 2D). As
a consequence, a total of five modules were identified, indicating
by green, brown, yellow, blue, and purple modules, respectively
(Figures 2D, E). In addition, 2,607 out of 5,000 genes that failed
to cluster into any module were shown as gray. The Eigen gene
(first principal component of gene expression within a module) was
considered as the representative of the module. Furthermore, the
correlations between modules and rupture state were calculated. The
purple module and the green module exhibited the highest positive
and negative correlation with IA rupture, respectively (Figure 2E).
About 141 of the 570 genes in the purple module and 432 of the
1442 genes in the green module displayed both high gene significance
(>0.5) and module membership (>0.5), which were extracted as hub
RAGs (Figures 2F, G).

Machine learning-based integrative
establishment of a rupture risk signature

Using the limma R package, a total of 264 DEGs were identified
between RIAs and UIAs. After taking the intersection with 573 hub
RAGs, 103 differentially expressed RAGs were obtained as input
feature variables for the MLDGS model construction (Figure 2H).
According to our machine learning-based integrative procedure, 12

kinds of dichotomous models were fitted in the training set and
further reproduced in the validation set and all set. The accuracy,
sensitivity, specificity, precision and NPV of each model in the
training set, validation set and all set, as well as the number of
model genes, were shown in Figure 3A. Intriguingly, 6 kinds of
models displayed excellent and equal average accuracy (1.00), but the
RF + SVM + LASSO model contained the least number of model
genes and was considered the optimal model. In detail, this optimal
model was derived from the prior feature reduction by RF and SVM
and the final modeling by LASSO regression. In the RF-fitted model,
34 out of 103 feature genes with relative importance greater than
0.5 were extracted as important gene variables (Figures 3B, C). In
the SVM-fitted models, 10 model constituent genes were extracted as
important feature genes (Figure 3D). These two important feature
gene lists were taken to intersect, resulting in five crucial genes
for the final LASSO regression modeling (Figure 3E). According
to the LOOCV framework, the LASSO regression model reached
an optimum when the lambda (λ) was equal to 0.035 (Figure 3F),
containing four gene variables (Figure 3G). A risk score for each
patient was calculated based on the relative expression of the four
model genes weighted by their LASSO regression coefficients. The
detailed formula as follow: MLDGS = 0.475∗Exp (CST7) - 1.132∗Exp
(FAM102A) - 0.877∗Exp (FMN2) -1.318∗Exp (PRSS12) + 1.012;
where the Exp represents the relative expression (z-score) of the
corresponding gene.

Evaluation of the MLDGS model
The expression differences of the four model genes between RIAs

and UIAs were illustrated in Figure 4A. CST7, an immune regulation-
relevant gene encoding cystatin F, was upregulated in patients with
RIAs; whereas FAM102A, FMN2 and PRSS12 were downregulated
in patients with RIAs. Principal component analysis showed that
RIAs and UIAs could be well distinguished based on these gene
variables (Figure 4B). According to our established MLDGS model,
a risk score was calculated for each patient. Patients with RIAs
presented a higher MLDGS scores compared to patients with UIAs
(Figure 4C). Furthermore, ROC curve, calibration curve and DCA
were performed to evaluate the performance of the model. The
AUC of MLDGS for recognizing RIAs was equal to 1.00 (95% CI:
1.00–1.00), exhibiting excellent discrimination (Figure 4D). The
calibration curve showed high agreement between model predictions
and actual observations, and the Hosmer-Lemeshow goodness-of-
fit test P = 1.00, suggesting an appreciable performance of the
MLDGS model (Figure 4E). The DCA indicated that the MLDGS
model exhibited a superior clinical net benefit than either the treat-
all or treat-none strategy (Figure 4F). These data suggested that
the MLDGS possessed an adequate performance for detecting the
patients with high risk of IA rupture, which may be able to effectively
optimize the clinical decision-making process for IA patients.

Validation in our in-house clinical cohort
To verify the performance and robustness of the model, we

further detected the expression of the four model genes in an in-
house clinical of 28 IA patients by qRT-PCR. Consistently, CST7
was upregulated in patients with RIAs, while FAM102A, FMN2 and
PRSS12 were downregulated in patients with RIAs (Figure 4G).
The MLDGS score was next calculated for each patient, and the
patients with RIAs still possessed higher risk scores than those with
UIAs (Figure 4H). Furthermore, ROC curve, calibration curve and
DCA were also performed in our in-house clinical cohort. The
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FIGURE 2

Identification of rupture-associated genes (RAGs) by WGCNA algorithm. (A) Principal component analysis before and after removing batch effects from
non-biological technical biases. (B) Scale-free network analysis under different soft-thresholding powers. When the soft power of β ≥ 3, the scale-free
R2 is greater than 0.9 and mean connectivity tends to be stable. (C) Histogram of connectivity distribution and checking the scale free topology when
β = 3. (D) Gene hierarchical clustering under optimal soft-thresholding power. Genes with similar expression patterns were assigned to co-expression
modules represented by the same color. (E) Heatmap of the correlation between module eigengenes and rupture status. Red and blue represent positive
and negative correlations, respectively. (F,G) Correlation between GS and MM in the green (F) and purple (G) modules. Dots within the red rectangle
were defined as hub RAGs, with both high GS and MM. (H) Venn diagram of intersection between hub RAGs and differentially expressed genes (DEGs).

AUC of MLDGS for recognizing RIAs was equal to 0.88 (95% CI:
0.74–1.00; Figure 4I), the calibration curve showed an appreciable
agreement between model predictions and actual observations

(Hosmer-Lemeshow P = 0.34, Figure 4J), and DCA indicated that the
MLDGS still retained an impressive net benefit in our in-house cohort
(Figure 4K). Collectively, all these results supported our findings in
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FIGURE 3

Machine learning-based integrative approaches for signature generation. (A) Accuracy, sensitivity, specificity, precision and NPV of 12 kinds of
dichotomous models in the training set, validation set and all set. The rightmost panel displayed the number of constituent genes for each model.
(B) Out of bag (OOB) error rate reached a minimum when the number of trees was equal to 31 in RF. (C) Relative importance of 103 initial input gene
variables calculated in RF. Genes with relative importance greater than 0.5 were extracted as important gene variables. (D) Accuracy reached a maximum
when the number of variables was equal to 10 in SVM. (E) Venn diagram of the intersection of important gene variables obtained from RF and SVM
pre-screening. (F) The optimal lambda was determined when the partial likelihood deviance reached the minimum value in LASSO regression. (G) LASSO
coefficient profiles of the candidate genes for MLDGS construction.

the discovery cohort, which validated that our MLDGS model was
quite accurate and robust for evaluating the rupture risk of IAs.

The immune landscape and pathological
features in peripheral circulation

As illustrated in Figure 5A, the landscape of circulating immune
cell infiltration between RIAs and UIAs was systemically revealed.

Compared to the UIAs, the patients with RIAs exhibited a relatively
higher abundance of innate immune cells such as activated dendritic
cells, eosinophil, neutrophil and macrophage, and a relatively less
abundance of lymphocytes such as activated B cell, immature B
cell, memory B cell, CD8+ T cell, effector memory CD8+ T cell,
central memory CD4+ T cell and Th1 cell. Intriguingly, CD56+ NK
cell, CD56- NK cell, and NK T cell were reduced in RIA patients,
and some immunosuppression lymphocytes such as regulatory T
cell were synergistically elevated in RIAs. Moreover, GSVA analysis
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FIGURE 4

Evaluation and validation of the MLDGS model. (A) Differential expression of four model genes between RIA and UIA groups in public cohort. (B) Principal
component analysis showed that RIAs and UIAs could be well distinguished based on the four model genes. (C) The distribution of MLDGS score
between RIA and UIA groups in public cohort. D-F. ROC curve (D), calibration curve (E) and decision curve (F) for the MLDGS to identify RIAs in public
cohort. (G) Relative expression of four model genes between RIA and UIA groups in our in-house cohort. (H) The distribution of MLDGS score between
RIA and UIA groups in our in-house cohort. (I–K) ROC curve (I), calibration curve (J) and decision curve (K) for the MLDGS to identify RIAs in our
in-house cohort. Statistic tests: two-sided t-test. ns P > 0.05, *P < 0.05,**P < 0.01, ***P < 0.001, and****P < 0.0001.

indicated that the overall enrichment levels of immune-related gene
sets were also aberrant in peripheral circulation. TNF family, TGF-b
receptor family, antimicrobials and interferon receptors were overall
upregulated in RIAs, whereas TCR and BCR signaling pathway,

interleukins, cytokines and chemokines were overall downregulated
in RIAs (Figure 5B). Taken together, above results unveiled a complex
and disturbed immune environment in peripheral circulation of IA
patients.
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FIGURE 5

Immune landscape and pathological features of peripheral circulation in patients with RIAs and UIAs. (A) Relative infiltration abundance of 28 immune
cell subtypes between RIA and UIA groups. (B) Volcano plot of differentially enriched immune-related gene sets. Red and green dots indicate globally
up-regulated and down-regulated gene sets, respectively. (C,D) Relative expression of genes regarding vascular stability (C) and brain injury (D) between
RIA and UIA groups in our in-house cohort. Statistic tests: two-sided t-test: ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, and****P < 0.0001.

Furthermore, we also investigated the gene expression of a series
of previously reported molecules regarding vascular stability and
brain injury (Figures 5C, D). In the RIA groups, inflammatory
molecules IL1B, TLR4 and VEGFA, and ECM metabolism-mediating
molecule MMP9 were significantly upregulated; ANGPT2, encoding
angiopoietin-II that mediates vascular smooth muscle apoptosis,
exhibited an upward trend in RIAs although the test P value was
not significant enough; and the ANGPT1, encoding angiopoietin-
I that protects vascular smooth muscle cells, was remarkably
downregulated (Figure 5C). These data implied the enhanced

intrinsic vascular instability in RIA patients, which may be one of the
latent biological interpretations for the high risk of aneurysm rupture.
Moreover, NOS3, encoding eNOS that mediates vasodilation, was
significantly downregulated in RIAs, which implied a high risk
of CVS onset (Figure 5C). EDN1, encoding the endothelin-1 that
mediates vasoconstrictive, displayed no significantly change in the
RIA group. Brain injury-relevant biomarkers UCHL1, S100B, and
MBP were also investigated, but no significant difference was
observed between RIA and UIA groups (Figure 5D). Collectively,
patients with RIAs were characterized by high abundance of innate
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immune cells, less abundance of lymphocytes, immune gene family
expression disorder, and enhanced vascular instability.

Relationships between the MLDGS and
immunopathological features

To explore the link between the MLDGS and circulating
immunological and pathological features, the corresponding
correlation analysis was carried out. Similarly, the MLDGS score
was mainly positively related to activated dendritic cell (r = 0.56,
P < 0.001), eosinophil (r = 0.54, P < 0.001), neutrophil (r = 0.48,
P < 0.001), macrophage (r = 0.54, P < 0.001) and mast cell (r = 0.41,
P < 0.001), and negatively related to activated B cell (r = −0.60,
P < 0.001), immature B cell (r = −0.49, P < 0.001), memory B cell
(r = −0.54, P < 0.001), CD8+ T cell (r = −0.66, P < 0.001), effector
memory CD8+ T cell (r = −0.58, P < 0.001), central memory CD4+

T cell (r =−0.62, P < 0.001), Th1 cell (r =−0.47, P < 0.001), CD56−

NK cell (r = −0.54, P < 0.001), and NK T cell (r = −0.30, P = 0.014;
Figure 6G). Significant positive and negative associations were also
observed between the MLDGS and upregulated and downregulated
immune gene sets, respectively (Figure 6H). Moreover, the MLDGS
was positively correlated with IL1B (r = 0.39, P = 0.001), TLR4
(r = 0.63, P < 0.001), VEGFA (r = 0.27, P = 0.024), and MMP9
(r = 0.66, P < 0.001; Figures 6A–D), and negatively correlated with
ANGPT1 (r = −0.23, P = 0.06) and NOS3 (r = −0.46, P < 0.001;
Figures 6E, F), although not significant enough in ANGPT1.
Overall, higher MLDGS scores may represent higher abundance of
innate immune cells, less abundance of adaptive immune cells, and
worse immune and vascular instability relevant molecular features
(Figure 6I), which implied a potential of MLDGS to assess the
circulating immunopathological landscape and the risk of aneurysm
rupture or CVS onset in patients with IAs.

Potential biological mechanisms
underlying the MLDGS

To decipher the latent biological mechanisms underlying the
MLDGS, all genes were ranked in descending order based on
their correlations with the MLDGS and subsequently subjected
to the clusterProfiler R package for enrichment analysis. As
illustrated in Figure 7, the MLDGS was positively correlated
with numerous pathways related to immunomodulation and
reactive oxygen metabolism, such as positive regulation of toll-
like receptor signaling pathway, regulation of T helper 2 cell
differentiation, positive regulation of pattern recognition receptor
signaling pathway, interleukin 1 beta production, regulation of
myeloid leukocyte mediated immunity, leukocyte migration involved
in inflammatory response, leukocyte transendothelial migration,
microglial cell activation, and positive regulation of reactive oxygen
species metabolic process; whereas gene expression-associated
biological pathways were negatively correlated with the MLDGS,
such as ribosome pathway, co-translational protein targeting to
membrane, translational initiation, cytoplasmic translation, nuclear
transcribed mRNA catabolic process, ncRNA processing, and
cytoplasmic translational initiation. These results suggested the
potential biological mechanisms underlying the MLDGS, in which
immunomodulatory and metabolic pathways were activated while

transcription and translation processes were inhibited in patients
with high MLDGS scores.

Discussion

Intracranial aneurysm is an uncommon but severe subtype of
cerebrovascular disease, with high mortality after aneurysm rupture.
Endovascular or neurosurgical treatment is often considered to
prevent aneurysm rupture, but a comprehensive assessment of
disease status to determine the appropriate treatment demand
and the choice of intervention opportunity is also needed in
clinical setting. At present, the dynamic monitoring of some
untreated aneurysms mostly relies on repeated magnetic resonance
angiography or computed tomography angiography (38), without
regard to the molecular pathological status. To perfect the precision
diagnosis and treatment system of IA, developing available molecular
detection techniques is imperative.

In the present study, WGCNA was utilized to identify vital
rupture-related gene biomarkers in peripheral blood. With the
expression profiles of these genes, we developed a machine learning-
based integrative procedure to construct a MLDGS risk indicator.
In total, 12 kinds of dichotomous models were fitted in the training
set and were further reproduced in the validation set and the whole
public cohort. The RF + SVM + LASSO combination with the highest
average accuracy and the least number of model genes was selected as
the optimal model. The advantage of modeling by machine learning
algorithms and their combinations is that the combined application
of algorithms can reduce the dimension of variables in advance and
then more accurately fit the prediction model, making the model both
accurate and simple. Several approaches encompassing ROC curve,
calibration curve and DCA were employed to evaluate the model
performance in public cohort, and all of them suggested that the
MLDGS possessed an excellent accuracy for recognizing RIA patients
from all populations with IAs. Moreover, independent validation
in our in-house clinical cohort showed that MLDGS maintained
adequate accuracy and stability for recognizing RIA patients, which
suggested a strong robustness of the model. This result also indicated
that the MLDGS can be reproduced using a simple qRT-PCR assay
technology similar to the COVID-19 nucleic acid assay, making it
inexpensive and convenient for clinical application.

The progression and rupture of intracranial aneurysms are
driven by a variety of pathological factors, among which immune
inflammation and vascular stability are of critical importance.
Mastering these microscopic changes may facilitate a more precise
assessment of pathological conditions and aneurysm risk. In the
present study, we detected that the MLDGS was positively correlated
with most of innate immune cells such as neutrophils, eosinophils,
mast cells and macrophages, which are vital inflammatory cells
mediating aneurysm wall damage and rupture (39–41). Conversely,
MLDGS was negatively correlated with most of lymphocytes such
as activated B cells, immature B cells, memory B cells, CD8+ T
cells, effector memory CD8+ T cells, central memory CD4+ T cells,
NK T cells and Th1 cells, implying suppressed peripheral adaptive
immunity and increased risk of post-stroke infection (42) in patients
with high MLDGS scores.

The molecular pathological status was not only related to the
rupture risk but also associated with the complications of IA.
Hence, the potential association between MLDGS and a series of
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FIGURE 6

Relationships between the MLDGS and immunopathological features. (A–F) Correlation analysis of MLDGS score with the expression of IL1B (A), TLR4
(B), VEGFA (C), MMP9 (D), ANGPT1 (E), and NOS3 (F). (G,H) Relationship between MLDGS and immune cells and immune-related gene sets. Red and
turquoise represent significant positive and negative correlations, respectively. (I) Global landscape of the relationship between MLDGS and various
immunopathological features. Statistics: Pearson’s correlation; two-sided t-test.

previously reported molecules related to vascular stability was also
investigated. As a consequence, MLDGS was remarkably positively
correlated with IL1B, TLR4, VEGFA and MMP9, and negatively
correlated with NOS3. Among these genes, IL1B, TLR4, VEGFA, as
well as MMP2, are vital molecules mediating inflammatory injury
and ECM metabolism in the vascular wall, respectively, which are
closely related to the vascular instability and rupture risk of IA
(1, 31–33). NOS3, encoding eNOS, participates in the regulation of
vasodilator nitric oxide production (43). Vasodilatory dysfunction

resulting from downregulation of eNOS expression is one of the
crucial pathogeneses of CVS. Taken together, higher MLDGS score
may represent higher expression of IL1B, TLR4, VEGFA and MMP2,
and lower expression of NOS3, implying inferior vascular stability at
the molecular level and high risk of aneurysm rupture and CVS onset.

Clinicians often confronted with a dilemma regarding the
judgment of therapeutic demand of IAs. Indeed, several multigene
signatures for unruptured intracranial aneurysms (UIAs) or ruptured
intracranial aneurysms (RIAs) have been developed in recent years
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FIGURE 7

Potential biological mechanisms underlying the MLDGS. The right panel presented some important biological pathways that were significantly enriched
(FDR < 0.01) in GSEA. NES > 0 and NES < 0 suggested pathway activation and inhibition, respectively. NES, normalized enrichment score. The left panel
displayed a brief gene set enrichment map of these specific pathways and their relationship to the MLDGS. Purple and blue represented positive and
negative correlation between pathway and MLDGS, respectively.

(44–46); however, they are all IA diagnostic models constructed
using healthy subjects as controls and still without the in-depth
assessment of molecular pathological features. In clinical settings,
a biomarker with the ability to identify high-risk patients from
the population with established IAs may be more appropriate
for clinical decision-making. Therefore, the present study focused

on finding gene biomarkers capable of distinguishing RIA from
UIA in peripheral blood samples, and constructing a multigene
model to make its diagnostic or predictive accuracy more
robust. Overall, patients with high MLDGS scores may possess
adverse biological alterations encompassing inflammatory activation,
suppressed peripheral adaptive immunity, ECM hypermetabolism
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and vasodilatory dysfunction, and thus present with higher risk of IA
rupture, post-stroke infection and CVS onset, requiring more vigilant
attention or timely therapeutic intervention.

Although we preliminarily confirmed the excellent performance
and transformation potential of the MLDGS model, certain
limitations should also be acknowledged. First, both the public
cohort for modeling and the in-house cohort for validation are
small samples, and further prospective clinical verification of MLDGS
with larger samples is required prior to clinical application. Second,
the functions of the four model genes remain to be elucidated in
IAs, and further in vitro and in vivo experiments are needed to
reveal their roles.

Conclusion

Using a multitude of bioinformatics and machine learning
algorithms, the present study developed an accurate, stable and
pleiotropic gene signature for assessing rupture risk and circulating
immunopathologic landscape in patients with IAs. This MLDGS
model can serve as a beneficial and convenient molecular assay
tool to optimize the IA risk surveillance system and assist clinical
decision-making, contributing to advances in IA precision medicine.
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