
fcvm-10-1114459 January 25, 2023 Time: 15:58 # 1

TYPE Mini Review
PUBLISHED 19 January 2023
DOI 10.3389/fcvm.2023.1114459

OPEN ACCESS

EDITED BY

John Lynn Jefferies,
The University of Tennessee Health Science
Center (UTHSC), United States

REVIEWED BY

Andrew A. Gibb,
Temple University, United States
Emma Louise Robinson,
University of Colorado, United States
Kyung Chan Park,
University of Oxford, United Kingdom

*CORRESPONDENCE

Jiayi Pei
j.pei-2@umcutrecht.nl

SPECIALTY SECTION

This article was submitted to
Cardiovascular Genetics and Systems Medicine,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 02 December 2022
ACCEPTED 03 January 2023
PUBLISHED 19 January 2023

CITATION

Gaar-Humphreys KR, van den Brink A,
Wekking M, Asselbergs FW, van Steenbeek FG,
Harakalova M and Pei J (2023) Targeting lipid
metabolism as a new therapeutic strategy
for inherited cardiomyopathies.
Front. Cardiovasc. Med. 10:1114459.
doi: 10.3389/fcvm.2023.1114459

COPYRIGHT

© 2023 Gaar-Humphreys, van den Brink,
Wekking, Asselbergs, van Steenbeek, Harakalova
and Pei. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Targeting lipid metabolism as a
new therapeutic strategy for
inherited cardiomyopathies
Karen R. Gaar-Humphreys1,2, Alyssa van den Brink1,2,
Mark Wekking1,2, Folkert W. Asselbergs3,4,
Frank G. van Steenbeek1,2,5, Magdalena Harakalova1,2,6 and
Jiayi Pei1,2,6*
1Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University
Medical Center Utrecht, Utrecht University, Utrecht, Netherlands, 2Regenerative Medicine Center Utrecht,
University Medical Center Utrecht, Utrecht, Netherlands, 3Department of Cardiology, Amsterdam University
Medical Centers, University of Amsterdam, Amsterdam, Netherlands, 4Health Data Research
United Kingdom and Institute of Health Informatics, University College London, London, United Kingdom,
5Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands,
6Netherlands Heart Institute, Utrecht, Netherlands

Inherited cardiomyopathies caused by pathological genetic variants include multiple

subtypes of heart disease. Advances in next-generation sequencing (NGS) techniques

have allowed for the identification of numerous genetic variants as pathological

variants. However, the disease penetrance varies among mutated genes. Some

can be associated with more than one disease subtype, leading to a complex

genotype-phenotype relationship in inherited cardiomyopathies. Previous studies

have demonstrated disrupted metabolism in inherited cardiomyopathies and

the importance of metabolic adaptations in disease onset and progression. In

addition, genotype- and phenotype-specific metabolic alterations, especially in

lipid metabolism, have been revealed. In this mini-review, we describe the

metabolic changes that are associated with dilated cardiomyopathy (DCM) and

hypertrophic cardiomyopathy (HCM), which account for the largest proportion

of inherited cardiomyopathies. We also summarize the affected expression of

genes involved in fatty acid oxidation (FAO) in DCM and HCM, highlighting the

potential of PPARA-targeting drugs as FAO modulators in treating patients with

inherited cardiomyopathies.

KEYWORDS

hypertrophic cardiomyopathy, dilated cardiomyopathy, genetic variants, lipid metabolism,
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Introduction

Inherited cardiomyopathies are diseases of the heart muscle due to pathological genetic
variants. Based on the clinical presentations, they are often divided into four subtypes, namely,
hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), arrhythmogenic
cardiomyopathy (ACM), and restrictive cardiomyopathy (RCM) (1, 2). Among them, the
estimated prevalence of DCM is the highest (1:250 individuals), followed by HCM (1:500
individuals) (3). Owing to the advances in next-generation sequencing (NGS) techniques,
numerous genetic variants have been identified as disease-causing variants. To date, more than
60 mutated genes are associated with DCM, and they are involved in a wide range of cellular
features, including the sarcomere, Z disk, cytoskeleton, sarcoplasmic reticulum and cytoplasm,
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ion channels, and mitochondria (4). A subset of those mutated genes,
such as TTN, LMNA, MYH7, and PLN, exhibits a stronger gene-
disease relationship with DCM compared to the rest (5). Unlike
the broad range of DCM-causal variants, most pathological variants
in HCM affect sarcomeric genes (6). MYH7 and MYBPC3 are the
most commonly affected genes in HCM, which account for about
70% of those variants (7). The disease penetrance varies among
mutated genes, and the same mutated gene can be associated with
more than one subtype (2, 8), leading to a complex genotype-
phenotype relationship in inherited cardiomyopathies. Therefore,
molecular insights into the affected pathways and biological
processes concerning different variants and/or subtypes are needed
to characterize the diseases better and provide druggable candidates
for novel treatments.

Metabolic changes in inherited
cardiomyopathies

The heart has a very high energy demand to fulfill its
basic functions. Therefore, sufficient cardiac energy metabolism is
crucial. In a healthy adult heart, over 95% of produced ATP is
derived from mitochondrial oxidative phosphorylation, and this
is predominantly by fatty acid oxidation (FAO) (9). However,
a significant metabolic switch toward the less efficient anaerobic
glycolytic metabolism occurs in failing hearts, which resembles the
energy preference of the fetal heart (10, 11). The inefficiency in
utilizing fatty acids results in the accumulation of lipid droplets,
which subsequently lead to lipotoxicity and heart failure (12).
In addition to lipid accumulation, failing hearts also exhibit
impaired metabolic flexibility in switching between different energy
substrates, including fatty acids, glucose, ketones, and amino acids
(13). The lack of sufficient energy substrates due to prolonged
fasting is, in fact, a known trigger for inherited cardiomyopathies
(14). Taken together, both internal and external factors could
affect cardiac performance and disease progression by disrupting
metabolic homeostasis.

Cardiac tissues and plasma samples from patients carrying
truncating TTN variants, which account for 15–20% of DCM
populations, showed affected genes and metabolites involved in
metabolic regulation when compared to DCM patients without
TTN variants (15). This suggests a tight relationship between
TTN variants and metabolic alterations. In addition, murine and
human DCM hearts carrying a PLN variant showed suppressed
mitochondrial fatty acid metabolism at mRNA and protein levels
(16, 17). Suppressed metabolic genes and mitochondrial enzyme
activities were also observed in 2D and 3D human induced
pluripotent stem cell-derived cardiomyocytes harboring a mutated
PLN gene (18). Multiple omics-based studies showed changes in
metabolite levels, such as glutamine, lactate, and acylcarnitines,
in DCM patients when compared to healthy individuals and
patients with ischemic cardiomyopathy (19–21). Additionally, the
metabolic changes correlated with the disease severity (19, 22).
Therefore, metabolites involved in metabolic signaling, such as
branched-chain amino acid metabolism, glycolysis, and glycolipid
metabolism, have been proposed as potential biomarkers for
DCM patients (23, 24). In line with these findings, clinical
measurements using cardiac magnetic resonance imaging and
positron emission tomography scanning also revealed an impaired

oxidative metabolism and the subsequent energy starvation mode
in DCM (12, 25). Additionally, DCM-related genetic variants,
such as LMNA variants, show a direct influence on lipid
metabolism (26). Besides the impaired fatty acid metabolism
in DCM patients, individuals with FAO disorders also have a
higher risk of developing DCM (27). These findings indicate a
bi-directional association between DCM and impaired fatty acid
metabolism. A recent study showed improved contractility and
mitochondrial respiration in cardiomyocytes with various DCM-
causing variants, including mutated PLN, TNNT2, TTN, LMNA,
TPM1, and LAMA2, by enhancing serine metabolism (28). Serine
is a non-essential amino acid and decreased serine availability
has been shown to suppress mitochondrial FAO, glucose and
glutamine metabolism (29), highlighting the tightly associated
metabolic pathways and the promising metabolic-based treatment
strategies in DCM.

High energy demand is required in HCM due to the associated
hypercontractility (30). Unlike the decreased power cycle (duty
ratio) and a lower force-holding capacity in DCM mutations
when compared to the wildtype controls, which require much
less ATP, HCM mutations exhibit an increased power cycle
and a higher force-holding capacity, leading to a higher ATP
usage (31). Therefore, alterations in metabolism show a profound
impact on HCM pathogenesis. Additionally, in contrast to the
decreased Ca2+ sensitivity in DCM, increased Ca2+ sensitivity and
cytosolic adenosine diphosphate (ADP) levels are seen in HCM
due to sarcomeric variants, resulting in metabolic changes (32).
Increased cytosolic ADP increases the oxidation of two metabolic
enzymes (NADH and NADPH), which decreases the capacity
to attenuate mitochondrial reactive oxygen species (ROS) levels,
as NADPH is necessary to detoxify ROS (30). Increased ROS
subsequently impairs mitochondrial activation and contributes to
HCM development (33). Additionally, reduced phosphocreatine
(PCr)/ATP ratios in HCM, both with and without hypertrophy,
indicate cardiac energetic impairments are present at an early stage
of HCM (34). The switch from FAO to glucose consumption is
seen in hypertrophied hearts, along with a decreased expression
of CD36, a key lipid transporter (35, 36). Multiple omics-based
studies comparing HCM patients to controls further revealed
alterations of molecular signatures involved in a wide array of
pathways suggesting fatty acid metabolism dysregulation, a reduction
of acylcarnitines, and an accumulation of free fatty acids (37–
39). A recent study using adult cultured rat cardiomyocytes also
demonstrated that increased glucose consumption is necessary
for synthesizing aspartate, which directly drives cardiomyocyte
hypertrophy (40). Mouse hearts carrying mutated MYH6, one of
the HCM-causal genes (41), showed decreased mitochondrial ATP
hydrolysis (42). Additionally, a high prevalence of HCM is observed
among patients with mitochondrial diseases, and several mutated
mitochondrial genes are known to contribute to HCM development,
such as HADHB (14, 43). Taken together, impaired mitochondrial
lipid metabolism and the switch to glycolysis are important for
HCM initiation and progression. Therefore, the potential of various
metabolic compounds is currently being studied in HCM, such
as perhexiline (44, 45), mavacamten (46, 47), omecamtiv mecarbil
(46), and ROS scavengers (48–50). Their efficacy, however, is still
to be determined.

Besides DCM and HCM, metabolic disturbances are also
observed in ACM and RCM. By comparing the transcriptional
landscapes between ACM and control human hearts, affected
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genes were enriched for several metabolic signaling, including
mitochondrial dysfunction and oxidative phosphorylation (51).
By comparing the plasma metabolomes between ACM patients
and healthy individuals, affected metabolites and lipids further
revealed several changed metabolic pathways, including lysine
degradation, tryptophan metabolism, and the beta-oxidation of
fatty acids (52). A recent paper compared transcriptional changes
in RCM, ischemic heart disease, and valvular heart disease to
control human hearts and showed that ATP metabolic processes
were enriched by altered genes in RCM but not in the other
two heart diseases (53). Combined, these findings highlighted the
potential benefits of restoring a balanced metabolism in inherited
cardiomyopathies.

Shared and unique metabolic
alterations between DCM and HCM

As a result of the recent studies indicating impaired metabolism
in inherited cardiomyopathies, attention has been drawn to studying
and identifying precise metabolic branches and key drivers of
disease pathogenesis per subtype. In general, both DCM and
HCM exhibit decreased lipid metabolism (30, 54) and increased
glucose metabolism (12, 55; Figure 1A). Besides these two major
metabolic processes, enhanced ketone body metabolism is also
shown in DCM and HCM (56, 57). Interestingly, suppressed
oxidative metabolism, amino acid metabolism, pentose phosphate
pathway, and nucleotide metabolism are observed in DCM (58–
61), whereas they are all elevated in HCM (19, 62–65). A recent
study further examined the metabolic alterations in DCM and
HCM hearts as compared to non-failing control hearts at the
global transcriptional level and demonstrated impaired metabolic
signaling of fatty acids, carbohydrates, and amino acids in both
DCM and HCM hearts (66). The study also investigated the single-
nucleus transcriptome in cardiomyocytes and non-myocyte cell
types and showed metabolic pathways were profoundly impaired
in DCM cardiomyocytes but not HCM cardiomyocytes, suggesting
the disease-specific metabolic alteration. Similarly, another paper
also showed HCM- or DCM-specific impaired metabolic processes
(67). Disease-specific gene sets, some of which are involved
in lipid metabolism, were found to be differentially changed
between DCM and HCM, such as the up-regulated APOE and
the down-regulated GPT in DCM, as well as the up-regulated
APOLD1 and the down-regulated STARD13 and PON3 in HCM.
In line with these findings, we also demonstrated that KLF15, an
important transcription factor regulating lipid metabolism (68),
was significantly up-regulated in HCM hearts carrying mutated
MYBPC3 and down-regulated in DCM hearts carrying mutated
PLN when compared to non-failing donor hearts (16, 38). Besides
the transcriptional level, proteins involved in metabolic pathways,
including lipid transfer and fatty acid biosynthetic process, also
showed DCM- and HCM-specific changes (69). To conclude, a
profoundly impaired metabolism is well-characterized in inherited
cardiomyopathies. Meanwhile, DCM- and HCM-specific metabolic
alterations, particularly candidate genes in lipid metabolism, have
also been cataloged.

The shared and unique metabolic signaling pathways and
candidate genes have opened up new avenues to identify
innovative compounds and design novel treatments for inherited

cardiomyopathies in general but also for specific cardiomyopathy
subtypes. For instance, mavacamten, a selective inhibitor of
cardiac myosin ATPase that modulates ATP turnover time,
exhibited a promising and beneficial effect on HCM patients
(47, 70). FAO inhibitors and lipid-lowering agents have also
been studied for treating DCM patients (71). The potential
of SGLT2 inhibitors, which improve mitochondrial function,
is currently under investigation in treating both DCM and
HCM (72–74). Yet, the need for additional drugs targeting
metabolism and mitochondrial function as the precision medicine
for inherited cardiomyopathies has been urged by the Translational
Committee of the Heart Failure Association and the Working
Group of Myocardial Function of the European Society of
Cardiology (75).

FAO alteration in DCM and HCM

Given FAO is severely impaired in both DCM and HCM, yet a
subset of FAO-related genes might be unique for each subset, we
searched for relevant studies that presented global transcriptional
profiles using either RNA sequencing or microarray in DCM or
HCM cohorts. We filtered for studies that were conducted using
either human tissue or cells or experiments that were validated
in a human model after animal experiments. In total, 10 relevant
papers published between 2015 and 2022 were compiled and
included for the purpose of this meta-analysis. Next, we collected
76 established genes that are involved in fatty acid beta-oxidation
from the gene ontology project (GO:0006635). KLF15 was added
to the gene set due to its role in FAO and its unique alteration
directions in DCM and HCM. Strikingly, almost all of the 77
genes were significantly differentially expressed between DCM and
control hearts in one included paper, confirming the profoundly
affected lipid metabolism in DCM (Figure 1B). Interestingly, altered
expression patterns for some genes, such as IRS1 and CPT1A, were
contrasting between DCM and HCM, suggesting the disease subtype-
specific differences in the FAO impairment. Besides, HADHA and
HADHB, genes coding for key enzymes in mitochondrial FAO
(76), showed generally suppressed mRNA levels in DCM and
HCM, whereas ACOX1, ACOX2, and ACOX3, genes coding for
key enzymes in peroxisomal FAO (77), showed increased mRNA
levels in DCM but not in HCM. This further suggests disease
subtype-specific differences in subcellular organelles-related FAO
impairment. It is also important to note that some FAO-related genes
showed contradicting expression patterns among different DCM-
based or HCM-based studies. This could be partially explained by the
heterogeneous genetic variants and their mutated genes, the different
disease severities of included patients, and the variable group sizes of
those studies. Therefore, studies with synchronized patient cohorts
and well-characterized genetic information and clinical presentations
are needed to address this complex gene-disease relationship.
Protein-protein interaction analysis was performed using the genes
found to be differentially expressed in DCM and HCM, respectively,
to further elucidate their functional networks. Among these affected
genes associated with FAO, biological processes, including the
regulation of FAO (GO:0031998), mitochondrial FAO (HSA-77289),
and peroxisome proliferator-activated receptor (PPAR) signaling
pathway (WP3942, Figure 1C), remained significantly enriched in
both DCM and HCM. PPARs are important upstream transcription
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FIGURE 1

(A) An overview demonstrating the alteration direction of seven main metabolic processes in dilated cardiomyopathy (DCM) and hypertrophic
cardiomyopathy (HCM). (B) The involvement and expression pattern of 77 protein-coding genes associated with fatty acid beta-oxidation (FAO) in DCM
and HCM. Up-regulated genes in DCM or HCM vs. the controls are shown in orange, and down-regulated genes are shown in green. Genes that were
either not significantly altered or not shown in the related paper were shown in white. Genes with opposite alteration directions between DCM and HCM
are indicated by “*”. (C) The enriched protein-protein interaction network in DCM and HCM, respectively. Highlighted genes involved in the regulation of
FAO (red), mitochondrial-related FAO (purple), and the peroxisome proliferator-activated receptor (PPAR) signaling pathway (blue). (D) Schematic
representation of mitochondrial FAO and its key regulators in inherited cardiomyopathies.
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factors in regulating FAO and other facets of lipid metabolism
and regulation (78). Notably, PPARA and CPT1A are shown in
both the PPAR signaling pathway network and the regulation of
FAO network. Both ACADM and ACADL overlap with the PPAR
signaling pathway network and are involved with mitochondrial
FAO.

PPARA-related FAO modulators as
novel candidates for the treatment of
inherited cardiomyopathies?

PPARA, PPARD, and PPARG are three isoforms of the
peroxisome proliferator-activated receptors (PPARs), which
are ligand-activated transcription factors. Since their DNA
binding regions are highly similar, they show overlapping
biological functions, especially in lipid metabolism (79). PPARA
is a key regulator in modulating fatty acid uptake and FAO;
PPARD enhances the utilization of lipids and glucose; and
PPARY increases fatty acid uptake, triglyceride formation,
and lipid storage (80). Notably, multiple studies from us
and others have shown suppressed PPARA expressions in
DCM and HCM hearts carrying different genetic variants
(16, 81, 82). Additionally, the interaction between PPARA
and KLF15 showed a significant impact on cardiac lipid
metabolism (83).

The cardioprotective effects of ligand-activated PPARA have been
reported, including the restored balance between fatty acid uptake
and FAO, increased insulin sensitivity, reduced ROS production,
and attenuated fibrosis formation (80, 84). Both natural ligands
(i.e., omega-3 fatty acids) and synthetic ligands (i.e., fibrates),
referred to as PPARA agonists (80), are commonly used to
activate PPARA. Previous studies have summarized well-established
PPARA agonists and those that are still in development (85–
88), some of which are PPARA-specific. Several agonists, such
as bezafibrate, ciprofibrate, clofibrate, and fenofibrate, have been
FDA-approved for treating type 2 diabetes or dyslipidemia, and
many more are under active research (80, 87). However, most
research is focused on the application of fibrates as treatments
for diseases such as primary biliary cholangitis, COVID-19, and
non-alcoholic fatty liver disease (89–91), and limited studies
have evaluated fibrates in inherited cardiomyopathies. A recent
study using knockout-Dsg2 ACM murine hearts showed that
improved myocardial fibrosis was observed after the activation
of PPARA by either fenofibrate treatment or adeno-associated
virus injections of PPARA (92). Nevertheless, several clinical
trials have investigated the effects of bezafibrate on mitochondrial
disease, neutral lipid storage disease, muscle/mitochondrial FAO
disorders, and Barth syndrome (93–99), which reflect impaired
mitochondrial function, lipid accumulation, and heart failure as
seen in cardiomyopathies. Therefore, the results obtained from these
conducted trials might also shield light on its effect on inherited
cardiomyopathies.

Conclusion

Metabolic homeostasis plays an important role in cardiac
performance and disrupted metabolism is generally present in

inherited cardiomyopathies, regardless of the pathogenic DNA
variant and the phenotypes. Despite the shared metabolism
alterations among different subtypes of inherited cardiomyopathies,
etiology- and phenotype-specific metabolic impairments have
been revealed, particularly in relation to FAO (Figure 1D).
Those shared and unique metabolic changes provide promising
candidate targets for future therapeutic strategies in treating
inherited cardiomyopathies. Moreover, due to the importance
of PPARA in regulating FAO and the beneficial effects of
PPARA agonists observed in cardiomyocytes (100–103), studies
have started to specify the pharmacological activities and
cardiotoxicity of PPARA agonists (104). However, currently,
there is no systematic study on the use of PPARA agonists,
even FDA-approved PPARA-targeting fibrates, in patients
with inherited cardiomyopathies. In conclusion, the potential
of PPARA-activating drugs as FAO modulators to restore a
balanced metabolism is worthy of investigation in inherited
cardiomyopathies.
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