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The saga of dyssynchrony
imaging: Are we getting to the
point
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Adrien Al Wazzan, Alfredo Hernandez, Christophe Leclercq
and Erwan Donal*

Department of Cardiology and Vascular Disease, Univ Rennes, CHU Rennes, Inserm, LTSI – UMR 1099,
Rennes, France

Cardiac resynchronisation therapy (CRT) has an established role in the
management of patients with heart failure, reduced left ventricular ejection
fraction (LVEF < 35%) and widened QRS (>130 msec). Despite the complex
pathophysiology of left ventricular (LV) dyssynchrony and the increasing
evidence supporting the identification of specific electromechanical substrates
that are associated with a higher probability of CRT response, the assessment of
LVEF is the only imaging-derived parameter used for the selection of CRT
candidates.

This review aims to (1) provide an overview of the evolution of cardiac imaging
for the assessment of LV dyssynchrony and its role in the selection of patients
undergoing CRT; (2) highlight the main pitfalls and advantages of the application
of cardiac imaging for the assessment of LV dyssynchrony; (3) provide some
perspectives for clinical application and future research in this field.
Conclusion: the road for a more individualized approach to resynchronization
therapy delivery is open and imaging might provide important input beyond the
assessment of LVEF.

KEYWORDS
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1. Introduction

Cardiac resynchronisation therapy (CRT) has an established role in the management of

patients with heart failure (HF), a severely reduced left ventricular ejection fraction (LVEF

<35%) and a QRS > 130 msec, who remain symptomatic despite an optimized medical

therapy (1).

However, 30%–40% of patients receiving CRT according to recommendations (1) do not

experience significant LV reverse remodelling and improvement in LVEF (2).

In the last 20 years, significant efforts have been made for identifying imaging-derived

parameters able to disclose the electromechanical substrates associated with CRT

response, substantially increasing the knowledge of the pathophysiological mechanisms of

LV dyssynchrony and potentially contributing to the improvement in the selection of

CRT candidates.

This paper aims to 1) provide an overview of the evolution of cardiac imaging for the

assessment of LV dyssynchrony and its role in the selection of patients undergoing CRT;

2) highlight the main pitfalls and advantages of the application of cardiac imaging for the
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assessment of LV dyssynchrony; 3) provide some perspectives for

clinical application and future research in this field.
2. Pathophysiology of left ventricular
dyssynchrony

The loss of a nearly simultaneous LV contraction in patients

with typical left bundle branch block and left ventricular

dyssynchrony is associated with the presence of early septal

activation, starting at low LV pressure, which does not contribute

to LV ejection and stretches the lateral wall. The stretch of the

lateral wall further delays shortening and causes a vigorous

activation against a locally increased preload (3). This alternation

of activation and stretch of opposite LV walls seen in the

dyssynchronous heart promotes local modifications of the LV

function at the molecular and cellular level (4), with

redistribution of myocardial blood flow and oxygen uptake (5),

and the development of differences in septal-to-lateral wall

thickness (6, 7). This deleterious pathophysiological process can

be reversed in the case of successful CRT and is associated with

positive LV reverse remodelling. However, in some patients, LV

dyssynchrony is not attributable to specific electromechanical

substrates responsive to CRT, but to other causes such as

ischemia or left ventricular hypocontractility, which are

associated with poor or absent CRT response (8–10). In the

following paragraphs we will try to underscore the progress of

myocardial imaging in disclosing the specific mechanisms

associated with LV dyssynchrony in order to improve patients’

selection and CRT success.
3. Imaging for the selection of CRT
candidates

The mechanism of action of CRT in patients with HF and

widened QRS are far to be fully elucidated. This incomplete

understanding of the pathophysiology of the disease can explain

the variety of potential responses to CRT going from a

spectacular LV reverse remodelling, often referred to as “CRT

super-response” (11) to milder effects, and even worsening of LV

function (12–14). This is probably because CRT is primarily

designed to correct the conduction disorders corresponding to a

widened QRS, but with the main aim to improve LV mechanical

efficiency. In this context, the assessment of LV mechanical

dyssynchrony through cardiac imaging has been proposed as an

additive criterion to select CRT recipients.
3.1. Assessment of left ventricular opposite
wall delay

The initial imaging studies on LV mechanical dyssynchrony

were focused on the measure of opposite wall delay by different

echocardiographic modalities.
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In 24 patients with heart failure, Pitzalis et al. showed that a

septal-to-posterior motion delay ≥130 msec was able to predict

LV reverse remodelling, with a positive predictive value of 80%

and an accuracy of 85% (15). However, this approach was not

suitable for patients with previous anterior or septal infarction

and was plagued by poor temporal resolution (16). Successive

studies, therefore, focused on tissue Doppler imaging and speckle

tracking echocardiography for the assessment of LV

dyssynchrony, by the estimation of opposite wall delay (17), or

by focusing on the difference in peak systolic velocities of

different myocardial regions (18–20) (Figure 1). Despite all these

studies being able to show the good performance of echo-derived

parameters for the prediction of CRT response in small,

retrospective cohorts, the multicentric PROSPECT trial did not

confirm the applicability of echocardiographic measures of

dyssynchrony for the selection of CRT candidates (2).

These disappointing results are attributable to the poor

reproducibility of the echo-derived analysis of dyssynchrony

parameters (21), but also to the fact that the assessment of

opposite wall delay is not able to disclose the complex

pathophysiology related to CRT response. Computer simulation

studies and clinical data have shown that there are several

potential mechanisms associated with LV dyssynchrony,

including electrical activation delay, regional differences in

contractility and myocardial scar (9), so that only specific

electromechanical substrates associated with a widened QRS are

amenable to be corrected by CRT (Table 1).
3.2. Assessment of strain curves dynamics

The careful analysis of the dynamics and morphology of strain

curves more than the evaluation of timings can provide further

insight into the mechanisms of LV dyssynchrony and ease the

identification of specific deformation patterns associated with

CRT response. In 189 CRT candidates, the Multicentre study

using strain delay index for predicting response to cardiac

resynchronization therapy (MUSIC) study showed that in the

case of preserved contractility and significant dyssynchrony, LV

segments present a higher difference between the peak and end-

systolic strain, which is a measure of segmental wasted energy.

The global LV wasted energy is referred to as strain delay index

(SDI) and has been shown to predict CRT response with an

AUC of 0.88, a sensitivity of 92% and a specificity of 65% (22).

A similar approach for the assessment of strain dynamics relies

upon the semi-automatic analysis of strain integrals. Bernard

et al. reported a significant heterogeneity of strain integrals in

CRT-responders compared to non-responders. Moreover, these

authors showed that the difference of strain integrals measured at

strain peak and aortic valve closure, which represent the wasted

energy of the LV myocardium, is higher in CRT-responders and

is corrected by successful CRT (23) (Figure 2).

Starting from the visual analysis of strain curves obtained in a

4-chamber view in the septal and lateral wall, Risum et al. have

shown that the “typical left bundle branch block” (LBBB) strain

pattern is characterized by an early shortening of the septal wall,
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FIGURE 1

Examples of the estimation of opposite wall delay in CRT candidates according to the main methods described in the literature. Upper panel: Pitzalis’
method; Middle panel: Bax’s method; Lower panel: Yu’s method.
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before the opening of the aortic valve, with concomitant stretch in

the lateral wall. This early septal activation is followed by

immediate lengthening (rebound stretch) and causes a delayed

lateral wall peak contraction (Figure 3). This specific activation

pattern has been shown to improve the prediction of LV reverse

remodelling and prognosis after CRT (24). Computer simulation

studies have demonstrated that the progressive decline in LV

contractility is associated with a loss of the septal-to-lateral wall

interplay typical of LBBB, such explaining the poor CRT-

response in these patients (45). The sum of the posterolateral

systolic prestretch and septal systolic rebound stretch, referred to

as systolic stretch index (SSI) can be used to quantify the

electromechanical substrate of dyssynchronous heart and has

been shown to be associated with both CRT-response and

prognosis (9, 25). Interestingly, an SSI > 2.6% was able to predict

death or HF hospitalisation (HR: 2.08; 95% CI: 1.27 to 3.41,

p = 0.004) and overall survival (HR 5.08; 95% CI: 1.94 to 13.31,

p < 0.001) also in patients with a QRS width 120 to 149 ms or

non-LBBB morphology (Figure 3).
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The localisation of myocardial scar can also impact septal

motion patterns in LBBB. In an experimental study, Aalen et al.

have shown that the presence of lateral wall scar leads to the loss

of septal rebound stretch, whereas extensive anterior ischemia

increases rebound stretch (10), suggesting that scar localisation

together with septal motion should be taken into account in the

evaluation of LV dyssynchrony (Table 1).
3.3. The visual assessment of dyssynchrony:
septal flash and apical rocking

Another approach to assess the unique contraction pattern

typical of LBBB relies on the analysis of the contraction of

opposite wall looking for the presence of septal flash (SF) (26)

and/or apical rocking (ApR) (46).

The SF corresponds to the early septal thickening/thinning

during the isovolumic systole and can be easily detected by

M-mode parasternal long-axis view of by tissue Doppler imaging
frontiersin.org
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TABLE 1 Summary of the main cited studies providing an overview of the role of imaging-derived parameters modalities in the field of CRT.

Assessment of LV opposite wall delay

Authors/Journal –
year/Ref

Population Endpoints Imaging parameters Results

Pitzalis MV et al. J Am
Coll Cardiol 2002. (15)

24 pts
LVEF 24 ± 5%, QRS
width 169 ± 16 msec,
20% ischemic

LVESV reduction > 15% at
6 months FU

Septal-to-lateral wall delay >
130 msec

AUC 0.95, PPV 80%, Sp 63%, Accuracy 85% for the
prediction of LV reverse remodelling

Marcus GM et al. J Am
Coll Cardiol 2005. (16)

79 pts
LVEF 22 ± 7%, QRS
width 159 ± 27 msec,
72% ischemic

LVESV reduction > 15% at
6 months FU

Septal-to-lateral wall delay >
130 msec

Se 24%, Sp 66%, PPV 29%, NPV 61% for the
prediction of LV reverse remodelling

Søgaard P et al. J Am Coll
Cardiol 2002. (17)

25 pts
LVEF 29 ± 7%, QRS
width 189 ± 23 msec,
44% ischemic

LVEF and GSCA
improvement

Basal segment delayed
contraction at TDI

Prediction of LVEF improvement: r = 3.1, p < 0.01;
Prediction of GSCA improvement: r = 3.3, p < 0.01

Gorcsan J et al. Am
J Cardiol 2004. (18)

29 patients
LVEF 26 ± 6% %, QRS
width 175 ± 34 msec,
44% ischemic

Acute LV stroke volume
increase >15%

Antero-septum to posterior wall
delay > 65 msec at TDI

Se 87%, Sp 100% for the prediction of acute of LV
reverse remodelling

Bax JJ et al. J Am Coll
Cardiol 2004. (19)

86 pts
LVEF <40% QRS >
140 msec, 55% ischemic

1) LVESV reduction > 15%
at 6 months FU
2) Clinical improvement

LV opposite wall delay >
65 msec at TDI

Se 92% and Sp 92% for the prediction of LV reverse
remodelling;
Se 80%, Sp 80% for the prediction of clinical
improvement

Yu CM Am J Cardiol
2003. (20)

30 pts
LVEF 23 ± 7%, QRS
width 150 ± 18 msec,
40% ischemic

LVESV reduction > 15% at
6 months FU

Standard deviation of the time-
to-peak systolic strain of 12 LV
segments

Predictor of LV reverse remodelling (β =−1.54,
p 0.007).
Se and Sp 100% for the prediction of CRT response.

Assessment of LV strain dynamics and mechanical dyssynchrony
Lumens J et al. Circ
Cardiovasc Imaging
2015. (9)

191 pts
LVEF 24 ± 6%, QRS
width 159 ± 27 msec,
60% ischemic

Primary: HF hospitalization or
overall death
Secondary: overall deart, heart
transplant or LV-assisted
device

Systolic stretch index (SSI) SSI≥ 9.7% is an independent predictor of the
primary endpoint (HR = 0.32; 95% CI: 0.19–0.53;
p < 0.001) and secondary endpoint (HR = 0.28; 95%
CI: 0.15–0.55, p < 0.001)

Lim P et al. Eur J Heart
Fail 2011. (22)

189 pts
LVEF 26 ± 8%, QRS
width 151 ± 34 msec,
33% ischemic

LVESV reduction > 15% at
6 months FU

Strain delay index AUC 0.80, Se 92%, Sp 65%, PPV 80%, NPV 84%
for the prediction of LV reverse remodelling

Bernard A et al. J Am Soc
Echocardiogr 2015. (23)

130 patients
LVEF 27 ± 6%, QRS
width 162 ± 23 msec,
38% ischemic

LVESV reduction > 15% at
6 months FU

Difference of strain integrals
between AVC and strain peak
(DiffInt)

Higher Diffint in the lateral wall in responders

Risum N et al. J Am Coll
Cardiol 2015. (24)

208 pts
LVEF <35%, QRS width
> 120 msec, 58%
Ischemic

Cumulative death, left
ventricular assist device, or
heart transplantation

Typical vs. atypical LBBB strain
patters

Absence of “Typical” LBBB strain pattern is an
independent prognostic predictor: HR = 3.1; 95%
CI: 1.64 to 5.88, p < 0.005

Gorcsan J et al. JACC
Cardiovasc Imaging 2018.
(25)

442 pts
LVEF 25 ± 7%, QRS
width 155 ± 21 msec,
47% Ischemic

Primary: HF hospitalization or
death;
Secondary: death

Systolic stretch index SSI < 3.1% is an independent predictor of the
primary endpoint (HR = 2.17; 95% CI: 1.45 to 3.24,
p < 0.001) and secondary endpoint (HR = 4.06; 95%
CI: 1.95 to 8.45, p < 0.001)

Parsai C et al. Eur Heart J
2009. (26)

161 pts
LVEF 24 ± 7%, QRS
width 156 ± 21 msec,
51% Ischemic

LVESV reduction > 10% at
6 months FU

Septal flash (SF) Reversal of septal flash after CRT is associated with
100% reverse remodelling

Stankovic I et al. Eur
Heart J Cardiovasc
Imaging. 2017 (27)

1,060 patients
LVEF 27 ± 7%, QRS
width 170 ± 29 msec,
43% Ischemic

1) LVESV reduction > 15% at
6 months FU
2) Overall death

Septal flash/Apical rocking
(ApR)

Reverse remodelling prediction:
SF: Se = 70%, Sp = 74%, Accuracy = 77%
ApR: Se = 84%, Sp = 79%, Accuracy = 82%
Mortality prediction:
SF: HR = 0.45, 95% CI: 0.34– 0.61, p < 0.0001
ApRock: HR = 0.40, 95% CI: 0.30–0.53, p < 0.0001)

Marsan NA et al.
European Heart Journal
2009. (28)

35 patients
LVEF 24 ± 8%, QRS
width 145 ± 33 msec,
57% Ischemic

LVESV reduction > 15% at
6 months FU

16-segment time-to-maximum
radial wall thickness assessed at
CMR (16-SD); scar extent

Independent predictors of LV reverse remodelling
16-SD: OR = 6.3, 95% CI 3.1–9.9, p < 0.001
Scar: OR = 0.52, 95% CI 0.43–0.87, p < 0.001

(continued)
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TABLE 1 Continued

Assessment of LV opposite wall delay

Authors/Journal –
year/Ref

Population Endpoints Imaging parameters Results

Assessment of myocardial contractility and global left ventricular function
Parsai C et al. Eur Heart J
2009. (29)

52 pts
LVEF 24 ± 7%, QRS
width 145 ± 24 msec,
44% Ischemic

LVESV reduction > 10% at
7 ± 1 months FU

DSE-induced SF Prediction of LV reverse remodelling (R = 0.6,
p < 0.0001)

Ciampi Q et al. European
Journal of Heart Failure
2009. (30)

69 pts
LVEF 27 ± 6%, QRS
width 150 ± 27 msec,
55% Ischemic

LVESV reduction > 15% at
6 months FU

Contractile reserve at DSE Best predictor of LV reverse remodelling: OR = 6.2,
95% CI: 1.4–27.6, p < 0.015

Delgado-Montero A
et al. Circ Cardiovasc
Imaging 2016. (31)

205 pts
LVEF 24 ± 6%, QRS
width 157 ± 26 msec,
63% Ischemic

Primary: death, circulatory
support, or transplant
Secondary: HF hospitalization
or death

GLS, GCS Independent predictors of the primary endpoint:
GLS > −9%: HR = 2.91; 95% CI: 1.88–4.49,
p < 0.001
GCS >−9%: HR = 3.73; 95% CI: 2.39–5.82,
p < 0.001)
Independent predictors of the secondary endpoint:
GLS > −9%: HR = 2.10; 95% CI: 1.45–3.05,
p < 0.001
GCS >−9%: HR = 3.25; 95% CI: 2.23–4.75,
p < 0.001.

Khidir MJH et al. Heart
Rhythm 2018. (32)

829 pts
LVEF 27 ± 8%, QRS
width 149 ± 30 msec,
60% Ischemic

Primary: overall death, heart
transplantation, and LV assist
device implantation
Secondary: ventricular
arrhythmias or appropriate
ICD therapy

GLS Independent predictor of the primary endpoint
(HR = 1.075, 95% CI: 1.020–1.133, p = 0.007) but
not of the secondary endpoint

van der Bijl P et al. Eur
Heart J Cardiovasc
Imaging 2019. (33)

1,185 pts
LVEF 27 ± 8%, QRS
width 155 ± 35 msec,
56% Ischemic

Overall death ≥15%↓LVESV and/or ≥5%↑|
GLS| at 6-month FU

Independent predictors of overall death:
≥15%↓LVESV and ≥5% ↑|GLS|: HR = 0.47; 95%
CI: 0.31–0.71, p < 0.001;
≥15%↓LVESV and <5%↑|GLS| or <15%↓LVESV
and ≥5%↑|GLS: HR = 0.57, 95% CI: 0.47–0.71,
p < 0.001

Assessment of scar extension and localisation
Delgado V et al.
Circulation 2011. (34)

397 pts
LVEF 25 ± 7%, QRS
width 155 ± 33 msec,
100% Ischemic

HF hospitalization and overall
death

LV radial dyssynchrony,
discordant lead position, scar in
the targeted segment

LV dyssynchrony: HR = 0.994, 95% CI: 0.992–
0.998, p = 0.001
Discordant lead: HR = 2.086, 95%: 1.336–3.258,
p = 0.001
Scar in the targeted segment: HR = 2.913, 95% CI:
1.740–4.877, p < 0.001

Khan FZ et al. J Am Coll
Cardiol 2012. (35)

220 pts
LVEF < 30%, QRS width
> 130 msec, 56%
ischemic

Primary: LVESV reduction
>15% at 6 months FU.
Secondary: overall death and
HF hospitalization

LV lead position at the latest
activated viable segment (Target
group vs. non-target group)

Significant ΔLVESV in the target group vs. non-
target group:
−46 ± 33 vs. −26 ± 23 ml and better prognosis (log-
rank p = 0.031)

Bose A et al. J Cardiovasc
Electrophysiol 2014. (36)

160 patients
LVEF 25 ± 7%, QRS
width 159 ± 28 msec,
100% ischemic

Primary: HF hospitalization
and overall death

Myocardial substrate at the site
of LV lead by SPECT-MPI

Independent predictors of prognosis:
scar at the LV lead: HR = 2.07, 95%CI: 1.14–3.74,
p = 0.015
ischemia and scar at the LV lead: HR = 2.03 95%
CI: 1.03–4.0, p = 0.040

Adelstein EC et al.
European Heart Journal
2011. (37)

624 patients
LVEF 24 ± 6%, QRS
width 169 ± 33 msec

Primary: overall death; cardiac
transplant, or mechanical
circulatory support

Scar assessed at SPECT Independent predictor of prognosis:
Scar: HR = 1.8, 95% CI: 1.3–2.5, p < 0.001,
unsuccessful LV lead implant: HR = 2.4, 95% CI:
1.4–4.2, p < 0.001)

Aalen JM et al. Eur Heart
J 2020. (8)

220 pts
LVEF <35%, QRS width
167 ± 21 msec, 35%
ischemic

Primary: LVESV reduction
>15% at 6 months FU.
Secondary: overall death and
heart transplantation

Septal-to-lateral wall work
difference; scar localisation at
MRI

Septal-to-lateral wall work difference (B = −0.011,
p < 0.0001) and septal scar (β = 0.42, p = 0.029) are
the main determinants of LV reverse remodelling
and prognosis (AUC 0.88, Se 86%, Sp 84%,
Accuracy 85%)

Importance of a comprehensive evaluation of cardiac function
Moss AJ et al. N Engl J
Med 2009 (38)

1,820 patients
LVEF < 30%, QRS width
> 130 msec, 55%
ischemic

Overall death, HF
hospitalisation

LV size and function

Carluccio E et al. JACC
Cardiovasc Imag 2011.
(39)

78 pts
LVEF 26 ± 6%, QRS

1) Improvement in LVEF
2) Cardiac events

LV size Indexed LVESVI > 103 ml/m2 is an independent
predictor of cardiac events (HR = 2.53, 95% CI:
1.17–5.44, p = 0.017)

(continued)
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TABLE 1 Continued

Assessment of LV opposite wall delay

Authors/Journal –
year/Ref

Population Endpoints Imaging parameters Results

width 165 ± 30 msec,
33%ischemic

Galli E et al. Int J Cardiol
2021. (40)

193
LVEF 28 ± 8%, QRS
width 167 ± 21 msec,
33% ischemic

Overall death, heart
transplantation, LV-assisted
device implantation

Diastolic dysfunction degree Grade I diastolic dysfunction portends a better
prognosis (HR = 0.37, 95%CI: 0.14–0.96; log-rank
p vs. grade II-III diastolic dysfunction <0.0001)

Kuperstein R et al. Circ
Heart Fail 2014. (41)

1,785 pts
LVEF < 35%, QRS width
> 130 msec

HF hospitalisation or overall
death

LA volume LA volume > 52 ml/m2 is an independent
prognostic predictor: HR = 1.69, 95% CI: 1.35–2.11,
p < 0.001, log-rank p < 0.001

Galli E et al. Eur Heart
J Cardiovasc Imaging
2022. (42)

221 pts
LVEF < 35%, QRS width
> 165 ± 26 msec,
ischemic 33%

LVESV reduction >15% at
6 months FU
LVEDV reduction > 10% at
6 months FU

LA reservoir strain Independent predictor of systolic (β-0.14, p =
0.049) and LV diastolic remodelling (β = −0.17,
p = 0.001)

Damy T et al. J Am Coll
Cardiol 2013. (43)

688 pts from CARE-HF,
345 receiving CRT
Median LVEF 24 (21–
28) %, QRS > 130 msec,
33% ischemic

Overall mortality TAPSE TAPSE <17 mm is an independent prognostic
predictor (log-rank p < 0.0001) in both CRT and
medical treated patients

Rapacciuolo A et al. Clin
Cardiol 2016. (44)

227 pts
LVEF28 ± 6%, QRS
width > 162 ± 26 msec,
ischemic 41%

LVESV reduction >15% at
6 months FU

TAPSE TAPSE > 17 mm is an independent predictor of LV
remodelling; Se 68%, Sp 54%; OR = 1.97, 95% CI:
1.03–3.80, p < 0.05)

ApR, apical rocking; AUC, area under the curve; AVC, aortic valve closure; CI, confidence interval; CMR, cardiac magnetic resonance; CRT, cardiac resynchronization

therapy; DSE, dobutamine stress echocardiography; Diffint, difference of strain integrals between AVC and strain peak; FU, follow-up; GCS, global circonferential strain;

GLS, global longitudinal strain; GSCA, global systolc contraction amplitude; HF, heart failure; HR, hazard ratio; ICD, intracardiac defibrillator; LA, left atrium; LBBB, left

bundle branch block; LV, left ventricle; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume;

MPI, myocardial perfusion imaging; 6 MWT, six-minute =walking test; NYHA, New York Heart Association functional class; NPV, negative predictive value; OR, odds

ratio; PPV, positive predictive value; Se, sensitivity; SF, septal flash; SPECT, single-photon emission computed tomography; Sp, specificity; SSI, systolic stretch index; SV

stroke volume; TAPSE, tricuspidannular plane systolic excursion; TDI, tissue Doppler imaging.

Galli et al. 10.3389/fcvm.2023.1111538
in short or long parasternal long axis view (26, 47). The ApR

corresponds to apical transverse motion due to the early septal

contraction followed by the delayed activation of the lateral wall

(46). Both these parameters have shown to portend LV residual

contractility in CRT-candidates (48), to predict CRT-response

and long-term survival after CRT implantation, and to improve

the prognostic stratification of guideline-based patients’

selection (27).

Moreover, these motion patterns have proven to predict CRT-

response in patients with chronic right ventricular pacing needing a

pacemaker upgrade to CRT (49).

However, the correct identification of septal flash and apical

rocking in CRT candidates is strictly limited by the experience of

the echo-reader. In a small monocentric study, Mada et al. have

shown that the semi-automatic detection of these specific

contraction patterns by speckle tracking echocardiography

performed better than novice echo-readers for the identification

of SF/ApR (50) (Table 1).

Despite the visual assessment of LV dyssynchrony is often

performed by echocardiography, other imaging modalities such

as cardiac magnetic resonance (CMR) and single photon

emission computed tomography (SPECT) might be used to

detect LV mechanical discoordination. Both these imaging

modalities allow the contemporary assessment of scar localization

and viability, and they might provide an interesting approach for

the evaluation of CRT candidates before device implantation
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(28, 51, 52). However, these imaging modalities are plagued by a

poor temporal resolution which can impact the refined

assessment of LV dyssynchrony, thus favoring echocardiography

for this specific purpose (53).
3.4. Assessment of myocardial contractility
and global left ventricular function

Myocardial contractility and scar localisation are two

important parameters associated with CRT-response.

Dobutamine stress echocardiography (DSE) can be used to

identify the presence of contractile reserve and LV dyssynchrony

in CRT-candidates (29, 30). In 69 CRT candidates undergoing

DSE, Ciampi et al. showed that the presence of contractile

reserve defined by a wall motion score index variation >0.20 is

associated with significant LV reverse remodelling and survival

after CRT delivery (30). Low-dose DSE is also able to disclose/

accentuate the presence of visual LV dyssynchrony, making the

detection of dyssynchrony much easier at peak stress, and

helping the identification of CRT responders (29).

The measure of global LV function parameters at baseline

might provide useful information for the prediction of CRT

response. Several single-centre studies (31–33, 54) and two recent

large metanalyses (55, 56) showed that LV global longitudinal

strain measured before CRT delivery is both a predictor of CRT-
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FIGURE 2

Example of the semi-quantitative analysis of the strain curve dynamics through the calculation of strain integrals for the basolateral segment in 4-
chamber view. Upper panel: the red-shaded area represents the integral to strain peak (Il,peak). Middle panel: the red-shaded area represents the
integral to aortic valve closure (Il,AVC). Lower panel: the red-shaded area represents El, the difference between Il,peak and Il,AVC, corresponding to the
waste energy due to the delayed lateral wall contraction. AL, apico-lateral segment; AS, apico-septal segment; BL, basal-lateral segment; BS, basal-
septal segment; ML, mid-lateral segment; MS, mid-septal segment.

FIGURE 3

Example of the qualitative analysis of strain curves in a patient with a “typical” left bundle branch block (left panel) and “atypical” left bundle branch block
(right panel). The systolic stretch index (SSI) quantification is exemplified in the same picture (left panel).
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induced reverse remodelling and prognosis. In 205 HF patients

referred for CRT implantation, Delgado-Monteiro et al. showed

that a GLS>|−9%| was an independent predictor of a composite

endpoint including death, circulatory support implantation and

heart transplantation (HR: 2.91; 95% CI: 1.88–4.49; p < 0.001).

Interestingly, the predictive value of this cut-off was maintained

in patients with intermediate QRS width (120–150 msec), thus

helping to refine the selection of patients with a class II

indication for CRT implantation (31). The analysis of 1,185

patients from the Leiden CRT registry showed that some subjects
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can present a discordant CRT response, defined as an

improvement in LVESV (left ventricular end-systolic volume) or

CRT. The absence of increase in GLS despite the positive LV

reverse remodelling might be attributed to an effective

resynchronization of the LV ventricle, without concomitant

increase in the contractile reserve. Patients with concomitant

improvement in LVESV and CRT had the best prognosis [hazard

ratio (HR) 0.47; 95% CI: 0.31–0.71, p < 0.001], whereas patients

with a discordant improvement showed an intermediate survival

benefit from CRT (33) (Table 1).
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3.5. Assessment of scar extension and
localisation

In patients with ischemic cardiomyopathy, the extension and
localisation of myocardial scar significantly impact CRT response
essentially in two ways: (1) the LV lead placement at areas of
scar is associated with poor clinical and echocardiographic
response to CRT (34, 35); (2) the higher is the scar burden, the
lower is the residual LV contractility (10, 30).

As a matter of fact, in the Multicenter Automatic Defibrillator

Implantation Trial with Cardiac Resynchronization Therapy

(MADIT-CRT), ischemic cardiomyopathy emerged as an

independent predictor of LV remodelling after CRT (57).

Moreover, ischemic aetiology is associated with a worse

prognosis and higher rate of HF hospitalisation in CRT

candidates (58).

Cardiac imaging can have a pivotal role in the assessment of
myocardial scar. In the landmark randomized TARGET trial,
Khan et al.; showed that the positioning of the LV lead in a site
far from LV scar and with significant residual contractility
(defined as a >10% amplitude of the corresponding radial strain
trace) was associated with a higher percentage of CRT response
(70 vs. 55%, p < 0.031) and a significantly better survival (log
rank p = 0.002). Nevertheless, when compared with scar
assessment at cardiac magnetic resonance (CMR), the predictive
value of segmental radial strain for the identification of
myocardial scar is low (sensitivity 33% and specificity 72%) (59),
suggesting the usefulness of a multimodality imaging approach to
plan and ease CRT implantation.

Specifically, echocardiography can assess mechanical

dyssynchrony, whereas CMR can quantify the extent and

localization of myocardial scar.

Aalen et al. have shown that the localization of myocardial scar

in the septum or in the lateral wall can impact LV dyssynchrony

patterns at strain echocardiography (10).

If CMR is not available or contraindicated, SPECT might be
applied for the localization of the scar and to assess viability (36,
51). In CRT candidates, the quantification of scar burden by
SPECT has been associated with CRT response and prognosis
(37). However, in the presence of normal coronary artery and
LBBB, SPECT can display perfusion defects in the septal and
apical segments. These perfusion abnormalities are due to the
relative septal hypoperfusion, compared to the lateral wall and
can be disclosed by the measure of the absolute regional
myocardial perfusion at positron emission tomography (60).

Computed tomography (CT) can be used to analyse the
individual’s coronary venous anatomy and identify the best
pacing site. Moreover, CT might be an alternative to CMR or
SPECT to evaluate myocardial perfusion and scar, especially
when these other imaging modalities are not available (61).

Despite the interesting perspectives provided by multi-

modality (MMI) in CRT (62), 2 large randomized trials applying

a combination of echocardiography, CMR and CT did not show

any survival benefit of the multi-modality imaging-derived

approach vs. the standard approach for CRT implantation (63,

64). Nevertheless, these studies showed that patients receiving the
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LV lead in the optimal site had better LV remodelling and

survival after CRT, supporting the usefulness of a multimodality

imaging approach at least in selected cases.

In addition, both these studies focused on the localisation of

the myocardial scar in the lateral wall and neglected the value of

septal scar and of the septal-to-lateral wall interplay that has

shown to be a key element to understand the pathophysiology of

LBBB and predict CRT response and prognosis (8, 10).

In 200 CRT recipients, the septal-to-lateral wall difference in

myocardial work, emerged as an independent predictor of CRT

response with area under the curve (AUC) of 0.77 (95% CI:

0.70–0.84). Nevertheless, the combination of work difference and

septal viability increased the AUC to 0.88 (95% CI: 0.81–0.95).

Interestingly, the predictive power of a combination of work

assessment and septal scar was superior to QRS width for the

prediction of LV remodelling after CRT and was an independent

predictor of prognosis HR (0.21, 95% CI: 0.072–0.61) (8). These

results underscore the importance of a combination of viability

and septal-to-lateral wall dynamics for the evaluation of CRT

candidates (Figure 4 and Table 1).
4. The importance of a comprehensive
evaluation of cardiac function

The imaging-driven analysis of CRT candidates is

substantially focused on the assessment of LV function.

Nevertheless, an increasing amount of literature shows the

importance of a comprehensive approach when imaging CRT

candidates for both the identification of CRT-responders and

prognostic stratification.

The presence of an extensive LV remodelling before CRT

delivery, with more severe LV dysfunction and significant LV

dilatation is associated with poor prognosis and to less LV

ejection fraction improvement (38, 39).

The assessment of diastolic function is particularly challenging

in CRT candidates. Despite the application of the algorithm

proposed by Nagueh et al. is discouraged in patients with LV

conductions disturbances (65), Andersen OA et al. have shown

that this approach is able to identify patients with elevated LV

filling pressure against the invasive gold standard also in the case

of LBBB or paced rhythm (66).

Previous studies have shown that CRT doesn’t influence LV

relaxation and successful CRT does not seems to impact the

prevalence of diastolic dysfunction (DD) in CRT responders (40,

67). Nevertheless, the degree of DD in CRT candidates is an

independent predictor of mortality (HR 6.04; 95% CI: 2.32–15.77

and HR 4.64, 95%CI: 1.49–14.39 for grade II and III DD,

respectively) and unsuccessful CRT is associated with an

increased prevalence of grade III DD (40).

The left atrium (LA) reflects the cumulative effect of LV filling

pressure over time. In the MADIT-CRT trial, CRT was associated

with a significant reduction of LA volume, which portended a

substantial reduction in atrial tachyarrhythmias (68). In the same

cohort, LA indexed volume >52 ml/m2 and the lack of LA

remodelling after CRT were both associated with a higher hazard
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FIGURE 4

Pressure-loops analysis in the septal and lateral segments of patients with left bundle branch block without ischemic heart disease (left panel); with
anteroseptal scar (central panel) and lateral wall scar (right panel). The corresponding localisation of the myocardial scar is shown at MRI late
gadolinium enhancement in the upper panels.
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of HF and mortality (41). Together with the assessment of LA size,

the evaluation of LA reservoir strain (LARS) by speckle tracking

echocardiography provides information on the effects of CRT on

the LA. CRT is associated with a significant improvement in

LARS in responders (42, 69) and baseline LARS is and

independent predictor of both LV systolic and diastolic
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remodelling at 6-month follow-up (r =−0.14, p = 0.049, r =−0.17,
p = 0.002, respectively (42).

Because the main determinants of LARS are diastolic function

and LV longitudinal function, LARS might allow a comprehensive

assessment of both the systolic and diastolic LV impairment: the

more impaired LARS, the more advanced is the ongoing left
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FIGURE 5

A comprehensive approach to guide CRT implantation.
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ventricular disease, and the less likely is CRT-induced reverse

remodelling.

Finally, the relationship between RV function and left

ventricular remodelling after CRT is object of debate. In a large

meta-analysis of 16 studies, including 1,764 patients, Sharma

et al. underscored that baseline RV function as assessed by

tricuspid annular plane systolic excursion (TAPSE), RV fractional

area change (FAC), RV strain or RV ejection fraction does not

determine response to CRT as assessed by change in LVEF (70).
Frontiers in Cardiovascular Medicine 10
Nevertheless, more recent papers question these results by

showing that RV dysfunction is predictor of poor prognosis in

CRT candidates (43, 44). Interestingly, in an experimental model

of LBBB Storsen et al. observed that LBBB causes an abnormal

RV free wall motion pattern that is reversed after successful CRT

only in the case of preserved RV function (71).

This might be attributable to the LV/RV interdependence

through the LV septum, but can also be influenced by the effect

of severe LV dysfunction on mitral regurgitation, filling pressure,
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1111538
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 2 Summary of the main cited studies providing an overview of the role of machine learning in the field of CRT.

Authors/
Journal – year/
Ref

Population Endpoints Methods Parameters Results

Donal E et al. JACC
Cardiovasc Imaging
2019. (75)

154 pts
LVEF < 35%, QRS
width > 120 msec

LVESV reduction >15% at
6 months FU

Random Forest
and Monte Carlo
cross-validation

60 features from semi-
automatic strain trace analysis,
QRS width, visual Lv
dyssynchrony

Extraction of 6 main features with an
AUC 0.804 (0.77–0.94) for the
prediction of LV reverse remodelling

Gallard A. et al. Int
J Cardiovasc
Imaging 2021. (76)

221 pts
LVEF < 35%, QRS
≥120 msec

LVESV reduction >15% at
6 months FU

Random Forest Features from
echocardiography, strain traces
analysis, QRS width, LV
dyssynchrony

The combination of SF, E, E/A, E/e′,
QRS width, LVESV and 8 features
obtained from strain curves predicted
LV reverse remodelling with an AUC of
0.81 ± 0.05

Gallard A et al. PloS
One 2021. (77)

161 pts
LVEF < 35%, QRS
width > 120 msec

LVESV reduction >15% at
6 months FU

Random Forest 158 features from semi-
automatic strain trace analysis,
QRS width, LVEF

20 main features from strain analysis are
the best predictors of LV reverse
remodelling. 50% of these features are
derived from the 4-chamber strain.

Cikes M et al. Eur
J Heart Fail 2019.
(78)

1,106
LVEF≤ 30%, QRS
width ≥130 ms

Overall death or HF
hospitalisation

Multiple Kernel
Learning and K-
means clustering

Four phenogroups Two phenogroups with better prognosis
(HR = 0.35, 95% CI: 0.19–0.64, p <
0.0001 and HR = 0.36, 95% CI: 0.19–
0.68, p = 0.001)

Galli E et al. J Am
Soc Echocardiogr
2021. (79)

193 pts
LVEF 29 ± 8%, QRS
width 167 ± 21, 33%
ischemic

Primary: heart
transplantation, LV-
assisted device
implantation overall death

k-medoid, Boruta
algorithm,
random forest

28 clinical, biological and echo-
derived variables; two
phenogroups

Prognostic value of the main 8 variables:
AUC 0.84 (0.75–0.93);
Two phenogroups with different
prognosis: HR = 4.70, 95% CI: 2.1–10.0,
p < 0.0001; log-rank p < 0.0001)

Bivona DJ et al.
Heart Rhythm 2022.
(80)

200 pts
LVEF 24.0 (17.7–
30.5)%, QRS 58 (142–
175) msec, 43.5%
ischemic

1) Reduction of LVESV at
6 months FU
2) Survival

k-means method
and Gaussian
mixture model

39 features derived from CMR
and biology

3 clusters able to predict CRT response
and prognosis

AUC, area under the curve; CI, confidence interval; CMR, cardiac magnetic resonance; FU, follow-up; HF, heart failure; HR, hazard ratio; LV, left ventricle; LVEF, left

ventriculare ejection fraction; LVESV, left ventricular end-systolic volume.
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tricuspid regurgitation and pulmonary pressure (72) (Figure 5 and

Table 1).
5. Potential applications for artificial
intelligence in CRT

Artificial intelligence (AI) is focused on the application of

computational algorithms to huge amounts of data to identify

patterns between variables that are not disclosed by the

application of standard statistical methods (73). This approach

seems particularly interesting in the field of CRT, where the high

heterogeneity of CRT-candidates is probably the main

determinant of the well-known wide variability in clinical benefit

and outcomes (74).

In 154 CRT candidates, our group showed that the application

of a random forest method (RF) and Monte Carlo cross validation

allowed the identification of 6 strain-derived variables that were

able to predict CRT-response with an AUC of 0.80 (95% CI: 0.77

to 0.94) (75).

By the analysis of a larger multicentric population of 323 CRT-

candidates, Gallard et al. strengthened previous results and

demonstrated that the application of a multifeatured learning

method including visual LV dyssynchrony, standard

echocardiographic parameters and strain-derived data was able to

improve the prediction of CRT-response compared to the simple

analysis of QRS duration, with an overall AUC or 0.81 (76).
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Moreover, the semi-automatic analysis of strain traces and the

subsequent application ML algorithms might be helpful to disclose

relevant information that are not evident from the simple visual

analysis on strain curves. The application of different methods

such as out-of-bag random forest, wrapping and filtering to

strain traces obtained in 4-, 3- and 2-chamber views has shown

that the most important features are calculated from the

4-chamber view, essentially from the analysis of the antero-septal

and basal-septal segment (77).

The application of an unsupervised ML algorithm to 1,106 HF

patients from the MADIT-CRT trial was able to identify 4

phenogroups of patients, having different CRT-response and

prognosis (78). Interestingly, the analysis of left atrial, LV and right

ventricular morphology and function added significant information

for the classification of patients. Using both supervised and

unsupervised ML methods, Galli et al. were able to underscore the

value of right ventricle-derived parameters for the prediction of

CRT response and survival. This approach was able to reliable

predict CRT response and outcome with an AUC or 0.81 (95% CI:

0.74–0.87) and 0.84 (95% CI: 0.75–0.93), respectively (79).

Similarly, the application of a clustering approach (k-means

method and Gaussian mixture model) to clinical and CMR-

derived features was also able to stratify CRT-candidates in three

survival groups. Interestingly, the addition of CRT-volumetric

response to selected pre-CRT data significantly increased the

performance of the model for the prediction of prognosis (AUC

0.78 ± 0.04 vs. 0.86 ± 0.02) (80).
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Although it is difficult to directly compare classifier

performances because different datasets and ML models were

used in these studies, these results show the added value of

multivariate analysis for the prediction of CRT response.

Computer models represents another interesting application to

merge imaging and ECG-derived data to drive computer

simulation for the pathophysiological understanding of left

ventricular dyssynchrony, improve response to CRT, and for the

planning of CRT delivery. These models range from the simple

bidimensional representation of LV function (81, 82), to complex

3D-models including the analysis of the molecular, electrical and

mechanical properties of the myocardium (83, 84).

Moreover, the combination of clinical and model-derived data

might contribute to enhance the pathophysiology understanding of

CRT and also increase the accuracy in the prediction of LV

remodelling and prognosis in CRT candidates (85).

The computational modelling of LV dyssynchrony relies on the

merge of several different competences from imaging and

electrophysiology to numerical analysis (Figure 5). The main

challenge in this field is the large need of clinical validation,

followed by the production of user-friendly tools that allow the

analysis of data in a clinically useful time frame (86). The final

goal is to merge clinical data and computer simulations to

develop digital twins that are able to replicate the specific

patient’s heart disease and simulates the effect of CRT delivery

(87) (Table 2).

The application of AI in medicine sounds appealing in several

clinical scenarios including CRT because of its intrinsic capacity of

analysing a huge amount of heterogeneous data and providing

useful outcomes for diagnosis, management and prognosis. AI

might therefore provide a fundamental contribution to the

development of precision medicine and to a personalized

approach to patients’ care (88). However, several concerns exist

about the wide application of AI in the health care system. These

issues goes from the quality and transparency of data, to

complex technical issues, to ethical and political concerns and

need to be solved to provide a safe and fair application of AI in

the field of medicine (73, 89).
Conclusions

Cardiac resynchronization therapy has a pivotal role for the

management of patients with systolic heart failure and wide QRS.

In the recent years, the excessive relevance given to the concept

of “non-response” to CRT seems to contribute to the substantial

underuse of the device, so that up-to two third of patients

needing the CRT according to recommendations are not

implanted (90).
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This review provides an insight on the progresses of imaging in

the field of CRT and underscore the need of a comprehensive

approach which is useful to (1) disclose the electromechanical

substrates more suitable to respond to CRT; (2) identify imaging

pattern that are associated with good CRT response also in

patients with unclassical indications; (3) emphasize the relevance

of a global assessment of cardiac function including the

evaluation of filling pressure, LA size and function, and RV

function; (4) underscore the potentiality of AI to merge clinical,

electrophysiological and imaging-derived data with the purpose

of proposing patient’s tailored strategies.

The final goal of this holistic approach to CRT is to

individualize the treatment and to optimize CRT delivery.
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