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Dilated Cardiomyopathy is a common form of heart failure. Determining how this

disease affects the structure and organization of cardiomyocytes in the human

heart is important in understanding how the heart becomes less effective at

contraction. Here we isolated and characterised Affimers (small non-antibody

binding proteins) to Z-disc proteins ACTN2 (α-actinin-2), ZASP (also known as LIM

domain binding protein 3 or LDB3) and the N-terminal region of the giant protein

titin (TTN Z1-Z2). These proteins are known to localise in both the sarcomere

Z-discs and the transitional junctions, found close to the intercalated discs that

connect adjacent cardiomyocytes. We use cryosections of left ventricles from

two patients diagnosed with end-stage Dilated Cardiomyopathy who underwent

Orthotopic Heart Transplantation and were whole genome sequenced. We describe

how Affimers substantially improve the resolution achieved by confocal and STED

microscopy compared to conventional antibodies. We quantified the expression of

ACTN2, ZASP and TTN proteins in two patients with dilated cardiomyopathy and

compared them with a sex- and age-matched healthy donor. The small size of the

Affimer reagents, combined with a small linkage error (the distance from the epitope

to the dye label covalently bound to the Affimer) revealed new structural details

in Z-discs and intercalated discs in the failing samples. Affimers are thus useful for

analysis of changes to cardiomyocyte structure and organisation in diseased hearts.
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1. Introduction

Dilated Cardiomyopathy (DCM) is a major cause of heart failure
worldwide. It has a prevalence of between 1 in 250 to 1 in 400 people
(1, 2) and is the leading cause of Orthotopic Heart Transplantation
(OHT). is characterised as systolic dysfunction and dilation usually
of the left ventricle (LV). It is commonly associated with arrythmias
and sudden death (3). In the US the prevalence of familial dilated
cardiomyopathy (FDCM) was recently reported at 29.7% (4) but this
figure may increase with time. A mutation in cardiac actin (ACTC)
was the first to be identified as a possible cause of DCM (5) followed
by reports of mutations in cardiac myosin heavy chain (MYH6 and
MYH7), troponin T, troponin I and α-tropomyosin (6). Genetic
variants in MYH7 are reported to be the third most common cause
of DCM (7), about 10% of all cases. The clinical characteristics for
these were recently comprehensively evaluated (8).

Since the first report identifying mutations in TTN as a
cause of DCM (9), we now know that TTN truncating mutations
(TTNtv) account for about 25% of all familial DCMs (10).
Titin is the largest known protein with a molecular weight
of ∼3 MDa and a length > 1 µm (11). It spans from the
Z-disc (N-terminus) in striated muscle to the central M-band (C-
terminus) of striated muscle sarcomeres and is thought to be
a key regulator of sarcomere assembly and function (12, 13).
The central A-band region is primarily composed of repeating
immunoglobulin (Ig) and fibonectin-3-like (Fn-3) domains that
predominantly interact with myosin and myosin-binding protein
C in the A band. This region of titin is thought to act as a
molecular “ruler,” regulating the formation, length and position
of the myosin-containing thick filament (11). Its huge size (363
coding exons) and complexity accounts for alternative splicing that
results in at least three different isoforms in cardiac muscle (14).
TTNvs were only recently identified as a major cause of disease
(15, 16).

TTNtvs result in premature stop codons, splice variants and
frameshift mutations. TTNtvs are more likely to occur some distance
from the N-terminus of the protein (17). They are most common in
the A-band region of titin, in both N2A and N2B isoforms and are
largely absent from Z-disk and M-band regions (16–18). Variants in
the A-band region of titin and are the most pathogenic (18). iPSCs
and CRISPR studies have been used to evaluate the effects of these
mutations in humans (19).

Here, our main objective was to evaluate the usefulness of using
novel, antigen binding proteins called Affimers [originally termed
Adhirons (20)] in determining the overall organisation of sarcomeric
proteins in frozen sections of DCM tissue from the Sydney heart
bank. Affimers are much smaller than antibodies, with a molecular
mass of 10–12 kDa and dimensions of ∼2–3 nm (21–23). They are
formed of a scaffold consisting of a consensus plant phytocystatin
protein sequence, have been engineered to be highly soluble and
to have high thermal stability. The binding interface is provided by
two regions of variable sequence, approximately 9 residues in length.
Affimers to proteins, or protein domains of interest are isolated
by screening a phage display Affimer library, in which the amino
acids in the regions of variable sequence have been randomised.
The ability of the isolated Affimers to bind to their targets are then
confirmed by phage ELISA. Each Affimer is then sequenced, and
approximately 10 Affimers are then taken forward for further testing.
The sequences are subcloned into bacterial expression vectors, to

introduce a His tag for purification, and, in our case, a single
unique N- or C-terminal cysteine, to enable direct fluorescent dye
labelling. Purified dye labelled Affimers are then tested for their
ability to label structures of interest efficiently and specifically, with
low background. The best performing Affimer is then used in
subsequent experiments.

In this new work, we report that Affimers work better than
antibodies in labelling samples of control and DCM tissue from the
Sydney Heart Bank (24). We tested Affimers to the cardiac isoform of
α-actinin-2 (25), ZASP (Cypher/Oracle/Enigma: a PDZ-LIM protein)
and the Z1Z2 repeats of titin. Samples of DCM tissue from this heart
bank have already been shown to be useful in evaluating the effects
of mutations on the contractile properties of myofibrils from DCM
hearts (26, 27), with some analysis on the morphology of this tissue
(28). The small size of the Affimer reagents enhances their ability to
penetrate tissue sections and improves their ability to identify regions
within the dense cytoskeleton, compared to conventional antibodies
or even their small (Fab) fractions. To demonstrate their efficacy,
we focused on heart tissue samples derived from two different
patients [see (26)], both of which have a single TTNtv frameshift
variant implicated in FDCM (p.R23464Tfs∗41) and compared these
to samples from an age and sex-matched control.

2. Results

2.1. Affimers to Z-disc protein domains

We isolated Affimers to three Z-disc proteins, by screening a
phage display library against the calponin homology (CH) domains
of α-actinin-2 (ACTN2) the Z1Z2 repeats of titin, and full length
ZASP (Isoform 2 of LIM domain-binding protein 3, also known as
cypher). ACTN2 crosslinks actin filaments within the Z-disc. The
Z1Z2 repeats of titin are formed of Ig domains and are found within
the N-terminal region of titin, located in the Z-disc (29). ZASP (Z-
disc alternatively spliced PDZ-motif) is a member of the ALP/Enigma
family (30), forms a multiprotein complex ACTN2 and is implicated
in signalling (31). All the Affimers, confirmed to bind to their
protein targets by phage ELISA (data not shown), were subcloned
into bacterial expression vectors, expressed, purified, dye labelled and
tested for their ability to label Z-discs. A single Affimer for each target,
that labelled Z-discs specifically and showed low background staining
was then taken forward for further analysis.

Next, we were interested to determine if Alphafold modelling
could be useful in predicting the site of interaction between the
Affimer and its target. We already know the site of interaction for
the ACTN Affimer as we previously solved a crystal structure of
the Affimer bound to the CH domains of ACTN2 [(PDB: 6SWT
(25)] and see Supplementary Figure 1A). However, we have not yet
obtained crystal structures for the ZASP and titin Z1Z2 Affimers,
and Alphafold could provide a good fast alternative approach to
crystallisation, to determine the site of interaction.

First, we compared the structures predicted by Alphafold
modelling with our published ACTN2-CH domain-Affimer
crystal structure (PDB: 6SWT) to determine the efficacy of
Alphafold in predicting the mode of binding (Supplementary
Figure 1). Alphafold did correctly predict the structures of the
isolated CH domain structure of ACTN2 (RMSD ∼0.29Å) and
the Affimer (RMSD ∼0.6Å) with a high degree of accuracy
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(Supplementary Figures 1A, B, 2). For the CH-domain-Affimer
complex, two of the five Alphafold predictions show a similar
interaction of the Affimer with the ACTN2 CH domain to that
found in the crystal structure, in which variable loop-1 of the
Affimer interacts with a loop within CH domain 2 (Supplementary
Figures 1A, B). This suggests that Alphafold can, with some degree
of certainty, predict the epitope on the protein of interest that the
Affimer is recognising.

Next, we used Alphafold modelling for the Affimer-Z1Z2
complex and the Affimer-ZASP complexes. From the results, we
speculate that the Z1Z2 Affimer likely recognises the C-terminus of
Z1Z2 (Z2 domain; 3 hits) or the unstructured loop connecting the
2 domains (2 hits) (Supplementary Figures 1C, 2). However, this
approach was less successful for ZASP, which is predicted to be largely
disordered, with the exception of the first 84 residues that form a
PDZ domain, a site of interaction for ACTN2 (32). Not surprisingly,
the confidence in ZASP structural prediction is considerably lower,
with the regions connecting between the relatively well-structured
N- (∼1–100aa) and C- (∼420–617aa) regions showing per residue
confidence (pLDDT) scores below 50% confidence (Supplementary
Figure 2). Omitting regions with a confidence score of less than 30%
suggests that the ZASP Affimer recognises an epitope at the very
C-terminus of ZASP (Supplementary Figure 1D). Thus, Alphafold
could be useful for predicting sites of interaction in the future, but the
degree of confidence in these results is variable. However, knowing
the precise site of interaction is not essential to using the Affimers in
downstream applications, such as staining of tissue samples.

2.2. Affimer tissue penetration is improved
compared to antibodies

To determine the specificity of Affimers to effectively label protein
structures in human heart sections, we compared the staining results
using Affimers and antibodies to ACTN2 and to the Z1Z2 repeats
of titin imaged by confocal (Antibodies to ZASP were not available
to us). The resulting images showed that fluorescent labelling of the
heart sections was much more uniform across the whole section
for ACTN2 and Z1Z2 Affimers compared to that for anti-ACTN2
and Z1Z2 antibodies (Figure 1A). The fluorescence intensity across
the section was highly variable, when the sections were labelled
with antibodies against ACTN2 and Z1Z2, followed by secondary
fluorescent antibodies, with levels of labelling higher toward the
edge, or less dense parts, of the section. In contrast, the fluorescence
intensity across the section was much more uniform, when the
sections were labelled with Affimers (Figure 1B). In addition, the
transitional zones close to the intercalated discs (ICD) were labelled
well by the Affimer but labelling by the antibody was less uniform
(Figure 1A: boxed region).

Super-resolution (STED) microscopy was used to further
compare the ability of Affimers and antibodies to label the Z-disc.
The xy-resolution of confocal microscopy (∼200 nm, or ∼170 nm
in Airyscan mode) is not sufficient to resolve any detail within the
Z-disc [approximately 100–140 nm in cardiac tissue (33)]. The xy-
resolution for 2D-STED (stimulated emission depletion) microscopy
is approximately 50nm and can resolve some structure within
the Z-disc.

STED imaging of the same tissue sections used for confocal
microscopy (Figure 1A) further demonstrates that the small size of

the Affimers allows them to better penetrate the Z-disc structure and
label ACTN2 and Z1Z2 repeats of titin, which should be distributed
through the Z-disc, compared to antibodies. ACTN2 and Z1Z2
antibodies labelled the edges of Z-discs but were mostly absent from
the central region of the Z-disc (Figures 1C, E). This variation in
staining is demonstrated by intensity profile plots across the Z-disc,
which revealed two peaks for the antibody labelling at the edges of the
Z-disc (Figures 1C, E). In contrast, the Affimers labelled the Z-disc
uniformly throughout (Figures 1C, E). It is worth noting here that
the Z1Z2 repeats were first reported to be located in the central region
of the Z-disc (29) whereas a later study using the Z1Z2 antibody used
here showed that they were located toward the edge of the Z-disc (34).
Our work with the Affimer suggests that the first report is likely to be
correct.

The small size and direct labelling of Affimers puts the dye
label very close to the epitope that the Affimer recognizes (∼4 nm).
In contrast, the combination of primary and secondary antibodies
typically puts the dye label much further away (∼30 nm). The average
width of the Z-disc measured from deconvolved STED images, using
specimens labelled with both antibody and Affimer, was larger (262
and 238 nm for ACTN2 and Z1Z2 respectively) using the antibody
labelling than using the Affimer labelling (163 and 197 nm). The
values measured for the Affimers are closer to the 130 nm width
measured for the Z-disc in vertebrate cardiac muscle from EM data
(35) (Figures 1D, F).

2.3. Affimers detect molecular changes in
sarcomeres from DCM patient samples.
Z-discs are thicker and sarcomeres are
shorter

Having confirmed that the ACTN2 and Z1Z2 Affimers
outperform antibodies in labelling these proteins within the
Z-disc, we then used these 2 Affimers and one additional Affimer
isolated to ZASP to stain the Z-discs in control samples (age, sex
matched) and in two heart samples from two different DCM patients
(DCM1 and DCM2) sharing the same A-band titin mutation. All the
samples were labelled with the ACTN2 Affimer and co-labelled with
either ZASP or Z1Z2 Affimers.

In donors and DCM heart samples, all three Affimers labelled the
Z-disc well. The labelling showed the characteristic striated pattern
expected for Z-discs in cardiomyocytes in both control and DCM
samples (Figure 2). In DCM samples, the myofibrils were less well
organized with evidence of myofibrillar disarray and misalignment
(Figures 2A, B). In addition, the width of the Z-disc was increased
compared to controls, and the spacing between Z-discs (sarcomere
length) decreased. To quantify this, we measured the Z-disc widths
and sarcomere length for control and DCM patient tissue using
deconvolved 2D-STED images of Z-discs labelled by each of the
three Affimers (Figures 2A, B). Sarcomere lengths (distance between
Z-discs) were significantly decreased (Figure 2C) and Z-disc widths
significantly increased (Figure 2D) in heart samples from the two
DCM patients compared to controls.

The Z-disc widths measured for ACTN2 and Z1Z2 in this second
dataset for samples co-stained with Affimers are consistent with the
measurements for of Z-disc widths measured for the Affimers in
the first independent dataset in which samples were co-stained with
antibodies and Affimers (Figures 1D, F). Interestingly, the Z-disc
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FIGURE 1

Comparison of staining heart sections using antibodies and Affimers to ACTN2 and titin Z1Z2 repeats. (A) Example confocal image of a region of a donor
heart section stained using a primary antibody to ACTN2 or the Z1Z2 repeat of titin combined with a secondary fluorescent antibody, and with a
dye-labelled Affimer. The boxed region shows the position of the ICD: intercalated disc. (B) Example of fluorescence intensity (normalized) for a line
profile drawn across the cell for the ACTN2 antibody (magenta) and Affimer (green). Example 2D-STED images for Z-discs stained using the ACTN2
primary and secondary antibody combination and the dye-labelled ACTN2 Affimer (C) and the titin Z1Z2 antibody combination and Z1Z2 Affimer (E) are
shown together with the associated profile plots for the labelling intensity across the Z-disc structures. (D,F) Measurements of the Z-disc widths for
multiple Z-discs from sections labelled with the antibody combination and Affimers, using either the antibody images or the Affimer images.
****p < 0.0001.

width measured for Z1Z2 is increased compared to that measured
for ACTN2 in both. Z-disc width measured for Z1Z2 (200 ± 33 nm,
mean ± SD) is significantly higher than that measured for ACTN2
(170 ± 0.040 nm: mean ± SD) and may reflect a wider distribution of
Z1Z2 titin epitopes across the Z-disc, compared to ACTN2.

2.4. Z-disc Affimers label the edges of
intercalated discs

Cardiomyocytes connect to each other at the intercalated discs,
structures that enable communication between cardiomyocytes. The

plasma membrane in this region is highly folded, and a transitional
zone has been reported in which Z-disc proteins (ACTN, titin)
assemble into a structure at the position in which the final Z-disc of
the muscle sarcomere would be expected to be found (36). A titin
antibody (T12) that labels a region of titin just outside of the
Z-disc showed a doublet distribution either side of the intercalated
disc (36). The thin filaments have been suggested to pass through
this transitional zone and insert into the adherens junction in the
intercalated disc, to enable effective structural integration of the
myofibrils at this junction (36).

Focusing on Affimer labelling at the intercalated disc, which
was identified by antibody labelling for desmoglein-2, revealed
that ZASP, ACTN2 and Z1Z2 Affimers all label a structure close
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FIGURE 2

ZASP, ACTN2 and titin Z1Z2 Z-disc labelling using Affimer combinations and analysis. (A) Example 2D-STED images of heart tissue sections from control
(donor tissue) and two independent DCM patients with the same TTN mutation, co-stained using an Affimer to ZASP (magenta in merged image) and
ACTN2 (green in merged image). Example line profiles for ZASP and ACTN2 across two a single sarcomere, including both Z-discs at either side are
shown below. These profiles were used to estimate Z-disc width and sarcomere length. (B) Example images of heart tissue sections from control and
DCM patients stained using an Affimer to titin Z1Z2 (Magenta in merged image) and ACTN2 (green in merged image). Example line profile plots are
shown below. (C) Measurements of Z-disc width for control and DCM patients. (D) Measurements of sarcomere lengths for control and DCM patients.
Measurements were made from at least 50 sarcomeres from three independently stained heart tissue sections for controls and for each of the DCM
patient tissue. ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001 for comparisons of DCM1 and DCM2 to control.

to the ICD (Figures 3A–C, WT) likely to be the transitional
zone. We also observed that there was some labelling within
the ICD, at right-angles to, and crossing the junction, possibly
structures within the membrane. The intensity of ICD labelling
using an antibody to desmoglein-2 was significantly lower in
heart tissue samples from both DCM patients (Figures 3B,
C, F). In addition, Affimer staining in this region was much

less ordered, especially in DCM2 compared to control samples
(Figure 3F). Due to the highly disordered nature of the Affimer
staining here, it was not possible to quantify the expression
levels of the Z-disc proteins. Cardiomyocyte width estimated
from the length of desmoglein-2 labelling across the end of the
cardiomyocyte within the ICD was slightly increased in DCM
samples (Figure 3E).
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FIGURE 3

Labelling of intercalated discs (ICDs) between cardiomyocytes in heart tissue sections with Z-disc Affimers and desmoglein. Panels (A–C) are examples of
labelling for ZASP (A), ACTN2 (B) and titin Z1Z2 (C) for control (normal donor heart) and DCM heart tissue sections. Panel (D) shows desmoglein staining
for a single ICD in more detail to show the region of interest used to estimate labelling intensity for desmoglein (DSMG2) in the ICD. Panel (E) shows the
average length of the ICD and (F) the fluorescence labelling intensity for desmogelin staining, for controls and DCM patients. A minimum of 50 ICDs were
analysed for three independently stained heart tissue sections. ∗p < 0.05, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001 for comparisons of DCM 1 and DCM2 to control.

3. Discussion

Here we report that Affimers to ACTN2, ZASP and titin (Z1Z2)
are excellent tools for labelling the cardiac cytoskeleton. The Affimers
label structures across the tissue sections with better uniformity, and
better penetration of the compact Z-disc compared to traditional
primary and secondary antibody combinations. The Z-disc widths
measured using Affimers are closely aligned with values obtained
by electron microscopy. They demonstrate that the Z-disc thickness

increases in DCM patients LV tissue compared to controls, an
increase that was consistently observed for the three Affimers, while
the sarcomere length was decreased. All three Affimers labelled the
transition zone in the intercalated disc, with some Affimer labelling
within the disc. Both DCM patients showed alterations to the
structure of the intercalated disc.

Z-discs are narrow structures that vary from about 100–140 nm
in width in cardiomyocytes to as little as ∼30 nm in width in
skeletal muscle (33). They are important structural and signalling
centres and contain many different proteins. Accurately measuring
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the width of Z-discs using the traditional primary and secondary
antibody combination is challenging due to their large size which
limits penetration of the antibodies into the Z-disc structure, and the
positioning of the fluorophore ∼30nm away from the target epitope.
Here, the combination of STED microscopy and Affimers allowed
more accurate measurements of Z-disc width, more consistent with
that measured by electron microscopy. The Z-disc width increased
for both DCM patients, which both harbour the same TTNtv.

Titin is a key molecule that is assembled into the Z-disc via
its N-terminal domains and into the M-band via its C-terminal
domains, spanning half a muscle sarcomere (14). In patients with
TTNtv variants, not only are levels of wild-type titin reduced, but
truncated titin isoforms are also present at least for TTNtv variants,
where the truncation is relatively distal to the N-terminus. The
p.R23464Tfs∗41 truncation is relatively distal to the N-terminus
and can integrate into the muscle sarcomere (reviewed in (37–
39). The increased Z-disc width is consistent with the idea that
a full-length intact titin molecule is required to transmit and
buffer force generated by myosin during contraction (40) and that
shorter variants of TTN such as the TTNtv variants likely result in
disordered Z-discs.

Intercalated discs are critical for attachment of cardiomyocytes
cell-cell signalling and communication. Here we found ACTN2,
ZASP and titin Z1Z2 are all localised to the transition zone of the
intercalated discs, consistent with earlier findings (36, 41, 42). We
also show evidence of staining within the intercalated discs, not
seen before, which highlights their ability to reveal new structures.
This transitional zone has been suggested to act as a site for
generating a new Z-disc complex and for sarcomere addition (41).
Alterations to the structural integrity of the intercalated disc has
previously been suggested to be important in cardiomyopathies
(43, 44) and mutations in intercalated disc proteins also result in
cardiomyopathies (45). More work is needed to understand how
TTNtv variants can affect the structure and organisation of the
intercalated discs.

In conclusion, we have shown that Affimers are excellent
tools in analysing heart samples. Importantly, Affimers are easy
to make, stable, and simple to use in labelling proteins in heart
tissue sections. They outperform antibodies in imaging these
sections, through better penetration, and their small size improves
resolution. A simple one-step staining procedure makes staining
easier, and overcomes any problems caused by using traditional
labelled secondary antibodies. Specifically, we have demonstrated
that Affimers can be used to characterise disease phenotype and
reveal alterations to the structure and organisation of cardiomyocytes
in patients with cardiomyopathies. If used in the clinic, they could
be a useful tool to confirm the phenotype and help to diagnose
DCM, if, as we anticipate, DCM generally leads to a widening of
the Z-disc.

4. Materials and methods

4.1. Donor tissue and ethical approval

Anonymised tissue samples from explanted and donor hearts
in the Sydney Heart Bank were used in this study (Table 1).
Two patients with a diagnosis of familial DCM requiring a heart
transplant at a young age, both with the same TTN frameshift

mutation (SHB code 4.100 (Male, 22years) and 4.125 (Male, 37 years)
were selected together with an age/sex matched non-cardiac death
donor (SHB code 6.038 (Male 37 years, non-cardiac death) as a
control. Patients were consented under ethical approvals obtained
from St Vincent’s Hospital, Darlinghurst (HREC #H91/048/1a), the
University of Sydney (HREC #2016/923). The heart samples for
DCM were snap-frozen within 20–30 min of the loss of coronary
blood flow. Frozen samples were shipped to the University of Leeds
for analysis and stored and processed under ethical approval BIOSCI
17-015.

4.2. Affimer screening and expression

The Affimer reagent to α-actinin-2 (ACTN2), isolated against
the CH domains from ACTN2, has been described previously (25).
Two new Affimer reagents were isolated to the N-terminal region
of titin (Z1/Z2: residues 1–200) and to the ZASP (isoform 2: NP-
001073583: 1–617 residues). To isolate the Affimers, target protein
constructs were expressed and purified using E. coli. For Z1/Z2,
a codon-optimised Z1/Z2 cDNA construct, cloned into pET28a-
SUMO vector with a His tag for affinity purification was expressed in
BL21 DE3 cells (Novagen), purified using NiNTA chromatography
followed by size exclusion chromatography. The purified protein
was then biotinylated before using in the Affimer screen. These
two Z1Z2 domains of titin are located within the Z-disc (13). For
ZASP, the coding sequence was cloned into a pGEX-Avitag vector
(a kind gift from Christian Tiede) in frame with a C-terminal 15
residue Avitag (GLNDIFEAQKIEWHE) and a 6-His N-terminal tag
for affinity purification. The protein was biotinylated in E. Coli, by
co-expressing with pBirA using AVB101 bacterial cells (Avidity).
Cells were grown in TYH (Tryptone, Yeast Extract, HEPES) medium
supplemented with 0.5% glucose until the OD600 reached 0.7. Protein
expression and biotinylation was induced by the addition of 1.5 mM
IPTG and 50 mM biotin solution (12 mg of d-biotin in 10 ml of
10 mM bicine buffer, pH 8.3) for 3 h. The expressed protein was
purified by NiNTA chromatography. All expressed proteins were
checked for purity. Western blots with streptavidin-HRP (Sigma)
were performed to confirm the purified protein was the correct size
and that it was the only protein that was biotinylated. Approximately
1.0 mg/ml of biotinylated protein were used in an Affimer screen
as described (23, 25). Following the screen, approximately 8–10
Affimers that bound to the protein of interest, as demonstrated by
ELISA were subcloned into pET11a for bacterial expression, using
the NotI and NheI restriction sites and a unique cysteine residue
was added at the C-termini to allow maleimide conjugation to a
fluorescent dye.

4.3. Expression, purification, and Affimer
labelling

Affimer expression was as described previously (23, 25). Cells
from the expression cultures were harvested, pellets were frozen
and then thawed on ice and lysed by addition of 1ml lysis Buffer
(50 mM NaH2PO4; 500 mM NaCl; 30 mM Imidazole; 20% Glycerol;
pH 7.4, supplemented with 1x HALT protease inhibitor cocktail
(Promega), 0.1mg/ml lysozyme (Sigma), 1% Triton X-100 and 10
U/ml DNAse) for one hour on a rotor mixer at room temperature.
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TABLE 1 A summary of the details of the LV samples used in this report.

SHB code Sex/Age (y) Diagnosis LVEF% NYHA Mutated gene LR/RV co-morbidities Publication

4.100 Male/22 DCM 15–20 IV TTNtv No CAD (26, 48)

4.125 Male/36 DCM 15 IV TTNtv Dilated LV-RV. LAD 50%
occluded

(27, 49)

6.038 Male/25 Donor 50+ NA None No CAD (cervical dislocation) (50, 51)

The Sydney Heart Bank (SHB) code is an anonymised patient label. Patients were diagnosed with familial Dilated Cardiomyopathy (DCM) with both carrying a truncating mutation of the giant
TTNtv gene. The clinical records for patient 4.100 included an unsupported note suggesting it may be “post-viral” but otherwise he exhibited no co-morbidities. The Pathology report for patient
4.125 confirmed he had 50% occlusion of the left anterior descending (LAD) artery only. Publications listed support the DCM and donor status of these patients (column 3). SHB: LVEF: left
ventricular ejection fraction. NYHA: New York Heart Association classification of heart failure. (IV: class IV – severe).

Low stability E. coli proteins were denatured by heating to 50◦C
for 20 min (Affimers are stable at 50◦C) and the insoluble fraction
was pelleted at 16,000 g for 20 min. The supernatant was mixed
with 300 mL Ni-NTA resin at room temperature for 1 h, washed in
wash buffer (50 mM NaH2PO4; 500 mM NaCl; 20 mM Imidazole;
20% Glycerol; pH 7.4) and then eluted in the same buffer with
300 mM Imidazole. The concentration of Affimer eluted from the
column was monitored by absorbance at A280 on a NanoDrop
spectrophotometer.

Affimer labelling was performed immediately after elution from
the Ni-NTA column. Affimers were diluted to 1.0 mg/ml in PBS
(phosphate buffered solution) and cysteine activated by mixing
with immobilised TCEP (tris(2-carboxyethyl)phosphine) denaturing
gel (Thermo Scientific) for 1 h at room temperature. Following a
brief centrifugation of 1,000 rpm for 1 min, 130 µl of supernatant
was removed and mixed in a 1.5 ml tube with 6 µl of a
2 mM stock maleimide-fluorescent dye (Abberior STAR 580- or
STAR 635P-maleimide, Abberior) for 2 h at RT or overnight
at 4◦C. The reaction was quenched by the addition of 1.3 µl
of β-mercaptoethanol for 15 min at room temperature. Labelled
Affimers were dialysed against PBS to removed unbound dye
(Snakeskin Dialysis Tubing molecular weight cut off 3.5, Pierce)
or purified using PD SpinTrap G-25 columns (Cytivia) following
manufacturers’ instructions. SDS-PAGE was performed to assess
Affimer purity and labelling.

4.4. Tissue preparation, staining, and
imaging of samples

Each of the 8–10 Affimers, isolated for each of the three protein
targets (ACTN2, Z1Z2 and ZASP) were tested for their ability to
label Z-discs in heart sections, and from these, the Affimer that gave
the best signal, specific Z-disc labelling with low background, was
taken forward for the remaining experiments presented here. To
prepare sections, frozen left ventricular heart tissue was embedded
in O.C.T (optimal cutting temperature) compound and brought
up to cryosection temperature of –20◦C. 10 µm thick sections
were cut using a cryostat (Leica Biosystems) and adhered directly
to SuperFrost Plus slides (Fisher Scientific). A PAP pen was
used to draw a hydrophobic barrier around the section and the
tissue was fixed in 4% paraformaldehyde for 60 min at room
temperature before washing three times in PBS containing Tween-
20 for 5 min each.

To label sections, the sections were first blocked in in phosphate
buffer (PBS) containing 0.5% Triton X-100 and 10% BSA (bovine
serum albumin) for 1 h, then incubated with 10 mg/ml Affimer

or primary antibody, diluted in blocking buffer, for 1 h at RT or
O/N at 4◦C. Following washing, in PBS -Tween, samples were either
incubated for an hour with secondary antibody diluted in blocking
buffer and either washed again or (for Affimer staining only, where a
second incubation step is not required) mounted directly by adding
a drop of ProLong Gold Antifade (Invitrogen) onto the section,
then placing a cleaned glass coverslip [#1.5: (Scientific Laboratory
Supplies)] on top of the samples. All the samples were labelled for
identification using an alphanumeric code, to avoid bias in imaging
and subsequent analysis.

Confocal imaging used an inverted Zeiss LSM880 in Airyscan
mode, using the ×40 N.A 1.4 objective lens and the same laser
power settings for each sample. STED imaging used an Abberior
STEDYCON and a ×100, N.A. 1.4 objective lens, with the depletion
laser set for ∼50nm resolution.

In addition to the Affimers, commercial mouse monoclonal
anti-actinin antibody EA-53 (Sigma-Aldrich, 1:500: raised to the
full length ACTN protein) and a mouse monoclonal antibody
to human desmoglein-2 (CCSTEM28; eBiosciences from Thermo
Scientific, 1:200) were used followed by secondary anti-mouse
StarRed antibodies (Abberior, 1:100). The rabbit polyclonal titin Z1Z2
antibody was generously provided by Bang et al. (14) (raised against
the NH2-terminal 195 residues of the human cardiac titin) and used
with secondary anti-rabbit Star Red antibodies. Affimers used in these
experiments were directly labelled with STAR 580.

4.5. Sarcomere analysis

STED images were deconvolved using the deconvolution
wizard in Huygens software (SVI, Netherlands). For sarcomere
length measurements, straight lines were drawn across a run
of 10–20 sarcomeres in ImageJ, beginning and ending at a
Z-disc. To estimate the average sarcomere length, the lengths
of these lines were measured and divided by the number of
sarcomeres (Z-discs). Measurements were repeated for a minimum
of 50 times with specimens from 3 separate experiments, using
a minimum of 3 sections per control and for each of the
two DCM patients. Samples were labelled alpha-numerically to
prevent user bias.

Z-disc width, intercalated disc length and diameter of the
intracellular storage vesicles were also measured using ImageJ using
the deconvolved STED images. A thick line (74pt) was drawn
across the structures, and plot profile was used to determine the
intensity profile and derive the average widths (or lengths) of the
structures. To determine the expression levels of desmoglein-2, the
average fluorescent intensity along intercalated discs was measured
with ImageJ using Airyscan confocal images where the settings
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remained constant for each sample. Data was collected from 3
separate experiments using a minimum of 3 sections per control and
for each of the two DCM patients. All data was analysed and plotted
using Prizm (Graph Pad). Significant changes between samples were
tested by Anova with post hoc analysis.

4.6. Aphafold2

Affimer:protein complexes were generated using the ColabFold
implementation of AlphaFold (46, 47). Models of the ACTN:Affimer
complex were compared with the published CH domain
from actinin in complex with an Affimer crystal structure
(6SWT) in Chimera.
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