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Analysis of the amplified p-wave
enables identification of patients
with atrial fibrillation during sinus
rhythm
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Nicolas Pilia, Louisa Mayer, Martin Eichenlaub, Juergen Allgeier,
Marie Heidenreich, Christoph Ahlgrim, Marius Bohnen,
Heiko Lehrmann, Dietmar Trenk, Franz-Josef Neumann,
Dirk Westermann, Thomas Arentz and Amir Jadidi*

Arrhythmia Division, Clinic for Cardiology and Angiology, University Heart Center Freiburg-Bad
Krozingen, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany

Aim: This study sought to develop and validate diagnostic models to identify

individuals with atrial fibrillation (AF) using amplified sinus-p-wave analysis.

Methods: A total of 1,492 patients (491 healthy controls, 499 with paroxysmal

AF and 502 with persistent AF) underwent digital 12-lead-ECG recording during

sinus rhythm. The patient cohort was divided into training and validation set in a

3:2 ratio. P-wave indices (PWI) including duration of standard p-wave (standard

PWD; scale at 10 mm/mV, sweep speed at 25 mm/s) and amplified sinus-p-wave

(APWD, scale at 60–120 mm/mV, sweep speed at 100 mm/s) and advanced inter-

atrial block (aIAB) along with other clinical parameters were used to develop

diagnostic models using logistic regression. Each model was developed from the

training set and further tested in both training and validation sets for its diagnostic

performance in identifying individuals with AF.

Results: Compared to standard PWD (Reference model), which achieved an

AUC of 0.637 and 0.632, for training and validation set, respectively, APWD

(Basic model) importantly improved the accuracy to identify individuals with AF

(AUC = 0.86 and 0.866). The PWI-based model combining APWD, aIAB and

body surface area (BSA) further improved the diagnostic performance for AF

(AUC = 0.892 and 0.885). The integrated model, which further combined left

atrial diameter (LAD) with parameters of the PWI-based model, achieved optimal

diagnostic performance (AUC = 0.916 and 0.902).

Conclusion: Analysis of amplified p-wave during sinus rhythm allows

identification of individuals with atrial fibrillation.

KEYWORDS

atrial fibrillation, p-wave duration, electrocardiogram (ECG), diagnostic accuracy, atrial
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GRAPHICAL ABSTRACT

Illustration of PWD measurement and diagnostic performance from external validation. Panel (A) depicts the PWD measurement from the same ECG
of an individual at standard scaling (10 mm/mV, 25 mm/s) and amplified scaling (60 mm/mV, 100 mm/s) using digital calipers. Panel (B) illustrates the
ROC curves from external validation of all four diagnostic models regarding identifying individuals with AF, the component of each model and their
AUC values are listed on the right margin. Panel (C) further delineates the diagnostic performance in external validation of each model in their
respective optimal thresholds regarding accuracy, AUC, sensitivity, specificity, PPV and NPV. PWD, p-wave duration; ECG, electrocardiography; ROC
curve, receiver operating characteristic curve; AF, atrial fibrillation; AUC, area under the curve; PPV, positive predictive value; NPV, negative
predictive value.

Introduction

Atrial fibrillation (AF) is associated with significant morbidity
and mortality (1). The high health care burden of AF and AF-
related complications such as stroke or heart failure have prompted
various attempts for risk prediction in the past decades, using ECG-
derived p-wave indices (PWI) and cardiac imaging (2–4). Although
several studies reported the potential predictive value of p-wave
duration (PWD) for AF, ischemic stroke or mortality (5–8), the
reported results were variable and the predictive value of PWD was
limited, when measured using a standard scaling of 10 mm/mV,
25mm/s, i.e., standard PWD. In this context, we recently reported
a novel p-wave analysis method that uses the measurement of
p-wave duration (PWD) in amplified digital 12-lead-ECG (APWD)
during sinus rhythm (SR), with high correlation to both the
invasive bi-atrial activation time during electrophysiological study
(EPS) and the extent of atrial fibrotic remodeling as detected
by endocardial voltage and activation mapping in patients with
atrial cardiomyopathy (9, 10). In the current study, we aim to
compare the diagnostic performance of standard PWD to APWD
and establish APWD-based diagnostic models for AF in a large
cohort of consecutive patients.

Materials and methods

Study design and population

As illustrated in the study flowchart (Figure 1), Consecutive
patients referred to our center between 2017 and 2021 for
electrophysiological study were screened for study inclusion.
Inclusion criteria were availability of a high-quality digital 12-lead

ECG in sinus rhythm. Exclusion criteria were prior right- or left-
atrial ablations, prior cardiac surgery or pacemaker-implantation
of any kind. Patients with confirmed diagnosis of paroxysmal
or persistent atrial fibrillation were allocated to the AF-cohort.
Patients who presented with AF in their admission ECG, first
underwent electrical cardioversion to sinus rhythm and were
scheduled for pulmonary vein isolation (PVI) 6–8 weeks thereafter.
In these patients, the analysis of 12-lead-ECGs during sinus rhythm
was based on ECG recordings from the rehopsitalisation (i.e.,
6–8 weeks after electrical cardioversion to SR). For the purpose of
the current study, patients diagnosed with atrio-ventricular nodal
reentrant tachycardia in the absence of AF or other arrhythmia
were considered as control cohort.

Training and validation sets

All individuals were subsequently randomized into training
and validation set with predefined ratio of 3:2. The former was used
to develop diagnostic models for AF and internally validate model
performance, the latter was used to validate model performance in
an external way. Current study conforms to the principles outlined
in the Declaration of Helsinki and was approved by the institutional
ethics committee, all patients provided written informed consent
prior to enrollment.

Digital 12-lead-ECG recording and
p-wave analysis

Digital 12-lead-ECG was recorded during sinus rhythm in all
study patients using LabsystemPro EP-system (Boston Scientific)
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FIGURE 1

Study flowchart. EPS, electrophysiology study; ECG, electrocardiography; Echo, echocardiography; Standard PWD, duration of standard
(non-amplified) p-wave; APWD, duration of amplified p-wave.

prior to sedation at the beginning of electrophysiology study with
the following filter settings: 0.05–100 Hz without additional 50 Hz
filtering at a sampling rate of 1,000 Hz. The duration of the
standard p-wave (standard PWD) was measured at 10 mm/mV and
25 mm/s scaling and the duration of amplified p-wave (APWD)
was measured at amplified scaling (60–120 mm/mV and 100 mm/s)
(Figure 2A and Supplementary Figure 1). The duration of p-wave
was determined using digital calipers from the earliest p-wave onset
until latest p-wave ending in any of the 12 leads. Standard PWD and
APWD were calculated as the mean value of three consecutive beats
measurements. Advanced inter-atrial block (aIAB) was defined as
initially positive p-wave with negative terminal deflection in two of
three inferior leads. The measurement of standard PWD, APWD
and aIAB was performed independently by two cardiologists who
were blind to patients’ clinical characteristics.

Statistical analysis

Continuous variables were expressed as mean ± SD or
median± interquartile range based upon distribution status. Given
the sample size of our study, the normality test was performed using
both Shapiro–Wilk’s test and visual estimation of the P–P plot.
The homoscedasticity of the dataset was performed using Levene’s
test. Based on the results of normality and homoscedasticity,
comparisons between two cohorts was performed using t-test
or Mann-Whitney U test. Categorical variables were expressed
as frequency and percentage (%) and were compared by Chi-
square test or Fisher’s exact test. Inter-and intra-observer variability
was analyzed using intra-class correlation coefficient (ICC),

Bland–Altman plot, and correlation curve were used to illustrate
the consistency in PWD measurement within the same observer
and between observers.

Optimal PWD parameter selection

As illustrated in Figures 2B, C, 3A, the current study provided
both standard PWD and APWD as candidate PWD parameters
for model development. By comparing their efficacy in identifying
individuals with AF, the one with superior discriminatory
performance (AUC or C-index) would be used as a basic model
and undergo further steps for multivariable AF diagnostic model
construction whereas the other would be used as a reference model.

Model development

Model development was performed in the training set
(Figure 3B). The optimal PWD parameter, along with other
variables describing baseline characteristics were used as candidate
variables prior to univariable logistic regression analysis.
Subsequently, significant variables (p < 0.05) in univariable
regression would undergo further multivariable regression analysis.
As a result, variables that maintained p < 0.05 after multivariable
logistic regression would be selected to develop the multivariable
AF diagnostic model (Integrated model). Additionally, alternative
diagnostic models were also proposed using less variables in order
to improve model practicability and test model stability with regard
to diagnostic efficacy.
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FIGURE 2

Illustration of PWD measurement in standard and amplified scaling. Panel (A) illustrates the results of p-wave duration from the same digital 12-lead
ECG measured at standard scaling (10 mm/mV, 25 mm/s) and amplified scaling (60 mm/mV, 100 mm/s) using digital calipers. PWD was measured
from the earliest p-wave onset until latest p-wave ending in any of the 12 leads at respective scaling. The noise level of annotated by the red dashed
lines. Panel (B,C) illustrate the difference between control and AF cohorts in internal and external validation using standard PWD (reference model)
and APWD (basic model), respectively. PWD, p-wave duration; standard PWD, duration of standard p-wave; APWD, duration of amplified p-wave;
∗∗∗∗p < 0.001.

FIGURE 3

Development of diagnostic models from the training set. Panel (A) illustrates the data collection in the training set in the current study, different
parameters from echocardiography, 12-lead ECG and other baseline characteristics are collected. Every ECG was measured at both standard setting
(25 mm/s, 10 mm/mV) and amplified setting (100 mm/s, 60–120 mm/mV) to acquire the standard PWD and amplified PWD, respectively. Panel
(B) depicts the steps in developing models. Amplified PWD and standard PWD were compared regarding their AUC in discriminative power to
identify patients with AF. The one with higher AUC value is used as the basic model and proceed to further steps whereas the one with lower AUC
value is used as the reference model. Basic model, along with other echo and baseline parameters are selected by univariate and subsequent
multivariate parameters. The integrated model consists of all the significant parameters from the logistic analysis. Additionally, in order to create an
alternative model with less variables and more oriented at ECG parameters, a PWI-based model is developed by excluding echo parameters (if any)
from the integrated model. AUC, area under the curve; BSA, body surface area; ECG, electrocardiography; Echo, echocardiography; LAD, left atrial
diameter; LVEF, left ventricular ejection fraction; PWD, p-wave duration; PWI, p-wave index; Uni, univariate; Multi, multivariate.
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Model validation

Validation of models were performed both internally (in
training set) and externally (in validation set) regarding their
efficacy in discrimination, calibration, net benefit and diagnostic
accuracy using optimal thresholds.

Discriminatory power of each model for identification of AF
patients was quantified by area under the curve (AUC) of respective
receiver operating characteristics (ROC) curve, ranging from
0.5 (random forecast) to 1.0 (perfect discrimination). Additional
comparison regarding discriminatory power between models was
performed using integrated discrimination improvement (IDI).
Two-tailed p values were calculated for all tests and considered
significant at p value < 0.05.

After the components of each model were determined, the
individual probability for AF by each model was estimated.
Calibration plot of each model was created to visualize the
agreement between estimated probabilities for AF and the actual
probabilities observed in each set. Moreover, Brier score, as a
parameter that quantifies the accuracy of probability by diagnostic
model (0 for total accuracy, 1 for wholly inaccurate) was calculated
and noted in the calibration curves.

The net benefit in clinical usefulness of selected models across
a range of probability threshold was illustrated by decision curve
analysis (DCA). The ‘None’ and ‘All’ curve indicated the expected
net benefit when intervention was performed to “none” and “all”
of the patients.

Diagnostic performance evaluation of each model consisted
of sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV) and accuracy. Based on ROC curve
coordinates of each model from training set, optimal probability
threshold from every model for AF was determined by Youden
Index (sensitivity + specificity − 1). Diagnostic performance
of each model was subsequently evaluated using determined
probability thresholds in both training and validation sets.

Statistical analysis was performed with SPSS version
27.0 for Macintosh (IBM-Corporation, Armonk, NY, USA),
GraphPadPrism-V9.0 for Macintosh (GraphPad Software, LaJolla,
CA, USA) and R software version 4.0.31 with rms, pROC, ggplot2,
rmda, ggDCA, caret, and PredictABEL packages.

Results

Patient characteristics and
randomization

A total of 1,492 individuals were included: 491 (32.9%) patients
with AVNRT but no history of AF or other arrhythmias were
in the control cohort, and 1,001 (67.1%) patients in the AF
cohort (499 (33.5%) with paroxysmal AF and 502 (33.6%) with
persistent AF). Baseline characteristics are presented in Table 1
and Supplementary Table 1. Patients with AF were predominantly
male, had higher body mass index (BMI), larger body surface
area (BSA), larger LA-diameters (LAD), lower LVEF, presented
more often hypertension, stroke and coronary artery disease.

1 http://www.r-project.org/

Subsequently, 896 (60.1%) of the total patients were randomized
into training set and 596 (39.9%) patients into validation set
(Figure 1). No significant differences in baseline characteristics
were observed between training and validation set (Supplementary
Table 2).

Differences between “standard PWD” and
“APWD” in control cohort vs. AF cohort

As illustrated in Figures 2B, C, both standard PWD and
APWD differed significantly in training set between control and
AF cohort (standard PWD: 115 ± 11 ms in control cohort vs.
121 ± 12 ms in AF cohort, p < 0.001; APWD: 122 ± 14 ms
in control cohort vs. 149 ± 22 ms in AF cohort, p < 0.001)
while the difference was more pronounced in the latter. Consistent
findings were observed in the validation set, in contrast to standard
PWD (116 ± 11 ms in control cohort vs. 122 ± 13 ms in AF
cohort, p < 0.001), APWD displayed larger differences between
two cohorts (122 ± 14 ms in control cohort vs. 150 ± 23 ms
in AF cohort, p < 0.001). Subgroup sex-specific analyses
revealed consistency of these findings (Supplementary Figure 2
and Supplementary Table 3). Subsequently, sensitivity analyses
were performed to exclude the potential bias mediated by use
of antiarrhythmia pharmaceuticals and anticoagulants in the
AF cohort. As listed in Table 1, 52.1% of patients in AF
cohort had current or history use of antiarrhythmia drugs
(Amiodarone/Dronedarone/Flecanid/Propafenon/Sotalol) within
four weeks that might influence the atrial de- and repolarization.
In those without use of aforementioned drugs, comparisons in
APWD and standard PWD were performed between control and
AF cohort. As a result, APWD was significantly longer in the
AF cohort than in the control cohort (143.9 ± 22.4 ms vs.
122.9 ± 14.8 ms, p < 0.001). In standard PWD, on the other hand,
although the difference between two cohorts reached statistical
significance (p < 0.001), the absolute value was insufficient to
provide clinical implication (119.4 ± 12.3 ms vs. 115.7 ± 11.1 ms).
Moreover, oral anticoagulants (OAC) were used in over 90% of
AF cohort, in the remaining 61 OAC-free patients in AF cohort
and 491 patients in control cohort, a profound difference in
APWD remained significant (144.1 ± 24.2 ms vs. 122.9 ± 14.8 ms,
p < 0.001). Similar findings were also observed in standard
PWD with marginal absolute difference (120.3 ± 12.9 ms vs.
115.7± 11.1 ms, p= 0.004).

Reproducibility in measurements using
amplified p-wave analysis

Among 1,492 study patients, 25 (1.7%) presented sinus ECG
recording with unsatisfying noise level (baseline noise above
0.08 mV). In those cases, the digitalized 12-lead-ECGs that were
recorded within the 3-month preceding the EPS were taken for
analysis. Each 12-lead digitalized ECG was measured by two
independent cardiologists using digital calipers. The amplified
scaling of each ECG was manually adjusted to obtain an optimal
signal-to-ratio that allowed visualization of the entire p-wave
(Supplementary Figure 1). As a result, among 1492 ECG in total
cohort, 83.3% of them were measured at an amplified scaling
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TABLE 1 Baseline characteristics of total cohort.

Variables Overall (n = 1492) Control (n = 491) AF (n = 1001) P-value

Age, years 60.14± 14.42 60.02± 17.14 60.19± 12.88 0.828

Female, n (%) 631 (42.30%) 262 (53.40%) 369 (36.90%) <0.001

Paroxysmal AF, n (%) 499 (33.44%) 0 499 (49.85%) <0.001

BMI, kg/m2 27.09± 4.66 25.72± 4.39 27.75± 4.64 <0.001

BSA, cm2 1.97± 0.23 1.87± 0.21 2.01± 0.22 <0.001

LAD, mm 40.19± 6.23 36.55± 4.95 41.90± 6.03 <0.001

LVEF,% 59.81± 9.87 61.67± 8.76 58.92± 10.25 <0.001

Hypertension, n (%) 778 (52.10%) 212 (43.20%) 566 (56.5%) <0.001

Diabetes, n (%) 127 (8.50%) 35 (7.10%) 92 (9.2%) 0.180

Stroke, n (%) 36 (2.40%) 4 (0.8%) 32 (3.2%) 0.004

TIA, n (%) 36 (2.40%) 10 (2.0%) 26 (2.6%) 0.593

CHD, n (%) 177 (11.90%) 35 (7.1%) 142 (14.20%) <0.001

CHA2DS2-VASc score 1.94± 1.45 1.74± 1.47 2.03± 1.43 <0.001

GFR (ml/min/1.73 m2) 80.58± 19.79 84.24± 19.71 78.79± 19.59 <0.001

Creatinin clearance (mg/dl) 0.96± 0.33 0.89± 0.21 0.99± 0.38 <0.001

Antiarrhythmia drugs, n (%) 522 (35.0%) 0 522 (52.1%) <0.001

Amiodarone, n (%) 247 (16.60%) 0 247 (24.7%) <0.001

Dronedarone, n (%) 14 (0.9%) 0 14 (1.4%) 0.019

Flecanid, n (%) 205 (13.7%) 0 205 (20.5%) <0.001

Propafenon, n (%) 11 (0.7%) 0 11 (1.1%) 0.044

Sotalol, n (%) 45 (3.0%) 0 45 (4.5%) <0.001

Anticoagulant, n (%) 940 (63.0%) 0 940 (93.9%) <0.001

VKA, n (%) 159 (10.7%) 0 159 (15.9%) <0.001

Apixaban, n (%) 200 (13.4%) 0 200 (20.0%) <0.001

Rivaroxaban, n (%) 429 (28.8%) 0 429 (42.9%) <0.001

Edoxaban, n (%) 63 (4.2%) 0 63 (6.3%) <0.001

Dabigatran, n (%) 89 (6.0%) 0 89 (8.9%) <0.001

AF, atrial fibrillation; BMI, body mass index; BSA, body surface area; LAD, left atrial diameter; LVEF, left ventricular ejection fraction; TIA, transient ischemic attack; CHD, coronary heart
disease; GFR, glomerular filtration rate; VKA, vitamin-K antagonist.

of 60 mm/mV, 100 mm/s, and the remaining 16.7% of cases,
due to low p-wave amplitudes, were measured at 120 mms/mV,
100 mm/s. An excellent agreement was observed both in intra-
observer (ICC 0.951, 95%CI: 0.936–0.963) and inter-observer
(ICC 0.915, 95%CI: 0.875–0.941) measurements. Both the intra-
and inter-observer measurements were performed on the same
p-waves, but after a three-month time interval between the first and
second measurement. Bland-Altman plots and correlation curves
illustrate the agreement in each measurement within and between
observers (Supplementary Figure 3).

Discriminatory performance of standard
PWD and APWD to identify individuals
with AF

In order to determine the optimal candidate between
standard PWD and APWD for further development of diagnostic

models, C-index from training set was calculated to compare
the discriminatory power between standard PWD and APWD.
In contrast to standard PWD (C-index: 0.637, 95%CI: 0.599–
0.675), APWD achieved significantly higher C-index value
(0.86, 95%CI: 0.836–0.884, p < 0.001). Consistent results
were observed in validation set (0.632, 95%CI: 0.586–0.679
in standard PWD vs. 0.866, 95%CI: 0.836–0.895 in APWD;
p < 0.001).

Univariable and multivariable analysis for
variable selection (training set)

Given the significant superiority in discriminatory power of
APWD over standard PWD between control and AF cohort,
APWD instead of standard PWD was used for the construction of
further AF diagnostic models. As shown in Table 2, in univariable
analysis, significant AF predictors (p < 0.05) were further included
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TABLE 2 Univariable and multivariable analysis of AF predictors.

Univariable P-value OR 95%CI

aIAB 0.996 9.87e + 08 0 –

Sex <0.001 0.535 0.404 0.709

Age 0.521 1.003 0.994 1.012

APWD <0.001 1.096 1.082 1.11

Hypertension <0.001 2.601 1.951 3.468

Diabetes 0.223 1.382 0.821 2.327

Stroke 0.018 11.286 1.514 84.139

TIA 0.529 1.393 0.497 3.904

CHD <0.001 2.705 1.597 4.582

BMI <0.001 1.104 1.068 1.142

BSA <0.001 14.415 7.138 29.109

LAD <0.001 1.207 1.168 1.247

LVEF <0.001 0.964 0.949 0.979

Multivariable P-value OR 95%CI

Sex 0.236 0.78 0.517 1.177

APWD <0.001 1.087 1.071 1.103

Hypertension 0.715 0.927 0.616 1.394

Stroke 0.084 8.803 0.747 103.71

CHD 0.529 1.249 0.626 2.492

BMI 0.612 0.986 0.935 1.04

BSA 0.034 3.53 1.103 11.293

LAD 0.008 1.056 1.015 1.1

LVEF 0.841 1.002 0.981 1.024

aIAB, advanced inter-atrial block; APWD, duration of amplified p-wave; TIA, transient
ischemic attack; CHD, coronary heart disease; BSA, body surface area; BMI, body mass index;
LAD, left atrial diameter; LVEF, left ventricular ejection fraction.

in multivariable logistic regression analysis. As a result, only APWD
(p < 0.001), BSA (p = 0.034), and LAD (p = 0.008) remained
significant, and were further incorporated for identification of
individuals with AF.

Development of diagnostic models for
AF (training set)

As described under supplemental statistical section, standard
PWD was therefore used as a reference model. Given the
above-mentioned results, APWD, BSA and LAD were considered
for integrated model construction. In order to facilitate model
practicability in clinical setting, we intended to provide two
alternative models with less variables: (1) APWD alone was
chosen as a basic model. (2) A PWI-based model was established
as another alternative ECG model. In this context, advanced
Inter-atrial block (aIAB), as a valuable predictor of left atrial
arrhythmogenic/fibrotic substrate with high specificity (9), was
incorporated to the models. As a result, we developed four
diagnostic models for identification of individuals with AF:
(1) Reference model (standard PWD), (2) Basic model (APWD),

(3) PWI-based model (APWD + aIAB + BSA), and (4) Integrated
model (APWD + aIAB + BSA + LAD).

Validation of diagnostic models for AF

Discrimination between control and AF cohort
As illustrated in Figures 4A, C, the integrated model achieved

optimal discriminatory performance in both internal (AUC 0.916)
and external validation (AUC 0.902) in comparison to the
basic model and the PWI-based model, indicating its prominent
potential for identification of AF patients. Although alternative
models contained less variables, they still maintained an AUC
value over 0.85 in both validations, suggesting that APWD
was an essential component for identification of AF patients
(Supplementary Table 4). In contrast, standard PWD achieved
significantly lower discriminatory performance (AUC: 0.637 and
0.632). Additionally, we performed a subgroup analyses to evaluate
the discriminative performance of APWD and standard PWD
in differentiation between paroxysmal AF cohort from control
cohort. In the training set, APWD achieved an AUC of 0.777
(95%CI: 0.740–0.813) whereas standard PWD achieved only
mild discriminative power (AUC: 0.624, 95%CI: 0.579–0.668).
Similar results were observed in the validation set regarding AUC
between paroxysmal AF cohort and control cohort (APWD: 0.780,
95%CI: 0.734–0.826 vs. Standard PWD: 0.623, 95%CI: 0.568–
0.678). Integrated discrimination improvement (IDI) is a statistical
parameter to evaluate the ability of a model to improve the
average sensitivity without reducing average specificity. As shown
in Supplementary Table 5, both PWI-based model and integrated
model showed significantly improved discriminatory performance
compared to the basic model in internal and external validation.
Based on AUC comparison between integrated- and PWI-based
model (p< 0.001 and p= 0.005 in internal and external validation)
and IDI value, the integrated model was associated with higher
accuracy to correctly identify patients with AF than PWI-based
model.

Calibration between estimated and observed AF
probabilities

Brier score, which is defined as the mean squared difference
between the observed and estimated outcome, allows estimation
of model calibration performance (“0” for optimal calibration,
“1” for entirely inaccurate). As illustrated in calibration curves
(Supplementary Figure 4) integrated model displayed excellent
agreement between estimated and observed AF probability
with Brier score of 0.103 and 0.112 in internal and external
validation, respectively. PWI-based Reference model and basic
model, despite fewer variables, also demonstrated rather good
agreement between estimated and observed AF probability.
Reference model, in contrast to other APWD-based models,
achieved insufficient performance with Brier score of 0.209 and
0.210 in respective validation.

Decision curve analysis for net benefit
assessment

As illustrated in Figures 4B, D, the net benefit for clinical
usefulness by each diagnostic model across a range of AF-risk
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FIGURE 4

ROC and DCA curves. In internal (upper panel) and external validation (lower panel), ROC curves of reference model (red), basic model (blue),
PWI-based model (brown) and integrated model (yellow) are plotted (A,C) with model components and AUC value annotated at right side. DCA
(B,D) illustrates the clinical impact (net benefit) of diagnostic model with reference curves of “Treat All” and “Treat None”. “Treat All” and “Treat None”
described the impact of intervention for “All” and “None” of individuals for target outcome (AF) respectively, when diagnostic model is not applied.
ROC, receiver operating characteristics; AUC, area under the curve; DCA, decision curve analysis; PWD, p-wave duration.

thresholds was assessed using Decision curve analysis (DCA).
Results from internal and external validations demonstrated
comparable promising net benefit across potential thresholds by
integrated and PWI-based models, indicating their robust efficacy
in identification of AF patients. The basic model, on the other
hand, presented slightly reduced net benefit in comparison to
integrated model and PWI-based model when thresholds were
above 0.50 in both internal and external validation. In contrast,
the reference model (standard PWD) demonstrated only marginal
benefit in both internal and external validation, making only
marginal difference than treating all or none of individuals when
no diagnostic model was used.

Diagnostic performance using optimal
thresholds and development of
nomograms for identification of AF
patients

Based on the ROC curve of each model in training set,
respective optimal thresholds were determined and subsequently
applied in both training and validation sets to dichotomize the
AF probability as high risk (above threshold) or low risk (below
threshold). As a result, the optimal thresholds of the reference
model and basic model were determined with a standard PWD
of 121 ms and APWD of 136 ms, respectively. The optimal
thresholds of PWI-based model and integrated model, however,

due to their multi-variable feature, were determined by ROC
curves based on their estimated AF probability. After calculating
Youden index, we determined AF probability of 0.63 and 0.65 as
optimal thresholds for the PWI-based model and the integrated
model, respectively. Detailed diagnostic performance of each
model in internal and external validation was illustrated in
Supplementary Figure 5 and Table 3. In an additional effort
to facilitate the application of PWI-based and integrated model
for identification of patients with AF, we developed a nomogram
for each of those two models and incorporated the optimal
thresholds to assist further decision-making (Figure 5), each
value in the listed parameters (APWD, aIAB, BSA, etc.) can be
converted into a corresponding points at the ‘Points scale’ at
the top, and the sum of all points from every parameter can
be used to estimate the risk for AF. Based on the individual
result of APWD, IAB, BSA (and LAD), the nomogram allowed
estimation of the personalized risk for AF, and by comparing it
with the ROC-defined optimal threshold, each individual would
be assigned as either high or low risk for AF (illustrative
example in Supplementary Figure 6 to guide the use of both
nomograms).

Discussion

The present study provides three main findings: (1) Compared
to standard PWD, the diagnostic models based on APWD
significantly improve the accuracy for the identification of
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TABLE 3 Optimal thresholds in models with diagnostic performance.

Randomization Model Reference Basic PWI-based Integrated

Component Standard PWD APWD APWD, aIAB, BSA APWD, aIAB, BSA, LAD

Threshold 121 ms 136 ms AF probability 0.63 AF probability 0.65

Training set Accuracy 55.7% 76.6% 81.4% 81.7%

sensitivity 47.8% 71.5% 81.1% 81.1%

specificity 72.1% 86.9% 81.8% 82.8%

PPV 77.5% 91.0% 90.0% 90.5%

NPV 40.5% 60.3% 68.3% 68.5%

Validation set Accuracy 56.0% 76.8% 80.9% 80.7%

sensitivity 48.5% 73.4% 81.8% 80.9%

specificity 71.7% 84.0% 78.9% 80.4%

PPV 78.0% 90.5% 88.9% 89.5%

NPV 40.2% 60.4% 67.7% 67.0%

Standard PWD, duration of standard (non-amplified) p-wave; APWD, duration of amplified p-wave; aIAB, advanced inter-atrial block; BSA, body surface area; LAD, left atrial diameter; PPV,
positive predictive value; NPV, negative predictive value.

FIGURE 5

Nomograms for identification of AF patients. Nomogram of PWI-based model (upper panel) and Integrated model (lower panel). Each value from
respective scale corresponds to a specific value at the top points scale, and the total points correspond to the estimated risk (bottom scale) for AF
by respective model. APWD, duration of amplified p-wave; aIAB, advanced inter-atrial block; BSA, body surface area; LAD, left atrial diameter.

patients with AF. (2) Integration of APWD with IAB, and
BSA allowed development of a multi-variable PWI-based model
with optimal performance for identification of patients with
AF. (3) Addition of echocardiographic left atrial diameter to
the PWI-based model further improved the diagnostic power
for AF.

Previously described diagnostic tools for
atrial fibrillation

Pathological mechanisms responsible for AF development and
progression are intertwined and triggered by multiple factors
including stretch-induced fibrosis, fatty infiltration, myocardial
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inflammation, heterogeneous conduction, etc. (1, 11, 12). Previous
studies proposed several predictive scores for new-onset AF based
on various risk factors: The C2HEST score consists of comorbidities
that predict 1-year risk for AF with C-index of 0.734 (13).
Other models including CHARGE-AF score and FHS score reach
C-index of 0.77 and 0.78 for 5- and 10-year AF risk, respectively
(14, 15). Nevertheless, the C-index reported from those studies
indicated moderate accuracies. In addition, the complexity and
high number of risk factors that are mandatory in those scores also
limit the practicability in clinical practice. Therefore, ECG-analysis
has been favored with its advantages of being non-invasive and
cost effective.

In the past decades, important efforts have been made in
various studies to determine the ideal ECG-parameter for AF
prediction. PWI including p-wave dispersion, p-wave axis, p-wave
duration, P-terminal force in V1, p-wave morphological criteria
and other parameters have been introduced and assessed for their
diagnostic value for predicting AF or cardiovascular mortality (3,
5, 6, 16). Nevertheless, controversies still remain as the predictive
accuracy was not always encouraging among studies. Nielsen et al.
analyzed the standard PWD of more than 285,000 individuals
from Copenhagen ECG study, and reported that individuals with
very short PWD (<89 ms) and very long PWD (>130 ms) have
a respective hazard ratio of 1.6 and 2.06 for incident AF in
comparison to individuals with a PWD between 100 and 105 ms
(7). They stated the hypothesis that a more rapid conduction
time might provide a substrate for reentry in early stages of
arrhythmias. However, in our current study, short APWD <90 ms
was only observed in individuals without AF. Conte et al. reported
a threshold of 121 ms to differentiate between paroxysmal AF
patients from healthy individual with an AUC of 0.80, however,
the reported sensitivity was only 63% and the total sample
size was 76 individuals only (17). Our study confirmed their
findings in a larger cohort, regarding the threshold of 121ms.
However, the diagnostic value of standard PWD in our larger
cohort is limited with an AUC of 0.63. In the current study, an
APWD > 136 ms, was found to have a greater potential to identify
patients with AF than PWD.

Relationship of APWD with atrial
cardiomyopathy and risk of AF

We recently reported that the duration of the digitally recorded,
highly amplified sinus-p-wave (APWD) accurately represents both
the invasively measured bi-atrial activation time and the extent
of atrial low voltage areas (as a electrophysiological marker
of atrial cardiomyopathy), thus allowing identification of AF
patients with advanced atrial cardiomyopathy, who are at risk
for recurrent AF after catheter ablation therapy (10). In contrast
to APWD, the standard p-wave duration (10 mm/mV and
25 mm/s) may underestimate the atrial conduction time (9).
This is even more pronounced in individuals with advanced
atrial fibrotic cardiomyopathy who present reduced p-wave
voltages (due to the loss of synchronously depolarized atrial
cardiomyocytes). Thereby, the standard PWD does not allow
accurate measurement of the true atrial conduction time, leading

to an insufficient diagnostic performance to identify individuals
with AF.

Rationale for developing alternative
diagnostic models using APWD

Previous studies focusing on development of prediction
model predominantly aimed to propose one model with optimal
performance by incorporation of multiple variables. FHS score
required the information of eight variables and CHARGE-AF score
demanded data of more than ten variables to predict new-onset
AF (14, 15). Albeit they were developed from large data cohorts
and enabled long-term risk estimation, the complexity of models
inevitably limited their application in real-world practice. In the
current study, in an aim to further improve its practicability,
we proposed alternative models with even fewer variables while
maintaining a rather comparable diagnostic efficacy. As APWD
alone already displayed robust superiority in discriminatory
performance (AUC over 0.85), it would be rational to be a basic
model. Furthermore, among LAD, aIAB, and BSA, construction of
another alternative model by different combinations with APWD
should take into account both the strength and weakness of each
variable. BSA, is easily available, as it is calculated from patient’s
height and weight. AIAB was shown to be predictive for AF-
associated atrial cardiomyopathy and AF development (9, 18). We
therefore combined it to APWD in the PWI-based and integrated
models, leading to an improved identification of AF patients. In the
current study, LAD was routinely measured in echocardiography in
all patients. Although it assesses the LA size in one direction only,
it could slightly improve identification of AF patients in our AF
models. However, we expect that integration of LA volume (as a
3D parameter of LA size) and/or LA strain would further improve
the diagnostic models for AF. In this context, a diagnostic model
(PWI-based model) without LAD but focused on APWD and AIAB
can be considered as an alternative model with high diagnostic
performance for detection of AF patients (AUC: 0.892).

Clinical potential in APWD-based models

The current study is the first to use amplified p-wave
analysis during sinus rhythm and reveals that APWD alone or in
combination with a few other predictors is of great potential in
differentiating individuals with AF from those without. Thereby,
the new models identify the current predisposition for AF and
provide the option for targeted screening of individuals at risk
for AF, instead of a non-selective population-wide screening.
Individuals that are identified as high risk for AF using current
models may benefit from a more frequent ECG monitoring for AF.

Artificial intelligence (AI) and
ECG-analysis for AF detection

Recently, AI-empowered algorithms were reported to facilitate
AF-screening using the newest generation of portable ECG-
devices. These devices and algorithms allow direct detection of
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AF occurrence based on RR-interval analysis (19). Nevertheless,
detection of short self-limited episodes of AF may lead to a test
and treatment cascades affecting the individuals’ quality of lives
and questioning whether the use of single-lead ECG devices is
suited for AF screening at population level without prior risk
stratification for underlying cardiovascular diseases (20). The
combination of our current diagnostic models for AF (using
APWD-based detection of left atrial electrical arrhythmogenic
remodeling) with subsequent AF screening (using AI-enabled
single-lead-ECG as in ECG-watches), would yield higher diagnostic
efficiency and allow to identify individuals at risk for AF and
cardiovascular complications.

A large sample-sized study using AI-algorithm for AF
prediction reported an AUC of 0.87 with overall accuracy of 79.4%,
when using 10-s 12-lead-ECGs recorded during sinus rhythm (21).
Although this AI-algorithm reaches similar diagnostic accuracies
as our APWD-based models, the route-to-diagnosis remains
unclear. In contrast to the AI-algorithm, our current APWD-
based diagnostic models for AF have the strength in providing
a comprehensible result by measurement of bi-atrial conduction
time to detect individuals with underlying atrial arrhythmogenic
substrate (10). Measurement of the PWD after digital recording
and amplification enables physicians to diagnose atrial fibrotic
cardiomyopathy. Therefore, the current methodology (APWD) can
be considered as complementary to AI-based ECG-analysis.

Limitations

The current cohort study demonstrates a high diagnostic
potential for identification of individuals with current AF
using the novel APWD models. Future large-scale longitudinal
studies in population-based epidemiological cohorts are warranted
to evaluate the diagnostic value of APWD-based models for
prediction of future AF. Accurate measurement of p-wave duration
necessitates digital 12-lead-ECGs that are recorded at a sampling
rate 500–1,000 Hz, with acceptable signal-to-noise ratio (baseline
noise should be below 0.08 mV) and amplified (60–120 mm/mV
at 100 mm/s) with adequate visualization. Moreover, physicians
need to be trained to correctly identify the onset and ending of the
amplified p-waves, which should not be a major obstacle, as high
expertise/training is also needed in many other diagnostic methods
in medicine/medical imaging.

Conclusion

The proposed APWD-based analysis detects the underlying
atrial electrical abnormalities/substrate that predispose to
AF development. Patients identified as high risk for AF
(based on the proposed APWD-models), should undergo
intensified ECG-monitoring for AF and may benefit from
further diagnostics in search for underlying cardiovascular

conditions that cause prolonged atrial conduction times and
atrial cardiomyopathy.
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