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Understanding post-surgical
decline in left ventricular function
in primary mitral regurgitation
using regression and machine
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4Birmingham Veterans Affairs Health Care System, Birmingham, AL, United States, 5Department of
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Background: Class I echocardiographic guidelines in primary mitral regurgitation
(PMR) risks left ventricular ejection fraction (LVEF) < 50% after mitral valve
surgery even with pre-surgical LVEF > 60%. There are no models predicting
LVEF < 50% after surgery in the complex interplay of increased preload and
facilitated ejection in PMR using cardiac magnetic resonance (CMR).
Objective: Use regression and machine learning models to identify a combination
of CMR LV remodeling and function parameters that predict LVEF < 50% after
mitral valve surgery.
Methods: CMR with tissue tagging was performed in 51 pre-surgery PMR patients
(median CMR LVEF 64%), 49 asymptomatic (median CMR LVEF 63%), and
age-matched controls (median CMR LVEF 64%). To predict post-surgery LVEF <
50%, least absolute shrinkage and selection operator (LASSO), random forest
(RF), extreme gradient boosting (XGBoost), and support vector machine (SVM)
were developed and validated in pre-surgery PMR patients. Recursive feature
elimination and LASSO reduced the number of features and model complexity.
Data was split and tested 100 times and models were evaluated via stratified
cross validation to avoid overfitting. The final RF model was tested in
asymptomatic PMR patients to predict post-surgical LVEF < 50% if they had gone
to mitral valve surgery.
Results: Thirteen pre-surgery PMR had LVEF < 50% after mitral valve surgery. In
addition to LVEF (P=0.005) and LVESD (P=0.13), LV sphericity index (P=0.047)
and LV mid systolic circumferential strain rate (P=0.024) were predictors of
post-surgery LVEF < 50%. Using these four parameters, logistic regression achieved
77.92% classification accuracy while RF improved the accuracy to 86.17%. This
final RF model was applied to asymptomatic PMR and predicted 14 (28.57%) out
of 49 would have post-surgery LVEF < 50% if they had mitral valve surgery.
Abbreviations

AUROC, area under the Receiver Operating Characteristic (ROC) curve; AUPRC, area under Precision-Recall
(PR) curve; CMR, cardiac magnetic resonance; LV, left ventricle; LA, left atrium/atrial; LASSO, least absolute
shrinkage and selection operator; LA EF, left atrial emptying fraction; LVEDD, left ventricular end-diastolic
dimension; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic dimension; PMR,
primary mitral regurgitation; RF, random forest; ROC, receiver operating characteristic; SHAP, Shapley
Additive exPlanations; SVM, support vector machine; XGBoost. extreme gradient boosting; XO, xanthine
oxidase.
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FIGURE 1

Application of regression and machin
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Conclusions: These preliminary findings call for a longitudinal study to determine whether
LV sphericity index and circumferential strain rate, or other combination of parameters,
accurately predict post-surgical LVEF in PMR.

KEYWORDS

machine learning, mitral regurgitation (MR), predictive models, LV circumferential strain rate, post-

surgical LVEF
Introduction

Patients with primary mitral regurgitation (PMR) and left

ventricular ejection fraction (LVEF) > 60% have a 20% chance of

LVEF < 50% after mitral valve repair or replacement (1–3).

Current Class I guidelines include conventional echocardiography-

derived LVEF < 60%, LV end-systolic dimension > 4.0 cm or

symptoms for surgical intervention (4). These guidelines were

based on postoperative survival with less emphasis on

postoperative LV function (1). We have demonstrated severe

cardiomyocyte ultrastructural damage in patients with moderate to

severe PMR and echocardiographic LVEF > 60% in PMR patients

(5–7). These findings reinforce the concept that unrecognized

cardiomyocyte ultrastructural damage may in part explain the

decrease in post-operative LVEF.

Given the risk of waiting too long for surgery, current Class IIa

indication for asymptomatic patients with severe PMR and LVEF >

60% recommends mitral valve repair at a Heart Valve Center of

Excellence with a greater than 95% likelihood of a successful and

durable repair without residual mitral regurgitation and expected

mortality rate of less than 1% (4). However, outcomes among

these asymptomatic patients are heterogeneous, and models to

select the subset of asymptomatic patients with LVEF > 60% who

will benefit from early surgery remains elusive. The impetus for

the current study is to identify cardiac magnetic resonance

(CMR) markers of LV function and remodeling to optimize
e learning methods to achieve optimal a

02
timing of surgical intervention to reduce the likelihood of post-

surgical decline in LVEF.

The advantages of machine learning models are their ability

to integrate predictors extracted from multiple sources and to

model both linear and nonlinear interactions amongst them (8).

An important advantage of machine learning over conventional

statistical methods (e.g., logistic regression) is that various

machine learning algorithms do not require data to conform to

statistical assumptions. Thus, machine learning models can

identify unexpected predictors not accounted for by linear

models and interactions that have prognostic value. With

recursive feature elimination and repetitive testing, machine

learning models are now being used in pilot analyses even in

smaller data sets (9, 10).

Recent studies employ machine learning and regression

methods to achieve optimal analytical goals with multiple

potential predictors (Figure 1) (11). The current study employs

Random Forest (RF) (12), Support Vector Machine (SVM) with

Radial Basis Function Kernel (13), extreme gradient boosting

(XGBoost) (14), in addition to a standard least absolute shrinkage

and selection operator (LASSO) penalized logistic regression (15).

These models are trained, re-trained based on a reduced number

of features and validated in data from pre-surgical PMR patients

to predict six-month post-surgery LVEF < 50%. The final model is

then applied to predict LVEF < 50% in a cohort of asymptomatic

PMR patients if they had gone to mitral valve surgery.
nalytical goals.
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Materials and methods

Study population

This single-center study includes 49 asymptomatic and 51 pre-

surgery PMR patients recruited between 2006 and 2010 under NHLBI

Specialized Centers of Clinically Oriented Research grant (5, 6, 16).

Primary degenerative mitral valve prolapse characterized by

echocardiographic evidence of thickened, redundant leaflets with

excessive motion and prolapse. Patients were excluded for evidence of:

(1) aortic valve > trace aortic regurgitation or mean gradient of

>10 mmHg, (2) mitral stenosis (mean gradient > 5 mmHg, valve area

< 1.5 cm2), (3) endocarditis, (4) iatrogenic MR (ergot, radiation

induced), (5) hemodialysis, (6) pregnancy, (7) presence of coronary

artery disease (stenosis > 50%), 8) positive exercise tolerance test with

myocardial perfusion. The Institutional Review Boards of the

University of Alabama at Birmingham and Auburn University

approved the study protocol. All participants gave written informed

consent.
Data collection

All data from patients’ baseline and return visits were obtained

prospectively and recorded in electronic health data records. Cardiac

magnetic resonance (CMR) imaging with tissue tagging was

performed in control volunteers who had no prior history of

cardiovascular disease or medical illness, no history of smoking, and

no cardiovascular medications. Asymptomatic PMR patients had

Class I status, with moderate/severe PMR by color flow Echo/Doppler,

LVEF > 60%, LV end-systolic dimensions (ESD) < 40 mm, leaflet

thickening and prolapse, and normal maximal exercise myocardial

perfusion imaging (17). At baseline, PMR patients (asymptomatic, n

= 49 and pre-surgery, n = 51), plasma xanthine oxidase (XO) activity

and carboxy-terminal propeptide of procollagen type I (PICP), a
TABLE 1 Features included in predictive models (N = 37).

Category (No. of Features)
Demographics (9) Age, Race, Gender, Weight, Height, BMI, BSA, H

CMR Pre-surgery and Post-surgery (6 months)

- LV function (6) LV end-diastolic volume, LV end-systolic volume,

- LV remodeling (4) LV end-diastolic mass, LV mass/volume, LV Sphe

- Regurgitation (1) Regurgitant Volume

- LA remodeling (3) LA maximum and minimum volumes, Total LA e

- RV parameters (1) RV ejection fraction

LV CMR tissue tagging (9) LV mid Systolic Circumferential Strain

LV mid Systolic Longitudinal Strain

LVES Maximum Strain

LV mid Systolic Circumferential Strain Rate

LV Systolic Longitudinal Strain Rate

LV Peak Systolic Twist

LV Systolic Twist-per-Volume Slope

CL-Shear Angle

LV Systolic Torsion

Biomarkers (4) XOCM, PICP, ICTP, PICP/ICTP

CL, circumferential-longitudinal; CMR, cardiac magnetic resonance; ICTP, Carboxy-ter

atrial; LV, left ventricle; RV, right ventricle; LVEF, LV ejection fraction; PICP, Carboxy-te

xanthine oxidase normalized to plasma protein (XOCM).
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marker of type I collagen synthesis, and carboxy-terminal telopeptide

of collagen type I (ICTP) levels, a marker of type I collagen

degradation were measured. Post-surgical CMR was performed six

months after the surgical procedure in all pre-surgery patients.
Cardiac magnetic resonance

Table 1 lists all CMR-derived LV and left atrial volumes, strains

and twist as previously described in our laboratory (5, 6, 16, 17).
Xanthine oxidase measurement

Peripheral venous XO activity was measured by the rate of uric

acid production in the presence of xanthine (75 μM) without

NAD+ as described previously in our laboratory (16).
Collagen homeostasis

Baseline levels of PICP and ICTP were measured with

commercially available immunoassays (Quidel Corporation, USA

and Orion Diagnostic, Finland). Detection limits were 0.2 ng/ml for

PICP and 0.3 ng/ml for ICTP as described previously in our lab (16).
Statistical analysis

Data in Tables are presented as number (% of total) or median

(interquartile range). Statistical differences between two groups are

tested via Mann-Whitney U test for continuous variables and chi-

square test for categorical variables (Tables 1, 2 and

Supplementary Table S1). Comparisons between 3 groups are

tested by Kruskal-Wallis and the p-values adjusted by false
Features
ypertension, Atrial Fibrillation

LV end-diastolic dimension, LV end-systolic dimension, LVEF, LV Stroke Volume,

ricity Index (SI), LV mass/volume x SI

mptying fraction

minal telopeptide of collagen type I, a marker of type I collagen degradation; LA, left

rminal propeptide of procollagen type I, a marker of type I collagen synthesis; XO,
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TABLE 2 Pre-Surgery baseline demographic and CMR data separated by LVEF≥ or <50% at 6 months post-surgery (N = 51).

LVEF≥ 50%
(N = 38)

LVEF < 50%
(N = 13)

P value FDR adjusted
P-value

Age 56 (46, 62) 51 (43, 66) 0.85 0.91

Female/Male 8 (21%)/30 (79%) 7 (54%)/6 (46%) 0.025 0.204

BMI (kg/m2) 27 (24, 29) 25 (23, 30) 0.53 0.699

BSA (m2) 2.02 (1.89, 2.12) 1.80 (1.68, 2.04) 0.06 0.223

Hypertension (Y/N) 15 (39%)/23 (61%) 3 (23%)/10 (77%) 0.29 0.459

Atrial Fibrillation (Y/N) 5 (13%)/33 (87%) 5 (38%)/8 (62%)* 0.047 0.204

LVEF (%) 65 (62, 68) 58 (53, 64)* 0.005 0.146

LVED Volume (mL/m2) 104 (88, 128) 104 (96, 122) 0.91 0.91

LVES Volume (mL/m2) 36 (29, 45) 44 (36, 54)* 0.036 0.204

LV Stroke Volume (mL/m2) 69 (55, 82) 64 (54, 70) 0.23 0.459

LVED Diameter (mm) 57 (53, 62) 59 (55, 66) 0.30 0.459

LVES Diameter (mm) 44 (40, 47) 49 (40, 55) 0.13 0.376

LVED Mass/Volume (g/mL) 0.6 (0.6, 0.7) 0.6 (0.5, 0.7) 0.54 0.669

LV Sphericity Index (SI) 1.58 (1.43 1.78) 1.47 (1.29, 1.65)* 0.047 0.204

LVED Mass/Volume x SI 1.0 (0.8, 1.3) 0.9 (0.8, 1.1) 0.17 0.425

LV Systolic Twist/Volume slope (°/ml) −0.07 (−0.09, −0.05) −0.07 (−0.10, −0.05) 0.81 0.91

LV Systolic Circumferential Strain rate (1/s) −0.69 (−0.77, −0.64) −0.59 (−0.74, −0.51)* 0.024 0.204

Peak LV Torsion (°/cm) 2.05 (1.62, 2.55) 1.97 (1.34, 2.18) 0.30 0.459

Circumferential L-Shear Angle (°) 7.4 (6.5, 9.4) 7.1 (5.3, 8.8) 0.27 0.459

LVES Circumferential Strain −0.15 (−0.16, −0.13) −0.14 (−0.16, −0.12) 0.23 0.459

LVES Longitudinal Strain −0.13 (−0.14, −0.11) −0.11 (−0.16, −0.10) 0.89 0.91

LVES Maximal Strain −0.20 (−0.21, −0.19) −0.19 (−0.21, −0.18) 0.42 0.575

LA Max Volume (mL/m2) 58 (49, 81) 58 (53, 79) 0.76 0.898

LA Min Volume (mL/m2) 37 (22, 47) 38 (31, 47) 0.41 0.575

LA Emptying Fraction (%) 46 (37, 51) 42 (38, 46) 0.18 0.425

Regurgitant Volume (mL) 68 (49, 85) 57 (36, 70) 0.07 0.228

LV, left ventricle; LVED, LV end-diastolic; LVES, LV end-systolic; LVEF, LV ejection fraction; LA, left atrial; XO, xanthine oxidase normalized to plasma protein (XOCM) or

plasma volume (XOCV); PICP, Carboxy-terminal propeptide of procollagen type I, a marker of type I collagen synthesis; ICTP, Carboxy-terminal telopeptide of

collagen type I, a marker of type I collagen degradation.

Bold values indicate significance of p < 0.05.
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discovery rate (FDR) for multiple testing, reported in

Supplementary Table S2. Univariate and multivariate logistic

regression are fitted to predict the probability of post-surgical

LVEF < 50% using 4 pre-surgical parameters (LVEF, LVESD, LV

sphericity index, and LV systolic circumferential strain rate

(Supplementary Tables S3, S4).
Model development in pre-surgical patients

This study employed a standard LASSO (15) logistic regression and

threemachine learningmodels: random forest (RF) (12), support vector

machine (SVM) with Radial Basis Function (RBF) Kernel (13), and

extreme gradient boosting (XGBoost) (14). The models are trained to

predict a binary response variable with two levels: LVEF < 50% or

>50% at 6 months after mitral valve surgery in pre-surgery PMR

patients. The models were initially developed using 37 features

including demographics, CMR parameters, and biomarkers for

predictive modeling (Table 1 and Figure 2).
Feature selection

To avoid overfitting and to increase the reproducibility of the

models, we attempted to include the most relevant features in
Frontiers in Cardiovascular Medicine 04
predicting post-surgery LVEF < 50%. LASSO, which is a

regression model penalized on l1 penalty, performs both feature

selection and regularization by itself to enhance the

interpretability and accuracy of the linear model. Therefore,

LASSO does not require extra feature selection. However, for RF,

SVM, and XGBoost models, the most relevant features are

selected by recursive feature elimination algorithm (18, 19). This

fits machine learning models with all features at the beginning

and excludes the least important features based on their

importance rank, resulting in a model with a reduced number of

features (Figure 2). This elimination process is then iterated by

updating the feature importance rank using the model from the

previous iteration, thus updating the model with a fewer number

of features. The recursive feature elimination stops when the

highest area under the ROC curve (AUROC) is achieved, and the

final feature sets is the optimal feature set for our final models

(Figure 3A).

For RF and XGBoost, the feature importance is measured by a

mean decrease in Gini index, which reflects the contribution of

each feature to the purity of the nodes or leaves in the tree-based

models. The greater the mean decrease in Gini index, the more

important the feature is in the model. For SVM, the feature

importance is measured using the AUROC value. To compare

the feature importance returned by different models, we scale the

importance scores to the same scale (0–1) for each model
frontiersin.org
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FIGURE 2

Flow chart of proposed model training and validation process. 51 pre-surgery and 49 asymptomatic PMR patients were recruited between 2005 and 2010.
Random sampling was performed in pre-surgical patients to generate balanced data. Training (n= 43) and Testing Sets (n= 8) were established (blue flow
chart). For each model, feature selection identified a subset of features relevant in predicting post-surgical LVEF <50% using LASSO, or the machine
learning models: random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost) models. Random forest had the
highest area under the curve and accuracy and was chosen as the best predictive model. Based on the top 4 predictive features [LVEF, LV Sphericity
Index (SI), LVESD and LV systolic circumferential strain rate], the RF model was retrained on the 51 pre-surgery PMR patents then applied to 49
asymptomatic PMR patients to predict LVEF < 50% (14 patients—28%) if they were to have mitral valve surgery (green flow chart).

Zheng et al. 10.3389/fcvm.2023.1112797
separately as follows:

Impi,scaled ¼ Impi � Impmin

Impmax � Impmin
, i ¼ 1, 2, . . . , 37

where Imp is the raw importance score, Impmax is the maximum

importance score among 37 features, and Impmin is the minimum

importance score among 37 features. Figure 3C shows the top

features selected by the four models.
Model training and testing process

Fifteen percent of pre-surgical PMR patients are randomly

selected as an independent testing set (n = 8), and the

remaining 85% are used to train the initial machine learning

models (n = 43) using the initial 37 features (Table 1). During

each iteration in recursive feature elimination, hyper-parameter

tuning and cross-validation are performed to obtain the model

with a reduced feature set and optimal hyper-parameters. For
Frontiers in Cardiovascular Medicine 05
the LASSO and machine learning methods, the corresponding

models with the optimal feature sets that result in the highest

AUROC were selected as final models. Subsequently, the four

final models are further evaluated and compared via cross-

validation. To eliminate the potential sampling bias and to

obtain a robust model performance, we repeated the splitting,

training, and testing process 100 times (i.e., using a different

testing patient set of n = 8 vs. the training set of n = 43), and

record the averaged model performance across iterations in the

results.

The LASSO and machine learning models are evaluated via six

metrics: classification accuracy, area under the receiver operating

characteristic curve (AUROC), area under Precision-Recall (PR)

curve (AUPRC), sensitivity, specificity, precision, and F1 score in

the 51 pre-surgical PMR patients who have an actual known

outcome of LVEF < 50% at 6 months post-surgery (Figure 3D).

Among the six metrics, AUROC was used to choose the final

prediction model for post-surgical LVEF < 50%.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN
frontiersin.org
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Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

Precision ¼ TP
TP þ FP

F1 score ¼ 2TP
2TP þ FP þ FN

Where TP, TN, FP, and FN = true positive, true negative, false

positive, and false negative.
Interpretation of machine learning model

To interpret the final predictive model, we compute the

Shapley Additive exPlanations (SHAP) (14) value, which is

developed from the Shapley value in cooperative game theory.

The Shapley value in game theory quantifies the contribution

that each player brings to the game. Similarly, the SHAP value

quantifies the contribution of each feature to the model

prediction. In our case, one game is one patient, and the players

are the optimal feature sets in the final predictive model. The

SHAP value of a particular feature is computed by weighting the

marginal contributions of the feature. For pre-surgery PMR

patient or asymptomatic PMR patient, we compute the SHAP

value to evaluate the contribution of each feature to prediction of

the post-surgical LVEF < 50%. Therefore, the SHAP value

provides a local (i.e., patient-level) interpretation of the decision

made by the final machine learning model. Moreover, by

averaging the absolute SHAP values, we can obtain the overall

feature importance, which provides an overall (i.e., group-level)

interpretation of the machine learning model. In addition, the

sign of the SHAP value implies the directional impact of each

feature on the prediction (i.e., a positive SHAP implies positive

impact on the probability of post-surgical LVEF < 50%).
Results

Baseline characteristics of asymptomatic
and pre-surgical PMR patients

There is a significantly higher incidence of episodic atrial

fibrillation and medications, LV end-diastolic dimension

(LVEDD), LVESD, and pulmonary artery systolic pressure (by

Echo/Doppler) in pre-surgery vs. asymptomatic PMR. Forty

seven per cent of pre-surgical patients are Class I, and all

patients had normal renal function. Median pulmonary systolic

pressure and median pulmonary artery wedge pressure are

38 and 16 mmHg, respectively, in pre-surgical patients

(Supplementary Table S1).
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CMR in asymptomatic and pre-surgery
patients with moderate to severe PMR

LVEF does not differ among normal and both PMR groups. LV

end-diastolic volume, LV stroke volume, LVEDD, LVESD, and

regurgitant volume and XO activity are greater in pre-surgery vs.

asymptomatic PMR. However, LVED mass/volume, Sphericity

Index, and LVED 3-dimensional radius of curvature/wall

thickness at mid LV do not differ in asymptomatic and pre-

surgery PMR patients. Asymptomatic and pre-surgery patients

have decreased LV systolic twist/volume slope (°/mL) vs.

controls. The increase in plasma ICTP and decrease in the PICP

are consistent with net collagen degradation in pre-surgery PMR

patients. There is an increase in LA maximum and minimum

volumes in asymptomatic PMR compared to normal and they

are higher in pre-surgical PMR patients. However, only pre-

surgical PMR patients have a decrease in total LA emptying

fraction (Supplementary Table S2).
CMR in pre-surgery PMR patients with LVEF
< 50% at 6 months post-surgery

Among the 51 pre-surgical patients, 13 patients (25.49%) had a

decrease in CMR LVEF < 50% at 6 months post-surgery. Patients

with LVEF < 50% were more likely to have a median baseline

LVEF < 58% by CMR and a greater incidence of atrial fibrillation.

Those with a decrease in LVEF had a higher LV end-systolic

volume index and lower LV sphericity index and LV mid systolic

circumferential strain rate, prior to surgery. However, FDR-

adjusted p-values indicated no significant differences between the

two groups (Table 2).
Statistical and machine learning modeling in
pre-surgery PMR patients

Four predictive models: a standard linear model - LASSO, and

three machine learning models: RF, SVM, and XGBoost were

trained to predict a binary response variable with two levels:

LVEF < 50% or >50% at 6 months after mitral valve surgery in

the 51 pre-surgery PMR patients (Figure 2). The models were

initially developed using 37 features including demographics,

CMR parameters, and biomarkers for predictive modeling

(Table 1). To reduce the complexity of the model, feature

selection (Figure 2) identifies a subset of features that are

relevant in predicting a post-surgical LVEF < 50% using LASSO

for the linear model and recursive feature elimination for the

machine learning models. Figure 3A shows the ROC and

precision-recall curves (PRC) (Figure 3B) and the top important

features selected by LASSO and the machine learning models

(Figure 3C) and lists the model performance (Figure 3D) for all

four models including: AUROC, AUPRC, accuracy, sensitivity,

specificity, precision, and F1 score along with the 95% confidence
frontiersin.org
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FIGURE 3

(A) the receiver operating characteristic (ROC) and (B) precision-recall curves (PRC) for logistic regression with LASSO, random forest (RF), SVM, and
XGBoost models. (C) Feature selection identifies a subset of features that are relevant/important in predicting a post-surgical LVEF < 50% using LASSO
for the linear model and Recursive Feature Elimination for the RF, SVM, and XGBoost models. XOCM is XO activity in μUnits/mg protein; XOCV is XO
activity in μUnits/ml plasma. (D) Table of Model Performance for each Predictive Model with 95% confidence intervals in parentheses.
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interval generated via bootstrapping. Overall, the machine learning

models outperform the LASSO regression model. Based on the top

features, the RF model provided the highest AUROC and AUPRC

and was chosen to re-train the 51 pre-surgical patients using the

four most relevant features identified by RF, for predicting LVEF

< 50%: baseline LVEF, LV Sphericity Index, LVESD, and LV

Systolic circumferential strain rate to improve predictability of

the final model (Figure 2).
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Random forest model interpretation

The SHAP value interprets the contribution of the four

important features of the RF model that predict post-surgery

LVEF < 50% for both pre-surgery (Figure 4A) and asymptomatic

PMR patients (Figure 4B). The directional impact of each

feature is represented by the sign (negative or positive) of the

SHAP value. A positive SHAP for each feature has a positive
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FIGURE 4

SHAP values for pre-surgery (A) and asymptomatic (B) PMR patients. Color value of each feature: highest blue and lowest yellow. Negative SHAP value (left
side of 0.0) is a negative impact on the odds ratio, i.e., less likely to have post-surgical LVEF < 50%. Positive SHAP value (right side of 0.0) indicates a higher
probability of post-surgical LVEF < 50%. (C) SHAP values for pre-surgery (top) & asymptomatic (bottom) PMR presented with potential cutoff values (red
vertical dashed line) indicating the likelihood of post-surgical LVEF < 50%. A negative SHAP value (red) indicates a negative impact on the odds ratio, i.e.,
less likely to have post-surgical LVEF < 50%. A positive SHAP value (blue) indicates a higher probability of post-surgical LVEF < 50%. Each circle is
representative of an individual patient.
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impact on the probability of post-surgery LVEF < 50%. A negative

SHAP value has a negative impact on the probability of post-

surgery LVEF < 50%. The larger the absolute value of SHAP, the

greater the contribution the feature has to the model prediction.

Figure 4C shows the SHAP value of the four features in the

RF model with a data-driven cutoff value (red vertical dashed

line) indicating the directional impact on the likelihood of post-

surgical LVEF < 50% in pre-surgery (top graphs) and

asymptomatic (bottom graphs) PMR patients. Each circle

represents one patient, and the color denotes positive (blue) or

negative (red) impact of the feature on the probability (or

likelihood) of post-surgery LVEF < 50%. The higher the absolute

baseline CMR derived LVEF (>58%) and sphericity index

(>1.3), the less likely for post-surgical LVEF < 50% (negative

SHAP values). Mid LV systolic circumferential strain rate is a

negative quantity and more negative values represent a greater

circumferential shortening rate. Thus, <−0.63 1/s (−0.00063
1/ms) suggests that it is less likely for post-surgical LVEF < 50%

(negative SHAP values). In comparison, the higher the LVESD

(>48 mm), the more likely to have a post-surgical LVEF < 50%

(positive SHAP value).
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Prediction of LVEF < 50% after mitral valve
surgery in asymptomatic PMR

We address the important question of how many

asymptomatic PMR patients would potentially be at risk for

LVEF < 50% if they had gone to surgery. Therefore, we retrained

the optimal RF model with the four selected features in all 51

pre-surgery PMR patients, and applied it to asymptomatic PMR

patients (Figure 2). Random Forest predicted 14 out of 49

(28.57%) asymptomatic PMR patients would have LVEF < 50%

post mitral valve surgery, had they gone to surgery.
Discussion

In the current study, we employed a combination of machine

learning and regression methods with the intention of identifying

a combination of CMR (and biomarker) predictors not

accounted for by a linear model alone for predicting LVEF < 50%

at 6 months after surgery. In addition to LVEF and LVESD, mid
frontiersin.org
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LV systolic circumferential strain rate and LV sphericity index

predict LVEF < 50% six months after surgery. Figure 1 outlines

the value of utilizing both machine learning and regression

modeling to achieve an optimal analytical result in addressing

this complicated question. Compared with classic regression

models, machine learning: (1) integrates predictors extracted

from multiple sources and models both linear and nonlinear

interactions amongst them and; (2) identifies unexpected

predictors not accounted for by linear models.

The RF model was most accurate when reducing the features to

LVEF, LVESD, LV sphericity index and LV mid wall

circumferential strain rate in comparison to linear regression

modeling. CMR LV strain emanates from tissue tagging that

allows for intramyocardial displacement and strain by motion of

identifiable material points distributed throughout the

myocardium (5, 6). The adverse spherical remodeling, increase in

LV mid radius/wall thickness, and global decrease in LVED

mass/volume elevates wall stress resulting in a detrimental effect

on LV mid circumferential shortening. Models that determine

the effect of LV shape on LVEF demonstrate the importance of

circumferential strain over longitudinal strain in maintaining

LVEF in the spherically dilated LV (20). However, these models

do not account for the presence of mitral regurgitation. In this

pilot study, the RF model captures the inescapable LV spherical

remodeling characteristic of PMR (5, 6, 16, 21). This connection

to circumferential strain rate rather than circumferential strain

alone further underscores the confounding factors of PMR

ejection dynamics in the face of ejection into the low pressure

left atrium, increased preload, and increased adrenergic drive in

patients with PMR and LVEF > 60% (22, 23). The decrease in

contractile velocity at the LV mid wall can be attributed to the

loss of sarcomeres in the PMR heart (5, 6, 16, 21).

Regurgitant volume and plasma XO activity are other features

identified more than once in the four models. However, the

regurgitant volume calculated from the difference of LV and RV

stroke volumes is an underestimate due to the 30% incidence of

significant tricuspid regurgitation in the pre-surgical PMR patients.

When calculated using phase velocity mapping for forward stroke

volume, regurgitant volume may become a very powerful feature

predictor as demonstrated in previous studies in PMR patients

(24). We have reported an increase in LV and plasma XO,

extensive mitochondrial damage, and breakdown of desmin in

patients with moderate to severe PMR and LVEF > 60% (5, 6, 16).

Xanthine oxidase can depress myofilament sensitivity to calcium

and XO products like superoxide and hydrogen peroxide, can

oxidatively influence mitochondria, myofilaments, calcium

handling proteins, resulting in decreased LV strain rate (25).

An important addition to the interpretation of machine

learning models is the SHAP (Shapley Additive exPlanations)

(14) value, developed from the Shapley value in cooperative

game theory. The SHAP value assigns each feature an

importance value for a particular prediction to explain the

decision made by the machine learning models. The SHAP value

provides an overall interpretation of the machine learning models
Frontiers in Cardiovascular Medicine 09
including a directional impact of each feature on the prediction

(i.e., a positive or negative impact on the probability of post-

surgical LVEF < 50%) and a local interpretation at the patient

level (i.e., knowing how each feature contributes to an individual

prediction for each patient). This provides cutoff values that in a

larger sample size can comprise a risk score.

The relatively small sample size and the absence of an external

validation set is a limitation in this preliminary study, in addition

to the potential for overfitting in a small number of patients. To

address this, feature selection via LASSO (linear model) or recursive

feature elimination (machine learning models) reduces the number

of features and model complexity. To eliminate the potential

sampling bias and obtain a robust model performance, we iterate

the splitting, training, and testing process 100 times (i.e., using a

different testing patient set of n = 8 vs. the training set of n = 43),

and record the averaged model performance.

To demonstrate the limitation of regression analysis, we

employed univariate regression vs. multivariate regression for

LVEF, LVESD, LV sphericity index and LV mid circumferential

strain rate to predict LVEF < 50%. Coefficients for univariate

regression with single features (Supplementary Table S3) produce

a similar pattern to machine learning, and the four features except

LVESD. Inclusion of the four features in a multivariate logistic

regression, the coefficients still produce similar patterns as

machine learning, however, all four features are no longer

significant (Supplementary Table S4). Supplementary Table S5

also shows the odds ratio of the top 4 and 8 features from the RF

model (Figure 3C). Therefore, multivariate logistic regression is

not adequate when multiple features are interacting in both linear

and nonlinear relations with the outcome. Consequently, the use

of machine learning models may provide a better method of

accurately assessing the contribution of linear and non-linear

features in predicting a post-surgical decline in LVEF < 50%. This

is depicted in a representative tree in the random forest

(Supplementary Figure S1) and variable dependence and partial

dependence plots (Supplementary Figure S2) that show that the

association of the top 4 features in the RF model are not linear to

the outcome (LVEF < 50%). This underscores the analytical

benefits of a combination of regression and machine learning

models and the potential advantages of utilizing the latter (Figure 1).

The impetus for this study is the unreliability of an

echocardiographic LVEF > 60% in the complicated context of

increased preload and facilitation of LV ejection in patients with

PMR. Machine learning and multiple testing most certainly

increase the risk of drawing a false-positive conclusion.

Nevertheless, the findings from this approach, in albeit a small

number of patients present a cogent argument for the

underpinnings of LV sphericity and mid LV circumferential strain

rate in the pathophysiology of PMR. Whether these, or any

combination of LV and biomarker features, can reliably identify

the need for surgery with better LV functional recovery can only

be confirmed in a longitudinal study that incorporates machine

learning and statistical models that capture both linear and non-

linear interactions in asymptomatic PMR patients with LVEF > 60%.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1112797
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Zheng et al. 10.3389/fcvm.2023.1112797
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material, further inquiries can be

directed to the corresponding author.
Ethics statement

The studies involving human participants were reviewed and

approved by University of Alabama at Birmingham IRB and

Auburn University IRB. The patients/participants provided their

written informed consent to participate in this study.
Author contributions

JZ—Involved in the concept design, development,

methodology and in-depth analyses and interpretation of

machine learning and statistical predictive models and critical

review and final approval of the manuscript. YL—Involved in

analyses of machine learning and statistical predictive models

and approval of the manuscript. NB—Involved in the design and

analyses of machine learning and statistical predictive models,

critical review and approval of the manuscript. MA—Involved in

the recruitment and retention of subjects and critical manuscript

review and approval pertaining to the mechanisms of the disease

pathology. YF—Involved in the development of machine learning

predictive models and provided critical review of methodologies,

analyses and interpretation in the manuscript. BP—Involved in

data collection, analyses, interpretation, critical review,

preparation and final approval of manuscript. TD—Involved in

design, analysis and interpretation of magnetic resonance data,

critical review and approval of the manuscript. LD—

Corresponding author conceived the idea and design of the

manuscript, subject recruitment and retention. Spearheaded data

analyses, and interpretation of the predictive models based on

physiological mechanism of disease. Drafted and critically revised
Frontiers in Cardiovascular Medicine 10
all contents of the manuscript and gave final approval of the

manuscript for publication. All authors contributed to the article

and approved the submitted version.
Funding

This work was supported by the National Heart, Lung, and

Blood Institute and Specialized Centers of Clinically Oriented

Research grant [P50HL077100 to L.J.D] in cardiac dysfunction;

Department of Veteran Affairs for Merit Review grant

[1CX000993-01 to L.J.D]; and National Institutes of Health

Grant [P01 HL051952 to L.J.D]. No relationships to industry.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcvm.2023.

1112797/full#supplementary-material.
References
1. Miller JD, Suri RM. Left ventricular dysfunction after degenerative mitral valve
repair: a question of better molecular targets or better surgical timing? J Thorac
Cardiovasc Surg. (2016) 152(4):1071–74. doi: 10.1016/j.jtcvs.2016.07.018

2. Quintana E, Suri RM, Thalji NM, Daly RC, Dearani JA, Burkhart HM, et al. Left
ventricular dysfunction after mitral valve repair-the fallacy of “normal” preoperative
myocardial function. J Thorac Cardiovasc Surg. (2014) 148:2752–62. doi: 10.1016/j.
jtcvs.2014.07.029

3. Enriquez-Sarano M, Suri RM, Clavel MA, Mantovani F, Michelena HI, Pislaru S,
et al. Is there an outcome penalty linked to guideline-based indications for valvular
surgery? Early and long-term analysis of patients with organic mitral regurgitation.
J Thorac Cardiovasc Surg. (2015) 150(1):50–8. doi: 10.1016/j.jtcvs.2015.04.009

4. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, et al.
ACC/AHA guideline for the management of patients with valvular heart disease: a
report of the American college of cardiology/American heart association joint
committee on clinical practice guidelines. Circulation. (2021) 143(5):e35–71. doi: 10.
1161/CIR.0000000000000932

5. Ahmed MI, Guichard JL, Soorappan RN, Ahmad S, Mariappan N, Litovsky S,
et al. Disruption of desmin-mitochondrial architecture in patients with regurgitant
mitral valves and preserved ventricular function. J Thorac Cardiovasc Surg. (2016)
152:1059–70. doi: 10.1016/j.jtcvs.2016.06.017

6. Ahmed MI, Gladden JD, Litovsky SH, Lloyd SG, Gupta H, Inusah S, et al.
Increased oxidative stress and cardiomyocyte myofibrillar degeneration in patients
with chronic isolated mitral regurgitation and ejection fraction >60%. J Am Coll
Cardiol. (2010) 55:671–79. doi: 10.1016/j.jacc.2009.08.074

7. Quer G, Arnaout R, Henne M, Arnaout R. Machine learning and the future of
cardiovascular care. J Am Coll Cardiol. (2021) 77(3):300–13. doi: 10.1016/j.jacc.2020.11.030

8. Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in
cardiovascular risk prediction: applying machine learning to address analytic
challenges. Europ Heart J. (2017) 38:1805–14. doi: 10.1093/eurheartj/ehw302

9. Arevalillo J, Navarro H. Using random forests to uncover bivariate interactions in
high dimensional small data sets. Proceedings of the ACM SIGKDD workshop on
statistical and relational learning in bioinformatics; (2009). p. 3–6

10. Xie X, Yang M, Xie S, Wu X, Jiang Y, Liu Z, et al. Early prediction of left
ventricular reverse remodeling in first-diagnosed idiopathic dilated cardiomyopathy:
a comparison of linear model, random forest, and extreme gradient boosting. Front
Cardiovasc Med. (2021) 4(8):684004. doi: 10.3389/fcvm.2021.684004
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcvm.2023.1112797/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1112797/full#supplementary-material
https://doi.org/10.1016/j.jtcvs.2016.07.018
https://doi.org/10.1016/j.jtcvs.2014.07.029
https://doi.org/10.1016/j.jtcvs.2014.07.029
https://doi.org/10.1016/j.jtcvs.2015.04.009
https://doi.org/10.1161/CIR.0000000000000932
https://doi.org/10.1161/CIR.0000000000000932
https://doi.org/10.1016/j.jtcvs.2016.06.017
https://doi.org/10.1016/j.jacc.2009.08.074
https://doi.org/10.1016/j.jacc.2020.11.030
https://doi.org/10.1093/eurheartj/ehw302
https://doi.org/10.3389/fcvm.2021.684004
https://doi.org/10.3389/fcvm.2023.1112797
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Zheng et al. 10.3389/fcvm.2023.1112797
11. Breiman L. Random forests. Mach Learn Arch. (2001) 45(1):5–32. doi: 10.1023/
A:1010933404324

12. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining;
San Francisco, CA, USA (2016). p. 785–94

13. Burges CJC. A tutorial on support vector machines for pattern recognition. Data
Min Knowl Discov. (1998) 2(2):121–67. doi: 10.1023/A:1009715923555

14. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions.
Proceedings of the 31st international conference on neural information
processing systems (NIPS’17);. Curran Associates Inc., Long Beach, CA, USA
(2017). p. 4768–77

15. Hosner DW, Lemeshow S. Applied logistic regression. Vol 581. New York: Jhon
Wiley & Son (1989).

16. Ahmed MI, Andrikopoulou E, Zheng J, Ulasova E, Pat B, Kelley EE, et al.
Interstitial collagen loss, myocardial remodeling and function in primary mitral
regurgitation. J Am Coll Cardiol Basic Trans Sci. (2022) 7(10):973–81. doi: 10.1016/
j.jacbts.2022.04.014

17. Ahmed MI, Aban I, Lloyd SG, Gupta H, Howard G, Inusah S, et al. A
randomized controlled Phase IIb trial of Beta-1 receptor blockade in isolated
degenerative mitral regurgitation. J Am Coll Cardiol. (2012) 60:833–38. doi: 10.
1016/j.jacc.2012.04.029

18. Huang X, Zhang L, Wang B, Li F, Zhang Z. Feature clustering based support
vector machine recursive feature elimination for gene selection. Appl Intell. (2018)
48:594–607. doi: https://doi.org/10.1007/s10489-017-0992-2
Frontiers in Cardiovascular Medicine 11
19. Darst BF, Malecki KC, Engelman CD. Using recursive feature elimination in
random forest to account for correlated variables in high dimensional data. BMC
Genet. (2018) 19(Supplement 1):65. doi: 10.1186/s12863-018-0633-8

20. Stokke TM, Hasselberg NE, Smedsrud MK, Sarvari SI, Haugaa KH, Smiseth OA,
et al. Geometry as a confounder when assessing ventricular systolic function.
Comparison between ejection fraction and strain. J Am Coll Cardiol. (2017) 70
(8):942–54. doi: 10.1016/j.jacc.2017.06.046

21. Schiros CG, Dell'Italia LJ, Gladden JD, Clark D 3rd, Aban I, Gupta H, et al.
Magnetic resonance imaging with 3-dimensional analysis of left ventricular
remodeling in isolated mitral regurgitation: implications beyond dimensions.
Circulation. (2012) 125:2334–42. doi: 10.1161/CIRCULATIONAHA.111.073239

22. Zheng J, Yancey DM, Ahmed MI, Wei CC, Powell PC, Shanmugam M, et al.
Increased sarcolipin expression and adrenergic drive in humans with preserved left
ventricular ejection fraction and chronic isolated mitral regurgitation. Circ Heart
Fail. (2014) 7(1):194–202. doi: 10.1161/CIRCHEARTFAILURE.113.000519

23. Grossman PM, Linares OA, Supiano MA, Oral H, Mehta RH, Starling MR.
Cardiac-specific norepinephrine mass transport and its relationship to left
ventricular size and systolic performance. Am J Physiol Heart Circ Physiol. (2004)
287(2):H878–88. doi: 10.1152/ajpheart.00007.2003

24. Myerson SG, d’Arcy J, Christiansen JP, et al. Determination of clinical outcome
in mitral regurgitation with cardiovascular magnetic resonance quantification.
Circulation. (2016) 133(23):2287–96. doi: 10.1161/CIRCULATIONAHA.115.017888

25. Perez NG, Gao WD, Marban E. Novel myofilament Ca2+-sensitizing property of
xanthine oxidase inhibitors. Circ Res. (1998) 83:423–30. doi: 10.1161/01.RES.83.4.423
frontiersin.org

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1016/j.jacbts.2022.04.014
https://doi.org/10.1016/j.jacbts.2022.04.014
https://doi.org/10.1016/j.jacc.2012.04.029
https://doi.org/10.1016/j.jacc.2012.04.029
https://doi.org/https://doi.org/10.1007/s10489-017-0992-2
https://doi.org/10.1186/s12863-018-0633-8
https://doi.org/10.1016/j.jacc.2017.06.046
https://doi.org/10.1161/CIRCULATIONAHA.111.073239
https://doi.org/10.1161/CIRCHEARTFAILURE.113.000519
https://doi.org/10.1152/ajpheart.00007.2003
https://doi.org/10.1161/CIRCULATIONAHA.115.017888
https://doi.org/10.1161/01.RES.83.4.423
https://doi.org/10.3389/fcvm.2023.1112797
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	Understanding post-surgical decline in left ventricular function in primary mitral regurgitation using regression and machine learning models
	Introduction
	Materials and methods
	Study population
	Data collection
	Cardiac magnetic resonance
	Xanthine oxidase measurement
	Collagen homeostasis
	Statistical analysis
	Model development in pre-surgical patients
	Feature selection
	Model training and testing process
	Interpretation of machine learning model

	Results
	Baseline characteristics of asymptomatic and pre-surgical PMR patients
	CMR in asymptomatic and pre-surgery patients with moderate to severe PMR
	CMR in pre-surgery PMR patients with LVEF < 50% at 6 months post-surgery
	Statistical and machine learning modeling in pre-surgery PMR patients
	Random forest model interpretation
	Prediction of LVEF < 50% after mitral valve surgery in asymptomatic PMR

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


