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Role of plaque imaging for
identification of vulnerable
patients beyond the stage
of myocardial ischemia
Ryoko Kitada†, Kenichiro Otsuka*† and Daiju Fukuda

Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School, Osaka, Japan

Chronic coronary syndrome (CCS) is a progressive disease, which often first
manifests as acute coronary syndrome (ACS). Imaging modalities are clinically
useful in making decisions about the management of patients with CCS.
Accumulating evidence has demonstrated that myocardial ischemia is a
surrogate marker for CCS management; however, its ability to predict
cardiovascular death or nonfatal myocardial infarction is limited. Herein, we
present a review that highlights the latest knowledge available on coronary
syndromes and discuss the role and limitations of imaging modalities in the
diagnosis and management of patients with coronary artery disease. This review
covers the essential aspects of the role of imaging in assessing myocardial
ischemia and coronary plaque burden and composition. Furthermore, recent
clinical trials on lipid-lowering and anti-inflammatory therapies have been
discussed. Additionally, it provides a comprehensive overview of intracoronary
and noninvasive cardiovascular imaging modalities and an understanding of ACS
and CCS, with a focus on histopathology and pathophysiology.
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1. Introduction

Coronary artery disease (CAD) is a progressive disease that often first manifests as acute

coronary syndrome (ACS). ACS is a life-threatening disease that affects approximately

1,045,000 people per year in the United States, leading to hospitalization and contributing

to a remarkable economic and health care burden (1). In 2019, the European Society of

Cardiology proposed the term chronic coronary syndrome (CCS) in the revised guidelines

for stable CAD (2). It emphasizes that CCS is a chronic condition rather than the

conventional “stable” angina or “stable” CAD. This paradigm shift calls for the early

diagnosis, intervention, and continuous treatment of risk factors in patients with CCS to

prevent cardiovascular events, including sudden death, ACS, and heart failure.

Clinical symptoms are an important aspect in diagnosing CCS (2). Although ACS often

occurs as the first manifestation, noninvasive tests such as electrocardiography,

echocardiography and elevated cardiac troponin levels can help in the diagnosis of ACS

(3). Imaging modalities are highly useful for assessing the presence of CAD in patients

with and without clinical symptoms based on clinical risk factors. The therapeutic goals

of CCS include the lifelong prevention of ACS development and symptom reduction (2).

While the primary percutaneous coronary intervention (PCI) strategy reportedly improves

outcomes in patients with ST-segment elevation myocardial infarction (STEMI) (2), the
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evaluation of myocardial ischemia, a surrogate marker of the

disease, is central to determining indications for coronary

revascularization in patients with CCS. The COURAGE (the

Clinical Outcomes Utilizing Revascularization and Aggressive

Drug Evaluation) trial demonstrated that PCI did not reduce the

risk of death, nonfatal myocardial infarction (MI), or other major

cardiovascular events (4). Subsequently, a sub-analysis

demonstrated that a greater ischemic burden is associated with

PCI benefits (5). To determine whether PCI is superior to

optimized medical therapy (OMT) in patients with stable angina

and a high ischemic burden the International Study of

Comparative Health Effectiveness With Medical and Invasive

Approaches (ISCHEMIA) trial was conducted at 320 institutions

in 37 countries (n = 5,179). The ISCHEMIA trial compared the

invasive (OMT + coronary revascularization) and conservative

(OMT + invasive strategy, if necessary) strategies in patients with

stable angina pectoris and moderate-to-severe myocardial

ischemia (>10%), while excluding patients with heart failure, left

main coronary lesions, and chronic kidney disease (6). There was

no statistically significant difference in the primary endpoint

between the two groups during follow-up. The observations from

these key clinical trials indicate the importance of OMT and

coronary revascularization with their appropriate timing and

indications.

The identification of underlying factors, such as coronary

plaque burden, high-risk plaques, and coronary microvascular

disease (CMD), is crucial for the management of patients with
FIGURE 1

Role of imaging in the management of patients with coronary artery disease.
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CCS beyond the stage of myocardial ischemia. Figure 1

illustrates the role of imaging and therapeutic targets in the

management of patients with CAD. Imaging modalities are

clinically useful in deciding the appropriate management of

patients with CAD (2, 7–11). The development of noninvasive

imaging technologies, such as coronary computed tomography

angiography (CCTA) and cardiac magnetic resonance (CMR),

has propelled our understanding of the features that accelerate

subclinical CAD leading to ACS (12, 13). Intracoronary imaging

has deepened our understanding of the mechanisms underlying

coronary lesion destabilization in ACS (14, 15). Accurate

prediction of coronary lesions leading to ACS requires a

comprehensive assessment of plaque vulnerability, including

plaque burden (16, 17), inflammatory status (18), coronary

plaque mechanical stress (19, 20), and coronary microvascular

function (21). These in turn determine the fate of coronary

plaque rupture/erosion. In this study, we present a review

highlighting the latest CAD knowledge and investigate the role

and future perspective of coronary plaque imaging in the

diagnosis and management of patients with CAD and clinical

trials for lipid-lowering and anti-inflammatory therapies.
2. Pathophysiology of ACS

Understanding the pathogenesis of ACS largely relies on

careful autopsy studies of sudden cardiac death. Fuster et al.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1095806
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Kitada et al. 10.3389/fcvm.2023.1095806
proposed the concept of ACS, including unstable angina, acute MI,

and sudden cardiac death, and determined that plaque rupture-

induced thrombus formation is linked to occlusion and severe

stenosis of the coronary arteries (3, 22). The most common

pathological cause of ACS is plaque rupture; postmortem studies

conducted in the 1980s demonstrated that plaque rupture is

found in the most fatal MIs (23, 24), indicating the presence of

vulnerable plaques. Vulnerable plaques are typically characterized

by a large central lipid core which is covered by a thin inflamed

fibrous cap with few smooth muscle cells (25); chronic

inflammation weakens the collagen structure of the fibrous caps

(19, 26). In recent decades, attempts have been made to use

imaging to identify precursor lesions that progress to ACS (16,

27–30) on the hypothesis that local therapeutic interventions

may prevent plaque rupture-induced thrombosis. Increased

plaque volume (31), thin fibrous caps (32), and

microcalcifications (27, 33) detected on imaging modalities

reportedly serve as independent predictors of ACS; however, ACS

prediction remains challenging (34).

Plaque erosion is the second leading cause of ACS, is reportedly

more common in women, and has fewer inflammatory cells and

proteoglycan-rich lesions than a ruptured plaque (35–38).

Superficial erosion-induced plaque thrombosis involves less

macrophage-mediated inflammation, just as in the case of fibrous

cap rupture. Superficial erosion is complicated by lesions with

different epidemiologies and morphologies and involves a

pathophysiological mechanism different from that of a fibrous

cap rupture. Factors other than plaques, such as endothelial

shear stress and neutrophil extracellular traps (NETosis) (37, 38),

are thought to play a vital role in plaque erosion-induced

thrombus formation. Furthermore, recent clinical studies have

demonstrated that intimal healing following a silent plaque

rupture/erosion plays a vital role in plaque progression (39, 40).

Following plaque rupture and erosion, calcified nodules are

reportedly the least common cause of ACS (≤5%). Calcified

nodules are characterized by the eruption of calcified nodules

with an underlying fibrocalcific plaque and minimal or no

necrosis (25). ACS caused by plaque erosion or calcified nodules

can cause non-occlusive thrombosis in the culprit lesion;

however, plaque rupture-induced ACS is often accompanied by

occlusive thrombosis.
3. Role of imaging in nonobstructive
CAD

Approximately one-fifth of ACS cases occur despite the

absence of coronary thrombi, suggesting that functional changes

other than thrombus formation may contribute to its

development. MI with nonobstructive coronary artery disease

(MINOCA) is a condition in which MI is diagnosed based on

elevated levels of cardiac enzymes and symptoms without

evidence of obstructive coronary artery disease on invasive

coronary angiography (ICA). The following three diagnostic

criteria for MINOCA were proposed in a position paper by the

European Society of Cardiology: (1) AMI criteria as defined by
Frontiers in Cardiovascular Medicine 03
the Third Universal Definition of Myocardial Infarction with

clinical evidence of ischemic symptoms; (2) absence of a > 50%

stenotic lesion in the major epicardial vessels; and (3) absence of

other specific causes for the acute clinical symptoms (41).

Various mechanisms have been postulated for the development

of MINOCA, including plaque disruption, epicardial coronary

vasospasm, coronary microvascular dysfunction, coronary

embolism/thrombosis, CAD, spontaneous coronary artery

dissection, and supply-demand mismatch (42). MINOCA occurs

in 6%–8% of patients diagnosed with acute MI. MINOCA is

more common in women and often presents as non-STEMI.

Imaging modalities such as CMR and intravascular imaging are

reportedly useful in investigating the underlying cause of

MINOCA (42). Simultaneous assessment of CFR or coronary

microvascular resistance and detection of ischemia is

recommended during catheter laboratory testing in patients with

ischemia with nonobstructive coronary arteries (INOCA) (43).

Comprehensive assessment of the structure, ischemia, and CMD

will help provide better CCS management (21, 44).

There is a growing interest in INOCA (12, 45, 46), a condition

in which there is no significant stenosis in the epicardial coronary

artery on ICA despite anginal symptoms and ischemic findings on

noninvasive testing. Figure 2 illustrates the diagnostic strategy for

INOCA (47). The pathogenesis of vasospastic angina (VSA)

involves abnormal endothelial function, that is, decreased

production of nitric oxide by endothelial cells, which is a

scenario encountered in CCS (38). VSA treatment includes

smoking cessation and administration of calcium channel

blockers and vasodilators. Another condition of INOCA is CMD,

which is more common in women than in men and involves

organic microvascular narrowing and coronary spasm (21). The

diagnostic criteria of CMD are defined by the Coronary

Vasomotor Disorders International Study (COVADIS) group

(44): exertional chest pain or dyspnea, absence of obstructive

CAD, objective evidence of myocardial ischemia on functional

imaging, and CMD as determined by measuring CFR or

coronary microvascular resistance (21). Coronary

microcirculatory function can be indirectly assessed using

noninvasive imaging modalities, including transthoracic doppler

echocardiography (48, 49), CMR (50), and positron emission

tomography (PET)/computed tomography (CT) (51, 52). Moreover,

a comprehensive assessment of CFR and coronary microvascular

resistance, in addition to ischemia detection, is recommended in the

catheter laboratory when diagnosing INOCA (43).
4. Functional or structural imaging

Patients with a history of MI and anginal symptoms are

reportedly at high risk of cardiovascular events and may require

more intensive treatments (53). For patients with a high pretest

probability, evaluation of myocardial ischemia is important for

patient management. For several decades, physicians have largely

depended on the identification of patients with myocardial

ischemia to perform coronary revascularization (54). Functional

imaging for identifying myocardial ischemia includes single
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1095806
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 2

Diagnosis and management of INOCA. Modified from reference (47).
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photon emission computed tomography (SPECT), PET/CT, stress

echocardiography, or stress CMR. Although these imaging

modalities are highly useful with high diagnostic accuracy for

obstructive CAD in clinical practice, their ability to diagnose

diffuse nonobstructive CAD is limited (55, 56).

CCTA is a noninvasive imaging technique that enables

visualization of cardiac structures, coronary plaque structure and

composition, and functional stenosis severity. Table 1

summarizes the recent clinical trials investigating the utility of

CCTA in patients with stable chest pain. CCTA reportedly offers

a high negative predictive value for significant obstructive CAD

and has become a first-line test for symptomatic patients with

suspected CAD (59), asymptomatic patients with low-to-

intermediate cardiovascular risk (59), and those with low pretest

probability (2). The strength of CCTA is that it provides direct

visualization of the entire coronary artery and determines the

presence of nonobstructive CAD. In the PROMISE (A

Randomized Comparison of Anatomic vs. Functional Diagnostic

Testing Strategies in Symptomatic Patients with Suspected

Coronary Artery Disease) trial which investigated stable
Frontiers in Cardiovascular Medicine 04
symptomatic outpatients referred for non-invasive evaluation of

suspected CAD (n = 10,003), there was no significant difference

between the two groups (randomized to anatomical testing with

CCTA or functional testing) in the primary outcome (7). Further

investigation demonstrated that CCTA had a higher discriminatory

ability to predict outcomes than functional testing (57). This finding

may be explained by the fact that CCTA enables the identification

of nonobstructive diseases that develop into ACS and obstructive

CAD requiring coronary revascularization (55, 56).

To test the hypothesis that an early invasive treatment strategy

would reduce events in patients with moderate or greater ischemia

rather than a conservative pharmacotherapeutic treatment strategy,

the ISCHEMIA trial included cases of stable angina with

documented moderate-to-severe (≥10%) ischemia (6). Blinded

CCTA was performed, and patients with left main coronary

artery lesions were excluded. A total of 5,179 patients from a

total of 8,518 were randomized, with 2,588 patients in the

invasive treatment group and 2,591 in the conservative treatment

group (mean age, 64 years; 40% had diabetes and 90% had

anginal symptoms). The invasive treatment group consisted of
frontiersin.org
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patients who underwent diagnostic catheterization within

approximately one month if the core laboratory demonstrated

≥10% ischemia with exclusion of left main CAD on CCTA;

PCI or CABG was performed within three months, if necessary.

The conservative treatment group did not require imaging tests

or invasive treatment but was continued on OMT, with a

primary focus of controlling the patients’ symptoms. The

follow-up period for both groups was 3.3 years, with very high

follow-up rates of 99.4% and 99.7%, respectively. These results

suggest that OMT may be an appropriate option for patients

with CCS who meet the inclusion criteria of the ISCHEMIA

trial with SPECT and CCTA. Extended analysis will provide

further insights into the appropriate management of patients

with CCS (60).
5. Non-invasive plaque imaging

The utility of CCTA-guided management has been well-

documented. The SCOT-HEART (Scottish Computed

Tomography of the Heart) trial demonstrated that CCTA-guided

therapy provides better clinical outcomes than standard therapy
FIGURE 3

Coronary computed tomography angiography and angiographic images of a
pain without ST-segment changes on electrocardiography. CCTA images (A–D
remodeling, low-attenuation plaque, napkin ring sign, and spotty calcificat
examination, the patient’s chest pain worsened, and ST-segment elevation w
of the LAD, which corresponded to the location of the high-risk plaque visua
thrombus secondary to plaque rupture. (G,H) Post-hoc analysis demonstra
from reference (61).
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does in patients with CCS (8). This can be explained by the

effects of aspirin, statins, coronary revascularization, and lifestyle

modifications through the identification of the presence of

coronary atherosclerotic plaques on CCTA. Figure 3 illustrates a

representative CCTA image of a patient with chest pain, showing

high-risk plaque features, which led to ACS. The ROMICAT-II

(Multicenter Study to Rule Out Myocardial Infarction by Cardiac

Computed Tomography) trial demonstrated that high-risk

coronary plaque features, including positive remodeling, low-

attenuation plaques (LAP), spotty calcification, and napkin-ring

sign, were independent predictors of ACS; these serve as useful

diagnostic tools to rule out ACS in clinical practice (62).

Although the predictive value of high-risk plaque features is not

high enough to predict long-term ACS prognosis, a recent

clinical trial demonstrated that a LAP volume of >4% is the

strongest predictor of clinical risk factors, plaque volume, and

stenosis severity (17). CCTA-derived high-risk plaques are

associated with an increased incidence of ACS even in patients

without myocardial ischemia (55). The combination of fraction

flow reserve-CT and coronary structural features may provide a

comprehensive assessment of patients requiring coronary

revascularization and future ACS events (63).
patient with acute chest pain. CCTA images of a patient with acute chest
) indicate 70–99% luminal stenosis with high-risk plaque features (positive
ion) in the proximal left ascending coronary artery (LAD). After CCTA
as detected. (E) Emergent coronary angiography revealed total occlusion
lized on CCTA. (F) Intravascular ultrasonography revealed an intraluminal
ted an increased pericoronary artery attenuation of >−70 HU. Modified
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CMR can assess perfusion and wall motion abnormalities of

the left ventricle and cardiac structures, serving as the gold

standard noninvasive imaging technique for diagnosing

cardiomyopathy (64, 65), myocarditis (66), MI, and mechanical

complications of MI (67). CMR with late gadolinium

enhancement also allows the visualization of scar tissue and

enables differentiation of recent MI from prior MI (68). CMR

with T1 mapping is an alternative method for assessing

myocardial edema (69, 70). CMR is widely used to differentiate

other diseases mimicking ACS, including Takotsubo

cardiomyopathy (65, 71) and MI with MINOCA (42). CMR also

allows visualization of coronary plaques by assessing the signal

intensity (72, 73). Hyperintense plaques, defined as a plaque-to-

myocardium signal intensity ratio of >1.4, reportedly predicts

ACS events in patients with suspected or known CAD (72).

Daniel et al. demonstrated an association of intraplaque

hemorrhage-related unstable carotid plaque features with stroke

and myocardial infarction in 1,349 patients without a history of

stroke or CAD with subclinical atherosclerosis. This indicates

that the presence of intraplaque hemorrhage in the carotid

arteries is associated with stroke and CAD development,

independent of plaque size or cardiovascular risk factors (74, 75).

PET/CT imaging with a variety of radioactive tracer probes is

used to identify and characterize arterial plaque burden at high

risk for rupture and subsequent thromboembolic vessel occlusion

(76). Peripheral vascular and coronary inflammation can be

detected and quantified using 18-F-fluorodeoxyglucose (18F-

FDG)-PET/CT (77). However, in approximately 50% of patients

with ACS or MI, no local increase in coronary 18F-FDG uptake

is observed. Thus, a less inflammatory but lipid-rich coronary

plaque burden may account for a significant portion of the

coronary plaque ruptures. Additionally, 18F-FDG-PET/CT scans

may be negative in lipid-rich plaques because inflammation-

induced macrophage infiltration, a major substrate for 18F-FDG

uptake, is less pronounced in the surviving hypoxic cells.
18F-fluoromisonidazole (FMISO) changes to a more reactive form

and remains intracellular by covalently binding to intracellular

molecules. Thus, while using 18F-FMISO to signal hypoxia, PET

in combination with 18F-sodium fluoride (18F-NaF) can

determine active calcification in the CAD process and

microcalcifications (78, 79).
6. Intracoronary plaque imaging

ICA, the gold standard for assessing CAD severity, enables

visualization of the coronary arterial lumen; however, its ability

to assess the outer vessel walls is limited. Intravascular

ultrasound (IVUS), optical coherence tomography (OCT), and

angioscopy are used to elucidate the pathogenesis of ACS and

progression of coronary atherosclerosis. The use of intracoronary

imaging in PCI guidance is increasing (80), thereby revealing the

post-interventional mechanisms of stent failure, including

thrombosis and restenosis (81, 82). Dual antiplatelet therapy

(DAPT) effectively prevents post-implantation stent thrombosis;

however, bleeding is the primary, major complication ofcoronary
Frontiers in Cardiovascular Medicine 07
revascularization (83). Complex PCI involves intervention in

patients with left main disease, multiple stent implantations, and

severely calcified lesions, often requiring a longer duration of

DAPT (84, 85). Clinical guidelines recommend the potential

benefit of an antiplatelet-anticoagulation combination therapy or

anticoagulation monotherapy (86). Furthermore, recent clinical

studies have demonstrated that intracoronary imaging may

beneficially affect the outcomes of patients who undergo PCI

(87). Whether antiplatelet or anticoagulation therapy is effective

in preventing device-oriented complications in patients

undergoing complex PCI remains controversial.

IVUS assesses the coronary plaque morphology, arterial lumen,

and vessel wall size, which improves our understanding of the

pathogenesis of ACS (88–90). In addition to advances in the

faster pullback of grayscale IVUS, virtual histology (VH-),

integrated backscatter (IB-), and near-infrared spectroscopy

(NIRS-) IVUSs allow the evaluation of atherosclerotic tissue

characteristics. In the PROSPECT trial using VH-IVUS, 697

patients with ACS were studied; plaque volume of >70%, VH-

thin-capped fibroatheroma (TCFA), and minimal luminal area of

<4 mm2 were predictors of lesions associated with a 3-year

incidence of major cardiovascular adverse events (MACE) (16).

However, IVUS’s (resolution: 100–200 µm) ability to detect

fibrous cap thickness in TCFA (<65 µm) is limited. NIRS–IVUS

is an imaging technique based on near-infrared spectroscopy that

assesses the probability of lipids being present as a chemogram

(91). A multicenter prospective study investigating 1,563 patients

showed that NIRS–IVUS enabled the identification of patients

with a high probability of developing MACE (92). Over a mean

follow-up of 732 days, the incidence of MACE in patients with

maxLCBI4mm ≥400 without significant stenosis was 13%, which

was twice as high as that in patients without maxLCBI4mm

≥400 (6%). These clinical studies indicate that the lipid/necrotic

core burden may be a potential therapeutic target.

OCT uses near-infrared light to image the structures of the

coronary vessel walls with a high resolution of 0–15 µm (93)

(Figure 4). OCT can investigate tissue response and stent

expansion or apposition during PCI; however, it requires blood

clearing during procedures. Recent clinical trials have

demonstrated the non-inferiority of OCT compared to IVUS and

its superiority over ICA alone (94). This indicates that

intravascular imaging-guided PCI has advantages over

angiography-guided PCI in patients with ACS (95) and CCS

(96). OCT aids in visualizing the microstructures of the coronary

arterial walls, including the fibrous cap (97), lipid content (98,

99), calcification (100), macrophages (101, 102), cholesterol

crystals (103, 104) and neovascularization (105–107). In the

CLIMA study (108), Prati et al. investigated the prognostic value

of OCT findings of lesions in the left descending coronary artery.

In a total of 1,776 lipid plaques, the presence of MLA <3.5 mm2,

fibrous cap thickness <75 µm, lipid arc circumferential extension

of >180°, and OCT-defined macrophages were associated with an

increased risk of the primary endpoint. Despite the substantial

association between the presence of TCFA and MACE, OCT-

TCFAs do not necessarily lead to ACS (99). Most thrombus

formation associated with plaque rupture or erosion without
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FIGURE 4

Optical frequency domain imaging of ST-segment elevation myocardial infarction. (A,B) Invasive coronary angiography revealed total occlusion of the
mid-portion of the right coronary artery with collateral flow to the left descending coronary artery. (C–F) optical frequency domain imaging (OFDI)
images after thrombectomy. (C) Thin capped fibroatheroma, (D,E) calcified nodules (yellow arrows), and (F) calcification.
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clinical events is thought to be remodeled by vessel healing,

followed by progression of the stenosis grade (40, 109). These

findings have motivated the introduction of novel intracoronary

imaging modalities, such as near-infrared autofluorescence and

near-infrared fluorescence OCT (110), dual-modality OCT-IVUS

(111), and polarization-sensitive (PS-) OCT (112, 113) to

investigate the biological tissue components and comprehensive

structures of coronary atherosclerosis (114, 115).
7. Lipid-lowering therapy in CAD

A meta-analysis of randomized clinical trials (RCT)

investigating the effects of intensive lipid-lowering therapy found

that statin therapy caused regression of the atherosclerotic disease

burden (116). Other RCTs have also demonstrated that for

patients at a higher risk of atherosclerosis, lower LDL cholesterol

levels were better for plaque regression and CAD prognosis

(117–119). Ezetimibe, a commonly used non-statin lipid-lowering

drug, reduces LDL cholesterol levels by 13%–20%, with a low

incidence of side effects. The IMPROVE-IT (Improved Reduction

of Outcomes: Vytorin Efficacy International Trial) trial

demonstrated that the addition of ezetimibe to statin therapy
Frontiers in Cardiovascular Medicine 08
resulted in a progressive reduction in LDL cholesterol levels and

improved cardiovascular outcomes (118).

The role of imaging in the investigation of the effects of lipid-

lowering therapies in patients with CAD is being increasingly

recognized. In the FOURIER trials, Sabatine et al. demonstrated

that PCSK9 inhibition with evolocumab, a monoclonal antibody,

lowers the LDL cholesterol levels, leading to a reduced risk of

cardiovascular events. The effect of alirocumab, a PCSK9

inhibitor, on the plaque volume and characteristics were

evaluated in the PACMAN-AMI (Effects of the PCSK9 Antibody

Alirocumab on Coronary Atherosclerosis in Patients With Acute

Myocardial Infarction) randomized trial (15). The mean change

in atherosclerotic volume assessed using IVUS was −2.13% in the

alirocumab group and −0.92% in the placebo group. The change

in the minimal fibrous capsule thickness was also more in the

alirocumab group than in the placebo group, proving its plaque-

reducing effect.

CCTA is an imaging modality widely used to study the

pharmacological effects of changes in the plaque volume and

composition. Budoff et al. demonstrated that icosapent ethyl

reduced LAP volume (<50 HU) on CCTA over 18 months (58).

Furthermore, in 857 patients undergoing serial CCTA imaging,

van Rosendael et al. investigated the compositional changes in

the untreated, progressed coronary lesions, including low-
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attenuation (−30 to 75 HU), fibro-fatty (76–130 HU), fibrous

(131–350 HU), low-density calcium (351–700 HU), high-density

calcium (701–1,000), and 1 K (1,000 HU) plaques (11). Serial

CCTA imaging demonstrated that statin therapy is associated

with a decrease in low-attenuation and fibrofatty plaques and a

greater progression of high-density calcium and 1 K plaques.

Taken together, CCTA is a useful imaging modality that assesses

coronary structures and disease burden and its changes in

response to OMT and lifestyle modifications.
8. Anti-inflammatory therapy and
future perspectives of imaging

Although experimental studies have demonstrated a causal

relationship between vascular inflammation and atherosclerosis,

until recently, no robust evidence has suggested that anti-

inflammatory therapy can prevent adverse cardiovascular

outcomes (120). Table 2 summarizes the recent clinical trials

that have investigated the effects of anti-inflammatory therapy in

patients with CAD. In the CANTOS (Canakinumab

Antiinflammatory Thrombosis Outcome Study) trial which

evaluated the effects of inflammation-targeted therapy in patients

with stable CAD at residual inflammatory risk, high doses of

canakinumab produced a 15% reduction in MACE and a 17%

reduction in cardiovascular events (121). The CIRT trial, a

prospective RCT consisting of 4,786 patients with stable

atherosclerosis and diabetes or metabolic syndrome,

demonstrated that low-dose methotrexate did not reduce MACE

(122). However, low-dose methotrexate reduces plasma IL-1β, IL-

6, and CRP levels, supporting the concept that adequate

inhibition of the innate immune pathway is necessary to ensure

long-term cardiovascular benefits.

COLCOT and LoDoCo2 are two large clinical trials that

provided and confirmed the hypothesis that repurposed

colchicine is an effective anti-inflammatory agent in

atherosclerosis (123, 125). Colchicine is an antimitotic agent that

inhibits tubulin polymerization and microfibrinolysis. Part of its

anti-inflammatory effect is due to its inhibition of NLRP3

inflammasome formation, which indirectly suppresses IL-1β

activation and decreases the downstream IL-6 and CRP levels.

The COLCOT trial included approximately 5,000 patients with

ACS who either received colchicine at 0.5 mg/day or placebo.

During the 2-year follow-up, the colchicine group showed a 23%

reduction in cardiovascular events. These clinical trials provided

evidence for the addition of anti-inflammatory therapy to

standard medical regimens, and suggested the importance of

imaging techniques to assess vascular inflammation and plaque

stabilization (10, 126, 127).

Imaging of the inflammation for the risk stratification can

determine patients at a higher risk of atherosclerotic cardiovascular

disease (ASCVD). Although PET/CT enables assessment of the

inflammatory status of the large aorta, pericoronary arteries, and

carotid arteries, its clinical application remains limited (128–131).

CCTA enables the measurement of epicardial adipose tissue

volume and composition (132, 133). Recent software developments
Frontiers in Cardiovascular Medicine 10
have enabled pericoronary adipose tissue attenuation analysis

(Figure 3D), which serves as a predictor of patient outcomes (18).

In addition, degradation of collagen, a major component of fibrous

caps, plays a pivotal role in coronary plaque healing (134).

Microscopic polarization-sensitive (PS) OCT (112, 113) is used to

assess plaque structure and tissue polarization. Catheter-based PS-

OCT enables quantitative assessment of plaque characteristics, such

as collagen, vascular smooth muscle cells, and macrophages, by

measuring polarization properties (birefringence and

depolarization) (135–137). Otsuka et al. demonstrated that fibrous

caps of plaques in patients with ACS had lower birefringence than

those of plaques in patients with stable CAD (138). These findings

indicate fibrous cap integrity, which could be weakened by matrix

metalloproteases-induced collagen degradation. Further studies are

warranted to determine whether polarimetric signatures provide

additional value for diagnosing plaque stability beyond that

provided by the coronary plaque structural features (82, 137–139).
9. Conclusions

The identification of patients with myocardial ischemia can

guide the management of stable CAD, which contributes to

appropriate coronary revascularization. Systemic and vascular

inflammation are potential imaging targets to assess plaque

vulnerability in patients at a higher risk of ASCVD events. Novel

imaging technologies will open up new avenues for the

assessment of plaque vulnerability beyond the stage of ischemia.
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