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Background: Heart failure (HF) remains a major cause of mortality, morbidity, and
poor quality of life. 44% of HF patients present impaired left ventricular ejection
fraction (LVEF). Kinocardiography (KCG) technology combines ballistocardiography
(BCG) and seismocardiography (SCG). It estimates myocardial contraction and
blood flow through the cardiac chambers and major vessels through a wearable
device. Kino-HF sought to evaluate the potential of KCG to distinguish HF patients
with impaired LVEF from a control group.
Methods: Successive patients with HF and impaired LVEF (iLVEF group) were
matched and compared to patients with normal LVEF≥ 50% (control). A 60 s KCG
acquisition followed cardiac ultrasound. The kinetic energy from KCG signals was
computed in different phases of the cardiac cycle (iKsystolic; DiKdiastolic) as markers
of cardiac mechanical function.
Results: Thirty HF patients (67 [59; 71] years, 87% male) were matched with 30
controls (64.5 [49; 73] years, 87% male). SCG DiKdiastolic, BCG iKsystolic, BCG
DiKdiastolic were lower in HF than controls (p < 0.05), while SCG iKsystolic was similar.
Furthermore, a lower SCG iKsystolic was associated with an increased mortality risk
during follow-up.
Conclusions: KINO-HF demonstrates that KCG can distinguish HF patients with
impaired systolic function from a control group. These favorable results warrant
further research on the diagnostic and prognostic capabilities of KCG in HF with
impaired LVEF.
Clinical Trial Registration: NCT03157115.
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Abbreviations

ACEi, angiotensin-converting enzyme inhibitor; BBB, bundle branch block; BCG, ballistocardiography; BMI,
body mass index; CP, cardiac phase; CO, cardiac output; COPD, chronic obstructive pulmonary disease;
HF, heart failure; iLVEF, impaired left ventricular ejection fraction; IVSd, interventricular septal end
diastole; K, kinetic energy; LA diam, left atrial diameter; KCG, kinocardiography; LV, left ventricle; LVEF,
left ventricular ejection fraction; LVIDd, left ventricular internal diameter end diastole; QTc, QT interval
corrected; SCG, seismocardiography; SGLT2i, SGLT2 inhibitor; SV, stroke volume; TR vmax, tricuspid
regurgitation maximum velocity; VKA, vitamin K antagonist.
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GRAPHICAL ABSTRACT
1. Introduction

Heart failure (HF) is a complex syndrome affecting an

estimated 1%–2% of the population in developed countries. In

the United States, it represents 6.5 million patients, accounting

for ∼380.000 deaths and more than 3.5 million hospitalizations

per year (1–3).

A major challenge in HF care is to prevent and shorten

hospitalizations since they contribute significantly to the human

and economic burden on patients and healthcare systems. The

first few weeks after discharge entail an elevated mortality (4–6).

Close clinical follow-up by general practitioners and cardiologists

is needed but not always feasible given the limited resources in

many geographical areas (7).

Home monitoring of patients has been investigated for years to

intercept clinical or subclinical, indicators of increasing congestion.

It aims to improve symptoms, prevent acute decompensation, and

thereby the need for hospitalization for HF by enabling caregivers

to modify treatment in a timely manner.

Recent years have witnessed an upsurge in the use of

ballistocardiography (BCG) and seismocardiography (SCG), two
Frontiers in Cardiovascular Medicine 02
techniques enabling the assessment of the inotropic state based

on the measurement of body movements induced by cardiac

contraction and blood flow in the cardiac chambers and major

vessels (8, 9).

More recently, these techniques have been used in domains

such as atrial fibrillation (10) and hypertension detection (11),

heart failure monitoring (12, 13), cardiorespiratory fitness

assessment (14, 15), and many others. Recent advances in the

field of SCG were published by Taebi et al. (16).

Kinocardiography (KCG) is a subject-specific calibrated

combination of linear and rotational SCG and BCG techniques.

KCG is based on measures of 6 degrees-of-freedom (DOF)

combining three-dimensional (3D) linear and 3D angular

motion. These are recorded from sensors attached with

electrodes to the presternal cutaneous surface (SCG) and the

lumbar area (BCG).

In the present study, we used KCG metrics to measure

kinetic energy distribution in different cardiac phases and

compared them among subjects with impaired left ventricular

ejection fraction (iLVEF) and a control group based on

2D-echocardiography.
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2. Methods

2.1. Protocols and participants

All-comers between 20 and 85 years old at the echocardiography

lab of the Brugmann University Hospital, Belgium, were invited to

participate in the study. Exclusion criteria were pregnancy or any

type of arrhythmia at the assessment time. In this feasibility study,

patients with active right ventricular pacing were not included.

Recordings were done in sinus rhythm only. This case-control

study was performed between September 2017 and October 2021.

The protocol complied with the Declaration of Helsinki and was

approved by the local Ethics Committee (Brugmann University

Hospital—CCB: B077201732405). The Belgian Federal Agency

authorized the prototype device used in this clinical trial for

Medicine and Health Products (FAMHP). Upon reception of the

written informed consent, the participants’ weight and height were

measured. Then, they were equipped with the Kinocardiograph

described in section 2.3 and were instructed to lie in a supine

position on a bed for 5 min for stabilization. A blood-pressure

measure was then performed (with Omron, EVOLV, HEM-7600T-

E, Japan) after which a KCG recording was acquired for 60

s. Finally, participants were de-instrumented. A left ventricular

ejection fraction (LVEF) below 50% was considered impaired.
2.2. Echocardiography

A basic comprehensive 2-dimensional transthoracic

echocardiography was performed by a senior cardiologist who
FIGURE 1

Kinocardiography signals acquisition and kinetic energy computation. From lin
in the lower back (BCG) to the kinetic energy metrics as described in section 2
Lin, linear; Rot, rotational.
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was blinded to the KCG measurements, with a Philips Epiq 7

ultrasound machine using a Philips X5-1 transducer (Eindhoven,

The Netherlands).

The left ventricular outflow tract (LVOT) dimensions were

obtained in the parasternal long-axis view during systole. The

velocity time integral (VTI) at the LVOT was measured in the

apical five-chamber view using pulsed-wave Doppler, and stroke

volume (SV) was calculated using the following equation: SV =

LVOT VTI × Cross Sectional Area of the LVOT (17). The left

ventricular (LV) ejection fraction (LVEF) was measured with a

modified Simpson’s method (18). QRS duration was

automatically measured for each of the 12-lead morphological

analysis and expressed as ms, using the inbuilt software Extended

Measurements Report of a Philips PageWriter TC50

electrocardiograph (Philips Medical Systems, Andover, MA, USA).
2.3. Kinocardiography data acquisition and
analysis

The Kinocardiograph is a portable device with two

embodiments, one of which (BCG) was placed over the lumbar

region close to the subject’s center of mass and the other one

(SCG) over the manubrium sterni (Figure 1). The device records

a two-lead ECG at 200 Hz together with 3D linear (Lin)

accelerations and 3-DOF rotational (Rot) angular velocities from

the sternum and the lumbar region as described in previous

publications (19, 20). Ensemble averaging (EA) of signals was

performed on all heartbeats. The time reference for the EA is a

fixed interval that considers the cardiac activity preceding atrial
ear accelerations and angular rates raw acquisition on the chest (SCG) and
.4. SCG, seismocardiography; BCG, ballistocardiography; K, kinetic energy;
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FIGURE 2

Kinocardiography metrics computation. Illustration of the PQ, QT, and TP phases segmented on the ECG and displayed for BCG kinetic energy (K). The
time integrals of K are computed on each of these phases providing iKPQ, iKQT , and iKTP respectively. Based on these, iKsystolic and DiKdiastolic are computed
as displayed on the figure and further described in section 2.4.
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depolarisation occurring before the R peak. Indeed, the beginning

of the n-th interval started before the P wave, at time

kn,start ¼ Rn � D, where Rn is the time of the n-th R peak and Δ

is 200 ms. The end of the cardiac cycle of interest was assumed

to be kn,end ¼ Rn þ max[RRi] where RRi represent all the RR

intervals of the current record. The mean was taken on all the

beats to obtain an average ECG signal. Based on this, an EA was

calculated for each channel of the BCG and SCG recordings.

Based on these acquisitions, the time integrals of kinetic energy

(BCG iKLin, iKRot and SCG i KLin, iKRot) were computed in different

phases of the cardiac cycle as described in a previous publication

(20) and summarized in Figure 2. The three cardiac cycle phases

were: from the start of the P wave to the start of the QRS

complex (PQ phase, late diastole), from the start of the QRS

complex to the end of T wave (QT phase, systole), and from the

end of the T wave to the start of the next P wave (TP phase,

early diastole). These cardiac phases are illustrated in Figure 2.

These metrics have shown to be reproducible (21). Differences

in iK metrics have been associated with differences in SV, LVEF,
Frontiers in Cardiovascular Medicine 04
and cardiac output (CO) in healthy subjects during a

dobutamine-induced hemodynamic increase (19, 22), with an

increase during voluntary apnea (23) and obstructive apnea (24),

and with a surge during sympathetic activation (25).

In this work, the following metrics to measure systolic and

diastolic impairment were used (Figure 2):

1) The iK during the systolic phase was computed as:

iKsystolic ¼ iKQT (3)

This led to the metrics SCG iKsystolic and BCG iKsystolic for SCG

and BCG, respectively. We hypothesize that these metrics

reflect the contractility of the left ventricle.

2) The difference of iK between the TP and PQ phases (passive

and active filling, respectively) was normalized by iK

during the complete diastolic phase (TQ = TP + PQ):

DiKdiastolic ¼ iKTP�iKPQ

iKTPþiKPQ
(4)

We thus obtained the metrics SCG DiKdiastolic and BCG

DiKdiastolic for SCG and BCG, respectively. We hypothesized that
frontiersin.org
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TABLE 1 Baseline patient characteristics after score matching.

HF group Matched Control p-value

Number (n) 30 30 -

Gender (% male) 87 87 1

Age (years) 67.0 [59.0; 71.0] 64.5 [49.0; 73.0] 0.34

BMI (kg/m2) 25.4 [23.1; 30.9] 27.6 [25.2; 33.3] 0.1

Number of heartbeats 67.5 [60.0; 82.0] 65.0 [58.8; 74.0] 0.1

LVEF (%) 34.0 [27.8; 42.6] 61.0 [54.0; 65.0] 0.0001

Complete BBB (%) 30 7 0.01

Left BBB (n) 8 1 -

Right BBB (n) 1 1 -

QRS width (ms) 104 [93.0; 127.0] 94.0 [87.5; 102.0] 0.02

With BBB (ms) 154.0 [126.0; 160.5] 139.0 [139.0; 139.0] -

QTc duration (ms) 411.7 [381.7; 433.2] 375.3 [346; 397.4] 0.01

IVSd (mm) 10 [8.5;12] 11 [9;12] 0.9

LVIDd (mm) 59 [52;66] 49 [45;55] 0.001

Chronic kidney disease (%) 23 7 1

Stroke (%) 13 7 0.4

COPD (%) 17 3 0.09

History of arrhythmia (%) 53 17 0.003

Valvular disease (%) 7 7 1

Coronary artery disease (%) 53 20 0.008

Smoker (%) 23 13 0.3

Dyslipidemia (%) 63 50 0.3

Arterial hypertension (%) 60 77 0.17

Diabetes (%) 37 33 0.8

Medications
Beta blockers (%) 83 50 0.007

SGLT2i (%) 0 0 1

ACEi (%) 77 50 0.03

ARB (%) 10 10 1

ARNi (%) 27 3 0.01

MRA (%) 13 7 0.4

Calcium antagonist (%) 17 37 0.08

VKA (%) 17 3 0.09

Echocardiography
Heart rate (bpm) 68 [60; 79] 62 [60; 73] 0.3

E/A 0.83 [0.56; 1.4] 1.0 [0.7; 1.2] 0.6

E (m/s) 0.64 [0.50; 0.80] 0.65 [0.50; 0.84] 0.6

A (m/s) 0.71 [0.56; 0.93] 0.73 [0.63; 0.87] 0.6

E/e’ 11 [8.5; 13] 9.3 [6.1; 12] 0.008

e’ lateral (cm/s) 6.5 [4.5; 8.6] 9.5 [8.2; 12.0] 0.01

e’ median (cm/s) 5.2 [4.0; 5.8] 6.7 [5.4; 9.2] 0.01

SV indexed (ml/m2) 35 [27; 41] 31 [29; 37] 0.3

TR vmax (m/s) 2.6 [2.3; 2.7] 2.6 [2.4; 3.0] 1

LA diam (mm) 40 [36; 44] 38 [35; 44] 0.7

Blood pressure
Systolic (mmHg) 126 [109; 139] 136 [117; 146] 0.001

Diastolic (mmHg) 70 [64; 81] 80 [70; 82] 0.001

Kinocardiography
SCG iKsystolic (µJ.s) 190 [65; 880] 570 [80; 1,000] 0.05

SCG DiKdiastolic 0.60 [0.31; 0.79] 0.73 [0.70; 0.82] 0.01

SCG iKPQ=TQ 0.20 [0.11; 0.35] 0.14 [0.09; 0.15] 0.01

SCG iKTP=TQ 0.80 [0.65; 0.89] 0.86 [0.85; 0.91] 0.01

BCG iKsystolic (µJ.s) 3.60 [1.70; 8.90] 5.80 [1.40; 15.0] 0.03

BCG DiKdiastolic 0.54 [0.35; 0.71] 0.66 [0.59; 0.81] 0.02

BCG iKPQ=TQ 0.23 [0.14; 0.32] 0.17 [0.09; 0.21] 0.03

BCG iKTP=TQ 0.77 [0.68; 0.86] 0.83 [0.79; 0.90] 0.03

Values are expressed median [Q1; Q3].

BMI, body mass index; bpm, beat per minute; number of heartbeats, number of

heartbeats used to compute KCG metrics; LVEF, left ventricle ejection fraction;

BBB, bundle branch block; QTc, QT interval corrected; IVSd, interventricular septal

end diastole; LVIDd, left ventricular internal diameter end diastole; COPD, chronic

obstructive pulmonary disease; SGLT2i, SGLT2 inhibitor; ACEi, angiotensin-

converting enzyme inhibitor; VKA, vitamin K antagonist; SV, stroke volume; TR

vmax, tricuspid regurgitation maximum velocity; LA diam, left atrial diameter.

p-value below 0.05 were put in bold.

De Keyzer et al. 10.3389/fcvm.2023.1096859
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these metrics reflect the difference of kinetic energy exerted

between the passive and active diastolic phases, normalized by

the kinetic energy generated throughout the entire ventricular

diastole.
2.4. Statistics

All data analyses were performed offline using a proprietary

software toolbox under Matlab (Mathworks Inc.®).

Data are presented as median [Q1; Q3]. The characteristics of

each group were compared by a two-sample t-test in case of normal

distribution or a Wilcoxon signed rank test in case of non-normal

distribution. A Lilliefors test was used to test if the difference

between sample populations compared was normally distributed.

At study closure, an exploratory post-hoc analysis was performed

to assess whether KCG metrics have predictability characteristics

in the group with iLVEF. A Cox proportional hazards approach

was used to assess univariate and multivariate associations with

survivability. When several parameters showed significance, they

were included in a single model and compared to the initial

models with a log-likelihood ratio and a Chi-square distribution

with a degree of freedom equal to the number of predictor

variables being assessed.

The survival was estimated by the Kaplan–Meier method, with

the follow-up period starting at the index echocardiogram until

study closure, and group differences assessed with the log-rank

test. For each parameter, the cut-off was set as the mean value

between the group without and with adverse events. A p-value

less than 0.05 was considered significant to compute 95%

confidence intervals.
2.5. Estimation of a score and matching

Patients with reduced (rLVEF; LVEF≤ 40%) or mildly reduced

(mrLVEF; LVEF 41%–49%) LVEF were classified based solely on

echocardiography parameters according to the 2021 ESC

Guidelines (26). rLVEF and mrLVEF were labeled together as

iLVEF (iLVEF group). All the other patients with normal LVEF

(≥50%) were considered as controls. A matching score was

computed to select an equal number of control patients to match

the HF group. The matching score was based on age, sex, BMI,

and blood pressure. Each patient from the iLVEF group was

matched to a patient from the control group with the best

matching score possible.
3. Results

This study included 131 patients. 5 patients were excluded for

technical issues. In total, 126 patients (63 [49; 71] years old, 54%

male) were kept for analyses. 96 patients had a normal LVEF

and 30 an impaired LVEF (11 mrLVEF and 19 rLVEF). 30

patients from the group with normal LVEF and the highest

matching score based on age, sex, BMI, and blood pressure when
frontiersin.org
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FIGURE 3

Systolic kinetic energy results. Systolic kinetic energy (mean and standard error of the mean) for BCG and SCG among iLVEF patients and matched
controls patients with impaired left ventricular ejection fraction (*: <0.01). CTRL, control; iLVEF, patients with impaired left ventricular ejection fraction.

FIGURE 4

Diastolic kinetic energy results. Diastolic kinetic energy (mean and standard error of the mean) for BCG and SCG among matched controls and iLVEF
patients with impaired left ventricular ejection fraction (*: <0.01). CTRL, control; iLVEF, patients with impaired left ventricular ejection fraction.
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compared to the HF group were selected as the matched control

group. Clinical characteristics, echocardiographic and KCG

parameters, HR, and blood pressure of the iLVEF group, and the

matched control group are presented in Table 1.

As presented in Table 1, heart rate, interventricular septal

thickness in end diastole (IVSd), left atrial diameter, indexed SV,

E/A, and maximum velocity of tricuspid regurgitation were

comparable between groups. iLVEF patients had lower systolic

and diastolic blood pressure (126 [109; 139] and 70 [64; 81] vs.

136 [117; 146] and 80 [70; 82] mmHg, respectively, p < 0.001).

Furthermore, the QRS width was significantly larger in the

iLVEF group (104.0 [93.0;127.0] vs. 94.0 [87.5;102.0] ms, p =

0.02) with more complete bundle branch block (BBB)

morphology (30% vs. 7%, p = 0.01). The QTc duration was also

longer in the iLVEF group (411.7 [381.7; 433.2] vs. 375.3 [346;

397.4] ms, p < 0.01). The left ventricular internal diameter at end

diastole (LVIDd) was larger in the iLVEF group (59 [52; 66] vs.

49 [45; 55] mm, p < 0.01), and their diastolic parameter E/e’ was

higher (11 [8.5;13] vs. 9.3 [6.1;12], p < 0.01). A higher proportion

of iLVEF was treated with beta-blockers and ACEi (83% vs. 50%,
Frontiers in Cardiovascular Medicine 06
77% vs. 50%, p < 0.01 and p < 0.05, respectively). Also, the iLVEF

group patients had a higher proportion of history of arrhythmia

and coronary artery disease (53% vs. 17% and 53% vs. 20%,

respectively, p < 0.01).

Baseline patient characteristics within HF group are presented

in Supplementary Material.
3.1. KCG group comparison

The BCG iKsystolic was lower in iLVEF compared to the matched

control group (3.6 [1.7; 8.9] µJ.s vs. 5.8 [1.4; 15.0] µJ.s, respectively

p < 0.03, Figure 3). The SCG iKsystolic did not differ between iLVEF

and the matched control group (190 [65; 880] µJ.s and 570 [80;

1,000] µJ.s, respectively, Figure 3).

DiKdiastolic was found to be lower in the iLVEF group than in

the matched control group for both BCG (0.54 [0.35; 0.71] and

0.66 [0.59; 0.81], respectively, p < 0.02, Figure 4) and SCG (0.60

[0.31; 0.79] and 0.73 [0.70; 0.82], respectively, p < 0.01, Figure 4).
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TABLE 2 Multivariate Cox proportional hazards model, continuous
variables.

Population (n = 30: 21 alive-unknown, 9 deaths)

Parameter HR 95% CI p-value
Gender −0.17 −0.58, 0.24 0.8

Age −0.0300 −0.0310, −0.0297 0.2

BMI −0.021 −0.024, −0.019 0.7

LVEF 0.019 0.018, 0.020 0.5

Complete Bundle Branch Block −0.277 −0.459, −0.095 0.5

Chronic kidney disease 0.25 −0.03, 0.53 0.6

SCG iKsystolic 0.91 0.83, 0.99 0.0013

SCG DiKdiastolic 1.2 0.5, 1.9 0.15

BCG iKsystolic −314 - 0.1

BCG DiKdiastolic 0.91 0.2, 1.6 0.27

Heart rate −0.050 −0.051, −0.050 0.04

E/A −0.36 −0.42, −0.31 0.12

E/e’ −4.72 −35.8994, 26.4636 0.4

Systolic Blood pressure 0.005 0.004, 0.005 0.6

Cox regression analysis for assessing the association between variables and survival

rate. Among the tested parameters, only SCG iKsystolic and hearth rate have shown

to be significant predictor of survivability in the tested group. Having a decreased

SCG iKsystolic increased the mortality risk by 2.5, while having an increased hearth

rhythm increased the mortality risk by 1.05.

p-value below 0.05 were put in bold.
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3.2. Predictors of patients’ survival

During a total follow-up of 5 years after first inclusion, 21

participants of the iLVEF group were still alive. Based on

multivariate analysis (Table 2), the proportion of patients with

iLVEF surviving 4 years was significantly lower in patients with

SCG iKsystolic <390 µJ.s compared to SCG iKsystolic >390 µJ.s (log

rank p = 0.001) (Figure 5A, Table 2). There was also an observed

difference in survival between iLVEF patients with a heart rate

>71 bpm and those with a heart rate <71 bpm (log rank p = 0.04,

Figure 5B, Table 2). A Cox multivariate model including both

SCG iKsystolic and heart rate was generated and showed no

significant improvement, as compared to the model including

only SCG iKsystolic (p = 0.3). Age, LVEF, chronic kidney disease,

and BBB were not significant predictors of survivability in the

tested group.
4. Discussion

In the KINO-HF exploratory study, the comparison of KCG

metrics between patients with impaired LVEF and matched

control subjects reveals that the iLVEF group is associated with

lower values of systolic kinetic energy (iKsystolic) and diastolic

kinetic energy (DiKdiastolic). Also, in iLVEF patients, higher values

of iKsystolic were associated with a better survival.
4.1. Kinocardiography metrics rationale

Recent studies have shown interest in using intra-ventricular

kinetic energy through 4D flow MRI to assess left and right

ventricular functions (27, 28). These have shown very promising
Frontiers in Cardiovascular Medicine 07
results allowing a better understanding of the impact of cardiac

disease on intra-cardiac hemodynamics but also opening the

perspective of new ways to characterize HF.

The aim of KCG is also to compute a kinetic energy but

through body surface accelerations and angular rates in a simpler

and more indirect way when compared to cardiac MRI derived

kinetic energy (MRI KE). In particular, studies have shown that

LV systolic MRI KE decreased significantly when comparing

controls to patients with myocardial infarction with decreased EF

(29, 30). Moreover, others have shown that most flow

components of the late (A) diastolic MRI KE increased in HF

patients with reduced LVEF in comparison to healthy subjects

(31). Inspired by these results, this study introduces two metrics

based on KCG: (1) systolic kinetic energy, named iKsystolic, analog

to LV systolic MRI KE and (2) diastolic gradient kinetic energy,

named DiKdiastolic, reflecting the E and A MRI KE relative

distribution.
4.2. Systolic kinetic energy

BCG iKsystolic was significantly lower in patients from the iLVEF

group, reflecting the reduced amount of force developed by the

ventricles in these patients. This is in line with the reduction of

LV systolic MRI KE as detected by cardiac MRI in patients with

impaired LVEF (31), or when comparing controls to patients

with myocardial infarction with decreased EF in experimental

and clinical settings (29, 30, 32). However, in this study, HF

patients and matched control showed comparable resting indexed

SV (Table 1). Therefore, the correlation between BCG iKsystolic

and SV found in a previous study in healthy participants during

a dobutamine-induced increase in contractility (19) is not

extensible to pathological cases. The correlation between BCG

iKsystolic and SV might mostly be accurate for intra-patient

follow-up, as described in two studies: (1) during a cardiac

deconditioning measured by cardiac MRI due to long-duration

head-down tilt bed rest, where a significant decrease of this

metric was shown (33); and (2) in a recent study showing that

this metric followed significantly the change in the cardiac

hemodynamic load in HF patients (34).

Interestingly, a study showed the high sensitivity of BCG

iKsystolic to beta adrenergic stimulation (19), therefore the higher

proportion of beta blockers in the HF group compared to the

matched control group might have contributed to the decrease in

BCG iKsystolic in this study.

The same was not observed for SCG iKsystolic. This might be

explained by the discrepancy in the proportion of patients with

ventricular dilatation: 41% (iLVEF) vs. 7% (control group) had a

LVIDd larger than 60 mm (p < 0.01, Table 1). In our cohort,

iKsystolic SCG was found to be much higher in patients with

ventricular dilatation than in the other patients with impaired

LVEF (380 [80; 980] µJ.s vs. 84 [55; 210] µJ.s, p < 0.0001,

Table 3). Since SCG measures a larger cardiac mass displacement

in patients with dilated left ventricle, this confounding factor

might have increased the SCG iKsystolic values in the iLVEF group

leading to values comparable to the control group.
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FIGURE 5

Kaplan–Meier probability of survival. Kaplan–Meier curves of event-free survival according to (A) SCG iKsystolic; and (B) heart rate.
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Interestingly, BCG iKsystolic was also found to be higher in

patients with ventricular dilatation than in the other iLVEF

patients (10 [3.9; 36] µJ.s vs. 2.2 [0.6; 3.9] µJ.s, p < 0.01,

Table 3). As such, the ventricular dilation can impede the

expected decrease of SCG iKsystolic in the iLVEF group but not
Frontiers in Cardiovascular Medicine 08
the decrease of iKsystolic BCG. The essence of BCG is to

measure micromovements of the body in reaction to blood

flow through the vasculature, mainly the aorta, making this

metric less sensitive to mechanical LV motion and LV

dilatation (35).
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TABLE 3 KCG parameters from HF group with LVIDd inferior or superior
to 60 mm.

With LVIDd
≤60 mm
(n = 18)

With LVIDd
>60 mm
(n = 12)

p-value

SCG iKsystolic

(µJ.s)
84 [55; 210] 380 [80; 980] 0.0001

SCG DiKdiastolic 0.50 [0.24; 0.74] 0.74 [0.45; 0.82] 0.5

BCG iKsystolic

(µJ.s)
2.2 [0.6; 3.9] 10 [3.9; 36] 0.01

BCG DiKdiastolic 0.48 [0.34; 0.62] 0.62 [0.47; 0.78] 0.3

Values are expressed in median [Q1; Q3]. LVIDd, left ventricular internal diameter

end diastole.
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Furthermore, in this study, a decreased SCG iKsystolic was shown

to be a significant predictor of all-cause mortality among patients

with impaired LVEF. Similarly, on datasets of nearly the same

size, others have shown that some features of the SCG signal can

be extracted to predict HF readmission, one of which is the SCG

amplitudes (36). However, our result seems to conflict with the

elevated values of high iKsystolic in patients with dilated ventricles,

who are known to have a worse prognosis if associated with

HFrEF. This emphasizes that this result was obtained in a

relatively small population with varying LV morphology within

the iLVEF group, and larger studies are needed to be able to

conclude the predictability of iKsystolic.
4.3. Diastolic kinetic energy

For both BCG and SCG, DiKdiastolic was found to be

significantly decreased in the iLVEF group when compared to

the matched control. In contrast, diastolic function parameters

such as E/A, or tricuspid regurgitation maximum velocity were

equally distributed in both groups. However, as expected, E/e’

was higher in the iLVEF group (11 [8.5;13] % vs. 9.3 [6.1;12] %,

p < 0.01). DiKdiastolic sought to reflect energy distribution along

the diastole (passive and active filling). MRI studies have shown

that HF patients with impaired LV function are characterized by

altered diastolic flow routes through the LV and impaired

preservation of MRI KE during late diastole (31). In this phase

of the heart cycle corresponding to atrial systole, Eriksson et al.

further described high MRI KE in HF patients reflecting

impaired active relaxation of the myocardium caused by a less

compliant myocardium (31). This is in line with our results,

where we report a significant increase in the difference of energy

developed by the heart during the diastole (DiKdiastolic).

The differences observed by KCG in the diastolic parameters

between iLVEF and control patients might be partly due to

reduced LV compliance in patients with impaired LV function.

Furthermore, we decomposed the gradient in its early (iKTP=TQ)

and late (iKPQ=TQ) components normalized by the total diastolic

kinetic energy (Table 1). The early diastole energy decreased

while the late diastole energy increased in the iLVEF group and

thus leading to a lower diastolic gradient (DiKdiastolic). This aligns

with the increase of intracardiac filling pressures during the late

diastole in the iLVEF group.
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4.4. Limitations

The present work presents some limitations worth noting. The

definitions of the systolic and diastolic kinetic energy parameters

are inherently an approximation based on ECG detection.

Furthermore, we expect a slight delay of the systolic and diastolic

events acquired for the BCG energies compared to the ECG

segmentation. Moreover, the possibility of using KCG in specific

clinical scenarios, such as atrial fibrillation or intracardiac

devices, is still to be investigated. Indeed, patients with

pacemaker were excluded from this study to avoid the

uncertainties of ventricular asynchrony induced by right

ventricular stimulation on KCG. However, they should not be

excluded in future studies.

The control population was well matched with respect to

general characteristics of population such as gender, BMI, and

age but presented different characteristics regarding medical

treatment and cardiac pathologies such as BBB. However, the

control patients were recruited at the cardiology department, and

therefore should represent a relevant sample of the population

that would need to be discriminated and ruled out of a HF

diagnosis. Eligible patients with left BBB recruited in this study

were later implanted with a cardiac resynchronization device.

The fact that larger LVIDd among iLVEF patients increased

iKsystolic contrasts with the results showing that increased iKsystolic

predicts poor prognosis. This calls for larger cohorts to be

studied to better understand of the effect of HF etiology on the

iKsystolic metric.

In this study, both, iKsystolic and DiKdiastolic have shown group

differences when comparing the group with iLVEF to the

matched control group. However, the metrics values overlap

between both groups, and it is therefore not possible to define a

single cut-off value achieving good discrimination between iLVEF

and controls. A joint parameter combining BCG and SCG

metrics could be developed to achieve this. To a further extent,

machine learning algorithms combining more than two metrics

could be developed on larger datasets and might provide accurate

discrimination between these two groups. Further studies are

needed to confirm this potential.

We acknowledge that LVEF is simply one parameter of systolic

function among others, and that a normal LVEF does not exclude

systolic dysfunction, as in cardiac amyloidosis or when considering

the more subtle systolic dysfunction seen in HF patients with

preserved ejection fraction.
5. Conclusion

This study demonstrates that patients with iLVEF are

associated with lower values of iKsystolic and DiKdiastolic when

compared to a matched control group. In addition, in iLVEF

patients, iKsystolic seems to be an independent predictor of

survivability. Warranting further studies to evaluate KCG

accuracy in different clinical settings and in a blind setup, these

scalar metrics might be useful for screening for impaired LVEF.
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