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Objectives: This study aimed to evaluate and compare the diagnostic accuracy of

machine learning (ML)- fractional flow reserve (FFR) based on optical coherence

tomography (OCT) with wire-based FFR irrespective of the coronary territory.

Background: ML techniques for assessing hemodynamics features including FFR

in coronary artery disease have been developed based on various imaging

modalities. However, there is no study using OCT-based ML models for all coronary

artery territories.

Methods: OCT and FFR data were obtained for 356 individual coronary lesions in 130

patients. The training and testing groups were divided in a ratio of 4:1. The ML-FFR

was derived for the testing group and compared with the wire-based FFR in terms of

the diagnosis of ischemia (FFR ≤ 0.80).

Results: The mean age of the subjects was 62.6 years. The numbers of the left

anterior descending, left circumflex, and right coronary arteries were 130 (36.5%),

110 (30.9%), and 116 (32.6%), respectively. Using seven major features, the ML-FFR

showed strong correlation (r = 0.8782, P < 0.001) with the wire-based FFR. The

ML-FFR predicted wire-based FFR ≤ 0.80 in the test set with sensitivity of 98.3%,

specificity of 61.5%, and overall accuracy of 91.7% (area under the curve: 0.948).

External validation showed good correlation (r = 0.7884, P < 0.001) and accuracy

of 83.2% (area under the curve: 0.912).
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Conclusion: OCT-based ML-FFR showed good diagnostic performance in predicting

FFR irrespective of the coronary territory. Because the study was a small-size study,

the results should be warranted the performance in further large-scale research.

KEYWORDS

machine learning, fractional flow reserve, optical coherence tomography, preoperative
planning, cardiovascular imaging

1. Introduction

Fractional flow reserve (FFR) is the gold standard strategy
for decision-making for revascularization therapy in patients with
intermediate coronary artery lesions (1, 2). In spite of the improved
evidence of FFR-guided percutaneous coronary intervention (PCI),
several concerns, including the need for drug-induced hyperemia
and prolonged procedure time, may limit the use of FFR in
clinical practice (3). Optical coherence tomography (OCT) is a
high-resolution imaging modality for planning PCI because it can
provide several information on the exact characteristics of lesions
(4). However, the association between lesion characteristics and
hemodynamic significance has not been fully elucidated owing to
its high cost (5). To reduce the theoretical gap between lesion
characteristics and hemodynamic significance, a computational flow
dynamics simulation was reported to predict hemodynamics based
on OCT images, and this showed a good correlation with clinical
FFR. However, such a simulation requires a complicated time-
consuming process, which is a limitation to its use in clinical
practice (6). Machine learning (ML) techniques have been widely
used for fast and effective analysis of the association between
lesion characteristics and hemodynamics in coronary artery disease,
based on the identification of patterns in large datasets with a
multitude of variables (7–9). Recently, ML techniques for predicting
the hemodynamic significance of the left anterior descending artery
(LAD) in terms of FFR using OCT images and biometric information
have been reported (10). However, there has been no study on a
global OCT-based ML model to predict FFR in all coronary artery
territories. Thus, the present study aimed to evaluate and compare
the diagnostic accuracy of ML-FFR based on OCT with wire-based
FFR, irrespective of the coronary territory.

2. Materials and methods

The Integrated Coronary Multicenter Imaging Registry was
conducted to investigate the clinical association of intra-coronary
OCT and the FFR in patients with intermediate coronary stenosis,
which was collaborated between four institutions in South Korea
(ClinicalTrials.gov, Identifier: NCT03298282). Detailed information
was reported previously (11). Briefly, a total of 180 patients
enrolled the registry and performed both pressure wire-based FFR
measurement and OCT examination for all coronary territory with
intermediate stenosis (40–70%). After the exclusion due to no
intermediate stenosis, poor image quality of OCT, and incomplete
OCT coverage of the entire lesion, a total of 356 coronary arteries
from 130 patients with intermediate stenosis were included in the
analysis. And pressure wire-based FFR was used as a reference

to assess the diagnostic performance of OCT-based ML-FFRs. The
inclusion criteria were as follows: (1) patients who underwent
coronary CT angiography because of chest pain; and (2) a de
novo lesion of intermediate stenosis (diameter stenosis = 40–70%)
in the proximal to the middle portions. The exclusion criteria
were: (1) patients presenting myocardial infarction with single
vessel disease; (2) hypersensitivity to the contrast agent; (3) use
of inotropic agents owing to hemodynamic instability; (4) severe
ventricular dysfunction (left ventricular ejection rate < 30%); (5)
creatinine levels ≥ 2.0 mg/dL, (6) life expectancy of < 12 months
owing to noncardiac comorbidity; and (7) severe heart valve
disease. This study was approved by the institutional review board
of Severance Hospital, and complied with the principles of the
Declaration of Helsinki. Written informed consent was obtained
from all the patients.

2.1. OCT measurements

A frequency-domain OCT system (C7-XR OCT imaging system;
LightLab Imaging, Inc., Abbott Vascular, Chicago, IL, USA) was
used to acquire OCT images with the same method as a previous
report (10). At a rate of 100 fps, Cross-sectional OCT images were
obtained with 20mm/s of pullback velocity. The core laboratory
(Cardiovascular Research Center) analyzed the OCT data without
patients and procedural information. The minimal luminal area (LA)
was defined as the segment with the smallest LA on OCT analysis. The
proximal and distal reference LA were within the same segment as the
lesion with the largest lumen. Both reference LA were usually within
10 mm of the stenosis, without major intervening branches (12). The
minimal LA used to define functional stenosis according to the OCT
criteria was 1.96 mm (6, 13). The percentage of stenotic area (%)
was defined as [(mean reference LA - minimum LA)/mean reference
LA] × 100. The method of OCT analysis in the core laboratory were
as following; manual contour delineation, measure minimal lumen
area with 1mm interval analysis, and set value at certain point on each
proximal, distal reference lumen area. In this study, OCT analysis of
the lesions and a detailed explanation of the analyzed features were
based on previous OCT studies (14, 15).

2.2. Wire-based FFR measurements

Wire-based FFR measurement was conducted in a usual manner
with a 0.014-inch pressure guidewire (Abbott Vascular, Chicago,
IL, USA) during coronary angiography. After equalization on the
coronary ostium, the pressure guidewire was set distal to the target
lesion. After the wire was on set, continuous infusion of intravenous
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adenosine (140 µg/kg/min) via the antecubital vein was done for
acquiring maximal hyperemia. The FFR was calculated in terms
of mean hyperemic distal coronary pressure/mean aortic pressure.
FFR ≤ 0.8 was defined as functionally significant stenosis. A pressure
drift of ± 3 mmHg was considered acceptable. If the pressure drift
exceeded this margin, repeated FFR recording was performed.

2.3. ML-FFR assessment based on OCT

Within the broad field of ML, supervised learning regression has
been utilized for many applications in predicting FFR (7, 16). In a
regression problem, a model is supervised to establish a relationship
among variables by estimating how one variable affects the other.
Regression was performed according to the following steps: (1)
feature selection; (2) choosing an ML algorithm; (3) training the
model; (4) evaluating the model; and (5) parameter tuning. In this
study, a random forest (RF) was used to estimate the FFR. RF is an
ensemble of decision trees created on a subset of data. The regression
value is the combined output of all decision trees. In this way, it not
only prevents overfitting but also reduces variance; thus, accuracy
is improved, even on an imbalanced dataset. It is worth noting that
deep learning-based methods, while recently gaining considerable
attention, are not a good choice for the FFR regression problem
because of the lack of training data; thus, deep learning-based
methods are prone to overfitting. Feature selection was performed as
previously described (10). In brief, the features for developing an ML-
FFR model of coronary intermediate lesions were selected in terms of
clinical characteristics or OCT findings according to expert opinion
by worldwide guidelines and a prior literature search (14, 15, 17, 18).

Including the aforementioned 36 features, we used six key
features from OCT image analysis and one feature representing the
vessel type by computing the correlation coefficients between the
features and clinical FFR values. The training and testing groups
were divided into three groups, each containing vessel type [LAD,
left circumflex artery (LCx), and right coronary arteries (RCA)] by
a stratified sampling technique (19), in order to prevent leaving
out a sub-group and leading to sampling bias (20). In the training
phase, the model was independently trained on the 356 datasets
with a ratio of training: testing = 4:1 and the top seven extracted
features (OCT features and type of vessel). To prevent instability
and optimize the performance of the model, cross validation (CV)
and hyperparameter tuning (GridSearchCV) were performed on the
training set data. The training set was split into K subsets, which
are also known as folds. In our study, we fitted a RF model with
K = 5. A RF approach was performed using many iterations of the
entire 5-folds CV process, each time using different combinations
of hyperparameters. The optimal values for the hyperparameters
of RF algorithm for the FFR regression problem are summarized
in Supplementary Table 1 (n_estimators = 64, max_depth = 16,
max_features = 3, min_sample_leaf = 3 and min_samples_split = 12),
and the default values of the other remaining parameters were
utilized. Specifically, the optimized parameter values were achieved
after 1080 combinations of settings and consumed 1.1 min (Windows
10, Intel R© CoreTM i7-7770 CPU at 3.60 Hz (eight CPUs), 24Gb RAM,
NVIDIA GeForce GTX 1060 6GB). Using the optimized parameters,
a RF model was established. In the testing phase, 72 coronary arteries
with seven key features were tested online using trained models to
predict the FFR. Pearson correlation coefficient and mean absolute
error (MAE) were used to evaluate the RF model.

2.4. External validation

To investigate the performance of the developed ML model, the
ML model was validated by external data, which is one hundred
one intermediate coronary artery stenosis of the forty-seven patients
from Integrated Coronary Multicenter Imaging Registry – Extended
(ClinicalTrials.gov, Identifier: NCT04153903).

2.5. Statistical analyses

Continuous variables were analyzed with descriptive methods
depending on distribution; mean ± standard deviations or medians.
Categorical variables were analyzed as numbers with percentages.
Taking considering the normality of each quantitative variable,
Student’s t-test or Mann- Whitney test was performed for continuous
variables. To evaluate the relationships between pressure wire-
based FFR and computational FFRs (Fusion-FFR, CT-FFR, and
OCT-FFR), Pearson correlation coefficient analysis and the Bland–
Altman analysis were performed. The diagnostic performance of
the OCT-based ML-FFR in assessing functionally significant stenosis
was checked by the Receiver operating characteristics (ROC)
curve analysis. The sensitivity analysis of OCT-based ML-FFR
regarding accuracy, sensitivity, specificity, positive predictive value,
and negative predictive values were calculated. Statistical analyses
were performed using IBM SPSS, version 25.0 (IBM Corp., Armonk,
NY, United States), and MedCalc, version 20.110 (MedCalc Software,
Ostend, Belgium). All tests were two-sided, and a P-value < 0.05 was
considered statistically significant.

3. Results

3.1. Clinical and lesion characteristics

The mean age of the subjects was 62.5 years. Approximately
74.6% of the study population were men. Hypertension and diabetes
mellitus were diagnosed in 60.8 and 31.5% of subjects, respectively.
A total of 29.2% of the patients presented with acute coronary
syndrome. The numbers of the LAD, LCx, and RCA were 130
(36.5%), 110 (30.9%), and 116 (32.6%), respectively. A median
value of invasive FFR of the derivation cohort was 0.92 (0.83–
0.97) regardless of coronary artery territory [LAD, 0.83 (0.77–
0.87); LCx, 0.95 (0.90–0.98); RCA, 0.96 (0.92–0.98)] (Table 1).
And the median values of invasive FFR for training, testing, and
external validation group were 0.92, 0.93, and 0.88, respectively
(Supplementary Table 2). Fractional flow reserve of A positive result
ratio of invasive FFR (FFR ≤ 0.8) of the training set, the testing set,
and the external validation set was 20.1, 18.1, and 33.7%, respectively.

3.2. Major features of the OCT-based
ML-FFR and its performance

The present study developed an OCT-based ML-FFR using a RF
model that included seven major features. The seven major features
were selected from a total of 36 features based on weight as follows:
percent area stenosis, vessel type, minimal LA, lesion length, distal
LA, proximal LA, and plaque area (Figure 1).
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TABLE 1 Baseline characteristics of 130 patients with 356 coronary lesions.

Clinical data

Age (years) 62.5 ± 8.8

Sex, male, n (%) 97 (74.6)

Coronary artery location, n (%)

- Left anterior descending 130 (36.5)

- Left circumflex 110 (30.9)

- Right coronary artery 116 (32.6)

Systolic blood pressure (mmHg) 131.9 ± 19.3

Diastolic blood pressure (mmHg) 75.3 ± 11.0

Height (cm) 165.9 ± 8.0

Weight (kg) 69.8 ± 10.4

Body mass index (kg/m2) 25.3 ± 3.0

Acute coronary syndrome, n (%) 38 (29.2%)

Hypertension, n (%) 79 (60.8%)

Diabetes mellitus, n (%) 41 (31.5%)

Hypercholesterolemia 58 (44.6%)

Current smoking, n (%) 29 (22.3)

Pre-procedural hemoglobin level (mg/dL) 14.3 ± 1.3

Pre-procedural platelet count ( 103 µL) 234.7 ± 60.8

Pre-procedural BUN level (mg/dL) 15.8 ± 4.4

Pre-procedural creatinine level (mg/dL) 0.8 ± 0.1

Fractional Flow Reserve (n = 356) 0.92 (0.83–0.97)

- Left anterior descending (n = 130) 0.83 (0.77–0.87)

- Left circumflex (n = 110) 0.95 (0.90–0.98)

- Right coronary artery (n = 116) 0.96 (0.92–0.98)

Optical coherence tomography parameters

Proximal lumen area (mm) 7.6 ± 3.4

Minimal lumen area (mm) 3.6 ± 2.5

Distal lumen area (mm) 8.2 ± 3.6

Lesion length (mm) 22.7 ± 12.0

Plaque area 14.6 ± 5.0

Area stenosis (%) 76.4 ± 11.0

Calcified nodule 34 (9.6)

Lipid-rich plaque, n (%) 87 (24.4)

Lipid arc over 90 degrees, n (%) 60 (16.9)

Lipid arc over 90 degrees with thickness < 65 µm,
n (%)

24 (6.7)

Existence of dissection, n (%) 16 (4.5)

Existence of necrotic core, n (%) 162 (45.5)

Existence of microvessels, n (%) 94 (26.4)

Existence of cholesterol crystal, n (%) 137 (38.5)

Existence of rupture, n (%) 42 (11.8)

Existence of erosion, n (%) 24 (6.7)

Existence of macrophage, n (%) 34 (9.6)

BUN, blood urea nitrogen.

Figure 1 illustrates the predicted results of the RF model using
the seven most important features compared with the clinical FFR
of the testing set. The results showed a good correlation (r = 0.8782,
P < 0.001) and agreement (MAE = 0.0344) between the OCT-based
ML-FFR and wire-based FFR. In the analysis of the Bland-Altman

plot, the statistical limits of the OCT-based ML-FFR were 0.01 ± 0.09,
based on the wire-based FFR (Supplementary Figure 1). Based on
an FFR ≤ 0.8, the sensitivity, specificity, positive predictive value,
negative predictive value, and accuracy of the OCT-based ML-FFR
method in the testing group were 98.3, 61.5, 92.1, 88.9, and 91.7%,
respectively. To assess whether the present OCT-based ML-FFR was
accurate, external validation was conducted using a total of 101
coronary arteries. The results showed a good correlation (r = 0.7884,
P < 0.001) between ML-FFR and wire-based FFR(Supplementary
Figure 2). Based on an FFR ≤ 0.8, the sensitivity, specificity, positive
predictive value, negative predictive value, and accuracy of the OCT-
based ML-FFR method in the external validation data were 89.6, 70.6,
85.7, 77.4, and 83.2%, respectively (Table 2).

4. Discussion

Machine-learning-based approaches for analyzing associations
between numerous variables have been widely addressed to
complement and improve existing prediction models. The main
findings of the present study that developed OCT-based ML-
FFR prediction were as follows: We developed an OCT-based
ML algorithm for FFR prediction using the RF method based on
clinical and OCT features. The developed model with seven major
features showed the best performance in predicting the FFR, with
a correlation of 0.87. The seven major features, including the ML
model, were as follows percent area stenosis, vessel type, minimal
LA, lesion length, distal LA, proximal LA, and plaque area. The
sensitivity, specificity, and accuracy of OCT-based ML-FFR were
98.3%, 61.5%, and 91.7%, respectively. To our knowledge, this is the
first general model of OCT-based ML-FFR assessment irrespective of
the coronary territory.

Fractional flow reserve is the gold standard strategy for ischemia-
guided revascularization in current guidelines; moreover, there are
evidence of better outcomes in FFR-guided PCI than in angiography-
guided PCI (1, 2). However, FFR is still used less in clinical practice
and has unsolved questions, such as limitations in reflecting lesion
characteristics. Moreover, although the Fractional Flow Reserve
versus Angiography for Multivessel Evaluation (FAME) trial reported
a reduction in 1-year major adverse cardiac events of FFR-guided
PCI in multivessel disease compared to angiography-guided PCI
(21), the FAME 3 trial demonstrated that FFR-guided PCI was not
inferior to CABG (22). However, in the FAME 3 trial, intravascular
image-guided PCI, which may benefit outcomes, was performed
in only 11.7% of the total PCI procedures. These observations
suggest that FFR alone is insufficient for achieving improved clinical
outcomes, and the role of intravascular imaging in determining lesion
characteristics may be necessary.

Optical coherence tomography is a useful diagnostic tool before
PCI, as it provides several information, including morphological
plaque description (fibrous, fibrocalcific, lipid-rich plaque, thin-cap
fibroatheroma), accurate dimensional measurement, identification
of thrombus, and underlying culprit lesion phenotype (ruptured
fibrous cap, intact fibrous cap) (4, 23). Based on this information,
OCT-guided PCI may improve clinical outcomes in patients with
stable coronary artery disease and acute coronary syndrome (1,
2). Furthermore, a recent single-center randomized study reported
that OCT-guided PCI reduced major adverse cardiac events and
significant angina compared to FFR-guided PCI (24). However,
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FIGURE 1

Flow chart of the OCT-based machine learning method and weight of each feature (A). Comparison between the clinical fractional flow reserve results
and the predicted fractional flow reserve results in the random forest model in the testing set and external validation set, and receiver operating
characteristic curve of machine learning-fractional flow reserve (B). FFR, fractional flow reserve; AUC, area under the curve.

despite the promising results of OCT, it is still used less in practice
than IVUS (25). Plausible explanations suggest that there are barriers
to interpreting it owing to the overwhelming amount of OCT imaging
data. In addition, several limitations are well known, such as a lower
penetration depth compared with IVUS, which makes it difficult
to assess plaque volume in the deep layers of the diseased vessel
and increases the radiocontrast burden to achieve a proper OCT
image (26). Thus, although intravascular imaging has benefits in
PCI results, proof of the cost-effectiveness of OCT-guided PCI is
essential for using OCT in routine practice. In addition, the plaque
characterization on OCT may be less informative due to the lack
of physiologic information for PCI indication regarding non-culprit
lesions of multivessel disease. In context, the OCT-based ML FFR
of the present study may provide a clue to treatment decisions
for a non-culprit lesion by acquiring physiological information
through a single OCT procedure. That is, the present method
had advantages regarding procedure time, invasiveness, and cost of
another procedure because wire-based FFR is not required.

In this context, various image-based mathematical models have
been developed to assess hemodynamic significance and improve
cost-effectiveness (27). In a single-center observational study, OCT-
based computational analysis demonstrated a better correlation
with conventional FFR than other imaging modalities, such as
computational tomography or IVUS (6, 28). These differences could

TABLE 2 Model performance and sensitivity analysis.

Testing
(n = 72)

External
validation
(n = 101)

Pearson correlation 0.8782 0.7884

Sensitivity 98.3% 89.6%

Specificity 61.5% 70.6%

Positive prediction value 92.1% 85.7%

Negative prediction value 88.9% 77.4%

Accuracy 91.7% 83.2%

be explained by the superiority of OCT in terms of the actual
contour of lumen acquisition compared to CT, angiography, and
IVUS imaging (29). However, CFD algorithms require relatively long
processing times and have complex interfaces for clinicians to use in
routine practice despite their good correlation with FFR (10, 30). In
this context, an OCT-based ML algorithm may be an alternative to
CFD algorithms in terms of providing hemodynamic significance in
a clinician-friendly manner. In addition, the OCT-based ML method
can predict the FFR within 2–3 min using major OCT features
derived by automatic contour delineation with full frame analysis,
whereas the CFD algorithm requires at least 20 min. This suggests
that an OCT-based ML algorithm can be implemented in actual
practice in real time to determine the appropriate treatment strategy.

Several studies have reported the prediction of FFR using ML
models based on cardiovascular images, such as CT, coronary
angiography, intravascular ultrasound, and OCT (7–10, 31, 32).
Although the above studies showed good performance of FFR
prediction, there was a tendency to show better performance with
respect to high-resolution images. OCT is superior in terms of
resolution compared to CT, angiography, and IVUS imaging (26).
A recent study reported that OCT-based ML-FFR for the LAD
showed 100% sensitivity and 92.9% specificity (10). The present study
developed OCT-based ML-FFR, irrespective of the coronary territory,
as a global model and showed a good correlation. In addition, it
should be noted that high-resolution OCT images can achieve data
without bias because OCT image analysis has minimal intra- and
inter-observer variability (Figure 2). This suggests that OCT-based
ML-FFR may reduce inaccurate feature data input compared with
other image modalities.

This study has several limitations. Although a good correlation
coefficient was shown between OCT-based ML-FFR and wire-based
FFR, this was a small-sized study for patients with intermediate
lesions and the sample lesions eventually became highly selective.
In addition, compared with the testing group, the correlation
coefficients between ML-FFR and wire-based FFR were relatively
low in patients in the external validation data. However, this is the
first attempt on the OCT-based ML-FFR method irrespective of the
coronary territory as well as conducting external validation analysis.
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FIGURE 2

Advantage of OCT-based machine learning FFR.

Thus, further research is warranted in order to better the performance
of ML-FFR methods. In addition, since the present study excluded the
side branch information, the impact of the size branch on the OCT-
based ML-FFR method should be investigated. Finally, the rationale
or clinical impact of decision making using ML methods has not
been fully elucidated. However, sufficient information on the target
lesion is expected to result in better clinical outcomes after treatment.
In addition, although this study was conducted on de novo lesions,
further research should investigate of the impact of OCT-based FFR
on PCI optimization after OCT-guided PCI and its clinical outcomes.
In spite of these limitations, we suggest that OCT-based ML FFR
may provide clinicians with important physiological data needed to
optimally treat intermediate coronary lesions.
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