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Therapeutic approaches that lower circulating low-density lipoprotein
(LDL)-cholesterol significantly reduced the burden of cardiovascular disease
over the last decades. However, the persistent rise in the obesity epidemic is
beginning to reverse this decline. Alongside obesity, the incidence of
nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last
three decades. Currently, approximately one third of world population is
affected by NAFLD. Notably, the presence of NAFLD and particularly its more
severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk
factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in
the relationship between these two diseases. Importantly, ASCVD is the major
cause of death in patients with NASH independent of traditional risk factors.
Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains
poorly understood. While dyslipidemia is a common risk factor underlying both
diseases, therapies that lower circulating LDL-cholesterol are largely ineffective
against NASH. While there are no approved pharmacological therapies for NASH,
some of the most advanced drug candidates exacerbate atherogenic
dyslipidemia, raising concerns regarding their adverse cardiovascular
consequences. In this review, we address current gaps in our understanding of
the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to
simultaneously model these diseases, evaluate emerging biomarkers that may
be useful to diagnose the presence of both diseases, and discuss investigational
approaches and ongoing clinical trials that potentially target both diseases.
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1. Introduction

Despite the remarkable advances in interventional therapeutics, decades of basic science

and clinical research, atherosclerotic cardiovascular disease (ASCVD) remains the leading

cause of death worldwide (1). While the overarching pathoetiology largely arises from

dyslipidemia, the imbalance of cholesterol and triglyceride lipids, numerous comorbidities

complicate and exacerbate ASCVD (1). Of particular significance are metabolic- and

obesity-related diseases, which have globally increased prevalence since the 1970s (2).

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are also
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strongly associated with the metabolic syndrome (3), which

currently afflicts approximately 90% of obese patients (4) and

approximately 55% of individuals with type 2 diabetes (T2D) (5).

Globally, the incidence of NAFLD has increased from 25% in

2005 to 32% today (6), highlighting an alarming trend in rising

NAFLD burden. Despite this, no FDA-approved drug exists in the

treatment of NAFLD/NASH. While NAFLD is associated with

increased risk of liver-related mortality, the most common cause

of death in patients with NAFLD, particularly those with the more

severe NASH, is cardiovascular disease (CVD) (7–12). This,

combined with the rising prevalence of both ASCVD and NAFLD

has led to extensive discussion of the relationship between these

two diseases. In 2022 alone, the increasingly transparent

relationship between NAFLD/NASH and ASCVD has piqued

interest between multiple scientific fields of expertise (13–17),

culminating in a scientific statement from the American Heart

Association (8).

Despite this acknowledgement, the specific mechanisms

regulating the onset, crosstalk, and exacerbation of NAFLD and

ASCVD remain unclear. The reasons for this are multifactorial:

(1) there is no single established model to study NAFLD/NASH

and ASCVD simultaneously, (2) since most patients with NAFLD/

NASH and ASCVD are asymptomatic, diagnosis is often

incidental and limited to routine blood screening (e.g., plasma

lipids, liver transaminases) (18), calcium imaging (19), or less

routinely, biopsy (20), and (3) clinical trials have remained limited

in targeting either NASH or atherosclerosis, thus, it is unknown

whether current clinical trials for NASH affect cardiovascular

outcome or vice versa. For example, obeticholic acid, the most

advanced drug candidate for NASH, causes hyperlipidemia, raising

concerns about the possible adverse consequences on ASCVD

(21). Furthermore, the effect of traditional therapies for ASCVD,

e.g., statins, on NASH has shown inconsistent results in improving

histological features of NASH (22, 23). Thus, strategies that

simultaneously interrogate therapies for both NASH and ASCVD

are necessary. This review will provide insight into each of these

limitations, offering a comprehensive and current summary of our

understanding regarding the relationship between NAFLD/NASH

and ASCVD (Figure 1). Below, we (1) summarize the molecular

drivers that regulate ASCVD and NAFLD/NASH, (2) discuss

which animal models should be considered for evaluating

translational interpretation of preclinical findings, (3) review

emerging biomarkers for both NASH and atherosclerosis that may

also serve as therapeutic strategies, and (4) examine potential

limitations and caveats for the concurrent treatment of both

NASH and ASCVD.
2. Pathophysiology of ASCVD and
NAFLD/NASH

2.1. Mechanisms driving the initiation and
progression of atherosclerosis

Most cases of myocardial infarction and stroke are caused by

atherosclerosis, the fibrofatty plaques in the arterial branch of the
Frontiers in Cardiovascular Medicine 02
vascular tree (24). The formation of atherosclerotic plaques is

driven primarily by the deposition of apolipoprotein (Apo)-B-

containing lipoproteins in the subendothelial spaces of the

intima that subsequently drive maladaptive, non-resolving

inflammation (25). Thus, individuals with familial

hypercholesterolemia, particularly in the low-density lipoprotein

(LDL) fraction, are disposed to developing atherosclerotic

plaques at an early age (26). Other risk factors include insulin

resistance and metabolic syndrome (27). Advanced

atherosclerotic plaques contain vast amounts of extracellular

matrix (ECM) proteins, calcium minerals, and a large necrotic

core formed from the death of lipoprotein-rich monocyte-

derived macrophages. These advanced atherosclerotic plaques

can impede blood flow to downstream tissues through

occlusion of the vessel lumen, causing symptomatic ischemia

(24). More frequently however, atherosclerotic plaques rupture and

leak the highly thrombogenic contents from the necrotic core into

the lumen, resulting in an occlusive thrombus. Deaths from

ASCVD were declining over the last two decades as treating more

individuals for high LDL (∼28% in 1999–2002 to ∼48% in 2005–

2008) resulted in twice as many individuals successfully lowering

their circulating LDL-cholesterol from ∼15% to ∼33% (28).

Despite the advent of potent cholesterol-lowering medicines, such

as statins and anti-proprotein convertase subtilisin/kexin type 9

(PCSK9)-blocking antibodies, ASCVD remains the leading cause

of death worldwide. More troubling is the recent trend that

life expectancy growth has begun to decline, with a substantial

rise in CVD deaths having the most impact (29). Thus, a deeper

understanding of the cellular and molecular mechanisms

driving atherosclerosis is necessary to conceive novel therapeutic

strategies.
2.1.1. Endothelial cell activation
LDL particles accumulate in the subendothelial intima due to

increased endothelial cell permeability caused by disturbed blood

flow (30). Apart from the antioxidant environment normally

provided by the blood, LDL particles become oxidized (ox-LDL)

by unmitigated reactive oxygen species (ROS) production,

leading to its uptake by scavenger receptors (31, 32). Unlike the

LDL receptor (LDLR), scavenger receptors undergo positive

feedback that maintains persistent cellular uptake of ox-LDL

(33). Endothelial cells that take up ox-LDL activate the

proinflammatory transcription factor nuclear factor-κB (NF-κB)

that drive the expression of adhesion molecules, such as

intercellular adhesion molecule 1 (ICAM1) and vascular cell

adhesion molecule 1 (VCAM1) (34). These adhesion molecules

presented on the apical surface of endothelial cells bind

circulating leukocytes and promote their entry into the vessel

wall. The role of endothelial cell activation in promoting

atherosclerosis is crucial, as atherosclerosis formation tends to

only occur at sites of disturbed blood flow, such as curvatures,

branch points, and bifurcations, and experimental strategies that

prevent endothelial cell activation prevent atherosclerosis

formation (30).
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FIGURE 1

Progression of ASCVD and NASH. The onset of both ASCVD and NASH begins with dysregulated lipid metabolism, leading to their accumulation in the
neointimal region of the artery (fatty streak), or the hepatocytes (simple hepatic steatosis). This process enhances inflammatory pathways in both diseases.
During atherosclerosis, leukocytes adhere and transmigrate into the developing plaque, where they secrete additional cytokines and chemokines
(atheroma). In the liver, leukocytes from the circulation accumulate, leading to NASH (NASH without fibrosis). These immune cells secrete soluble
factors to activate collagen-producing cells: synthetic vascular smooth muscle cells (vSMCs) in atherosclerosis (stable plaque), and hepatic stellate
cells in the liver (NASH with fibrosis). The most advanced stages of disease are associated with higher mortality. In atherosclerosis, advanced plaques
with a large necrotic core and thin fibrous caps are prone to rupture (unstable plaque), which is highly thrombogenic. In the liver, excessive fibrosis
and cell death leads to irreversible damage and loss of liver function (cirrhosis).

Finney et al. 10.3389/fcvm.2023.1116861
2.1.2. Vascular smooth muscle cell
dedifferentiation and altered macrophage
functions

Vascular smooth muscle cells (vSMCs) regulate blood pressure

and vessel integrity under normal conditions (35). However, during

early atherosclerosis, vSMCs undergo dedifferentiation whereby

they lose canonical vSMC markers, such as α smooth muscle

actin (αSMA) and transgelin (SM22), and reignite signaling

pathways associated with development (36). Furthermore,

dedifferentiated vSMCs begin to migrate, proliferate, and

synthesize ECM proteins, thereby expanding the growing lesion
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towards the lumen of the vessel. Interestingly, vSMCs produce a

panoply of ECM proteins that can retain growth factors,

cytokines, and chemokines (35). Whereas soluble growth factors

and cytokines transmit potent signals rapidly, matrix-bound and

immobilized factors resist internalization and degradation,

sustaining their signaling capabilities and promoting

fibroproliferative remodeling (37).

After endothelial cells are activated in regions of disturbed flow,

monocytes infiltrate the subendothelial intima, where they

differentiate into macrophages. These monocyte-derived

macrophages ingest rampant amounts of ox-LDL, transforming
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them into cholesterol-rich “foam cells” and compromising their

beneficial immune cell functions (25). Macrophages are also highly

susceptible to cell death owing to the intrinsic lipotoxic properties

of ox-LDL that drive endoplasmic reticulum (ER) stress, resulting

in their eventual death and release of damage-associated molecular

patterns (DAMPs) in the surrounding microenvironment (38).

Through various mechanisms, surrounding macrophages lose their

ability to clear dying cells (termed “efferocytosis”), substantially

expanding necrotic core areas and impairing the production of pro-

resolving mediators, such as interleukin (IL)-10 and transforming

growth factor beta (TGFβ) (39, 40). Importantly, experimental

strategies to restore efferocytosis in settings where it fails, mitigate

atherosclerosis and even promote its regression (41–43).

2.1.3. Consequences of unmitigated
atherosclerosis progression

Most acute cardiovascular events leading to myocardial

infarction and stroke are caused by plaque rupture. During this

process, highly thrombogenic material from the necrotic core,

which is particularly rich in tissue factor, are released into the

vessel lumen (24). Atheromas with relatively large necrotic cores

and thin fibrous caps have often been considered “vulnerable”

plaques, whereas “stable” plaques have much thicker fibrous caps

(44). Macrophages and vSMCs are particularly sensitive to ox-LDL

and undergo cell death, forming necrotic cores. An imbalance in

fibrogenesis vs. fibrolysis impedes vSMC-dependent ECM

synthesis and assembly and drives thinning of the protective

fibrous cap. Inflammatory cells activated in the atherosclerotic

milieu also possess robust levels of collagenases that degrade the

collagen-rich fibrous cap. Structural weakening of the fibrous cap

results in interfacial debonding, characterized as the physical

separation of fibrillar matrix (45, 46). Notably, this phenomenon is

frequently observed in ruptured atheromas (45, 46).
2.2. NAFLD: Onset, progression, and
molecular drivers

NAFLD represents a range of liver pathologies beginning with

excessive accumulation of lipids, particularly triglycerides, in

hepatocytes (47). Additional findings of enhanced cytokine and

chemokine production, inflammatory cell recruitment, and

hepatocyte death characterize NASH, which may progress into

fibrosis, cirrhosis, and liver failure. Importantly, NAFLD is

emerging as a leading cause of liver disease, with 20%–30% of

the individuals progressing to cirrhosis due to NASH (48, 49).

Cardiometabolic disorders, such as insulin resistance and the

metabolic syndrome, are risk factors contributing to the

progression of NASH (50).

2.2.1. Hepatic steatosis and lipotoxicity
Increased caloric consumption is one of the leading causes of

NAFLD, as excessive substrate overload or dysfunction in the

ability of adipose tissue to store fats results in lipolysis (51).

Consequently, circulating free fatty acids increase and are then

taken up by secondary storage organs, particularly the liver,
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through fatty acid transport protein 5 (FATP5) and the scavenger

receptor CD36 (52, 53). This stimulates signaling pathways that

ultimately drive intrahepatic triglyceride accumulation. In

addition, de novo lipogenesis (DNL) promotes hepatic steatosis

by converting carbohydrates into lipids. Thus, the three main

pathways, (1) enhanced lipolysis from adipose tissue, (2)

triglyceride synthesis from the dietary nutrients, and (3) the

conversion of dietary sugars into fatty acids by DNL, drive

hepatic steatosis. In this manner, the liver’s capacity to

adequately process carbohydrates and fatty acids become

impaired, and the formation of toxic lipid species, such as

lysophosphatidylcholines, diacylglycerols, and ceramides, takes

place (51). Consequently, these lipotoxic lipid species elicit a

robust unfolded protein response (UPR) and ER stress that

promote inflammasome activation and cell death.

Excess accumulation of intrahepatic fatty acids drives ER stress,

uncouples mitochondria, and elevates ROS production by the

mitochondria (54). Consequently, Jun N-terminal kinase (JNK)

becomes activated and promotes intrinsic apoptosis through a

caspase-2-BID signaling pathway (55). Also, fatty acid conversion

to triglycerides increases the expression of death receptors and

their cognate ligands, tumor necrosis factor alpha (TNFα) and

Fas, to stimulate extrinsic cell death. Intrinsic or extrinsic

apoptosis leads to the release of DAMPs that crosstalk with

either resident or recruited macrophages to stimulate toll-like

receptor (TLR)-dependent expression of multiple

proinflammatory cytokines and chemokines.

2.2.2. Inflammation
A critical feature that distinguishes hepatic steatosis from

NASH is the presence of hepatic inflammation, particularly of

resident Kupffer cells and recruited monocyte-derived

macrophages (56). Meta-analysis of RNA sequencing and single-

cell RNA sequencing have revealed critical alterations in the

myeloid compartment recruited to livers during NASH. Firstly,

turnover and maintenance of embryonically-derived Kupffer cells

are diminished during the progression of steatosis to NASH,

likely due to lipotoxicity (57). Second, monocyte-derived

macrophages recruited to the liver, which highly expresses

Trem2, Gpnmb, Cd9, Spp1, and Itgax, genes associated with

macrophages in NASH, accumulate in areas near desminhigh

hepatic stellate cells, revealing their capability to crosstalk with

hepatic stellate cells to drive hepatic fibrosis (58). Importantly,

macrophages have been definitively proven to contribute to

NASH, as depleting Kupffer cells from mice using liposomal

clodronate, deleting the chemokine receptor C-C chemokine

receptor type 2 (CCR2), or ablating bone marrow cells from

mice using irradiation, mitigates the progression of steatosis to

NASH (59–62).

Through a variety of mechanisms, macrophages in the liver

exhibit a heightened state of inflammation and produce vast

amounts of IL-1β (63). Consequently, peroxisome proliferator-

activated receptor alpha (PPARα) becomes suppressed, and

oxidation of fatty acids is impaired, ultimately leading to an

accumulation of fatty acids (63). Fatty acids not only stimulate

triglyceride production in hepatocytes, but they also stimulate
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inflammatory responses in liver immune cells (56). The saturated

fatty acids, palmitate and laurate, drive IL-1β secretion by

mediating NLRP3 inflammasome activation during NASH in a

TLR2-dependent mechanism (56, 64, 65). Furthermore, palmitate

activates NADPH oxidase 2 (NOX2) in hepatic macrophages and

induces ROS production (66). Importantly, elevated levels of

ROS directly stimulate TNFα expression. Also, macrophages

from steatotic livers show enhanced production of toxic lipid

mediators, particularly diacylglycerols and ceramides (56).
2.2.3. Hepatic stellate cell activation and fibrosis
Persistent deposition of ECM proteins, such as collagens, in

the liver drive cirrhosis and liver failure. Excluding CVD, liver

fibrosis is the major cause of liver-related mortality in patients

with NASH (47, 50). Therefore, hepatic fibrosis is among the

most important endpoints in clinical trials. Hepatic fibrosis is

largely mediated by the activation of non-parenchymal hepatic

stellate cells that leads to their dedifferentiation towards a

myofibroblast phenotype, enabling them to robustly synthesize

and deposit ECM proteins (67). Evolutionarily conserved

developmental programs, including Notch, hedgehog, and

Hippo-YAP-TAZ, are “reawakened” in acute liver injury to

stimulate hepatocyte regeneration (67). However, growing

research in these pathways has revealed that they also critically

drive hepatic fibrosis during NASH. For example, transgenic

overexpression of Notch in hepatocytes leads to enhanced

osteopontin secretion, enhancing fibrosis through hepatic stellate

cell activation (68, 69). Consistently, hepatocyte-specific

inactivation of Notch signaling protects mice from developing

NASH-induced hepatic fibrosis (69). Whereas Hedgehog

signaling is inactive in normal livers, it becomes reactivated

during NASH and enhanced Hedgehog activity correlates with

disease severity and fibrosis staging (67, 70). In addition, Sonic

Hedgehog and Indian Hedgehog activates hepatic stellate cells

and drive ECM protein synthesis (71). Moreover, hepatocyte

YAP and TAZ expression are intimately linked to liver fibrosis

and positively correlate with NASH and deleting or silencing

TAZ in hepatocytes lowers inflammation and fibrosis in a mouse

model of NASH (72–74).
3. Concurrent modelling of NASH and
atherosclerosis

To investigate the pathophysiology of NAFLD/NASH or

ASCVD, multiple well-established animal models have been

accepted by the scientific community and are commonly utilized

for evaluating translational interpretation of preclinical findings.

Below, we will discuss dietary models predominantly

administered to mice, highlighting potential limitations of

current application when investigating both NAFLD/NASH and

ASCVD, as well as non-murine models that may have stronger

translational potential but comprise their own set of limitations.
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3.1. Diets in excess or deficiency: Which is
ideal?

Given both NAFLD/NASH and ASCVD arise from

dysregulated lipid metabolism and excessive lipid accumulation,

the most appropriate models capitalize on genetic and/or dietary

lipid loading with additional modifications to exacerbate disease,

such as simple carbohydrates or cholesterol. Lipid profiling of

mice demonstrates that the majority of their cholesterol is carried

in high-density lipoprotein (HDL) particles, contrasting human

lipid profile in which HDLs comprise only one-third of total

cholesterol (75). Since elevated LDLs and very low-density

lipoproteins (VLDLs) are direct contributors to atherogenesis

(76), mice will therefore not spontaneously develop

atherosclerotic lesions comparable to humans beyond the initial

fatty streak (77). Thus genetic (Ldlr−/− (78), and apolipoprotein

E deficient [Apoe−/−] mice 79, 80) or viral (PCSK9-AAV 81, 82)

manipulation is required for mice to develop atherosclerosis.

Implementing a combination of genetic dyslipidemia with dietary

models to induce NASH permits simultaneous investigation of

both NASH and atherosclerosis.

While administration of a high-fat diet in atherosclerotic models

is well-established to induce hyperlipidemia and steatohepatitis (83–

85), whether high-fat or Western diets are sufficient to elicit all

components of NASH (hepatic steatosis, inflammation, and

hepatocellular ballooning) and fibrosis remains unclear. Multiple

studies report conflicting phenotypes in Apoe−/− mice following a

high-fat diet regimen. For example, Karavia and colleagues

demonstrated that despite administration of a high-fat diet (21.2%

fat) for 24 weeks, Apoe−/− mice will accumulate less hepatic

triglycerides compared with C57BL/6 mice fed the same diet (86).

In contrast, others showed that only 8 weeks of high-fat diet in

Apoe−/− mice was sufficient to induce hepatocellular ballooning

and hepatic fibrosis (87). Additional studies by Matsuzawa et al.

found that 12–24 weeks of an “atherogenic diet” in C57BL/6J

mice is sufficient to induce hepatocellular ballooning and hepatic

fibrosis (88), while Zhang et al., induced steatohepatitis with

fibrosis and hepatocellular carcinoma following 14 months of

high-fat, high-cholesterol feeding in C57BL/6 mice (89).

Furthermore, a study by Schierwagen et al. compared Western

diet and methionine-choline deficient (MCD)-diet in Apoe−/−

mice, demonstrating significant fibrosis and hepatocellular

ballooning in Western diet-fed mice after just 7 weeks (90).

Comparisons between diet formulations used in the above studies

show that while Karavia and colleagues utilized a Western-type

diet, which contains 0.2% cholesterol (86, 91), Schierwagen et al.

and Matsuzawa et al. utilized diets containing 1.25% cholesterol

(88, 90). Furthermore, Trevaskis and colleagues first described the

Amylin liver NASH (AMLN) diet, which contained 2%

cholesterol and 40% fat from either partially hydrogenated

vegetable oil or lard and induced murine steatohepatitis and

fibrosis following 12 weeks feeding (92). Together, these studies

highlight the fact that additional components of a high-fat or

Western diet, mainly cholesterol, contribute to the NASH

phenotype beyond excessive calories from fat (Table 1).
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TABLE 1. Murine and non-murine models of NAFLD/NASH with or without atherosclerosis

Disease Model Animal Model Diet Source Diet Components Time on Diet Phenotype References

Murine models
NAFLD Mouse (C57BL/6J)

Apoe-/-
Mucedola, Milan,
Italy

Western-type Diet:
21.2% kCal from fat
0.2% cholesterol

24 weeks Normal hepatic histology with no
triglyceride accumulation noted

Karavia et al.
(99)

NAFLD Mouse (C57BL/6J) Envigo Fructose-palmitate diet
(TD.160785):
190g/kg hydrogenated
vegetable shortening
40g/kg anhydrous milk fat
0.2%–0.5% cholesterol
55% glucose/45% fructose
w/w in the drinking water

16 weeks Enhanced steatosis but no fibrosis Wang et al.
(76)

NASH Mouse (C57BL/6J)
Apoe-/-

No information
provided

High-fat diet
No additional information
provided

8 weeks Enhanced plasma AST/ALT, hepatic
steatohepatitis, ballooning, and
fibrosis

Lu et al. (100)

NASH Mouse (C57BL/6J) Oriental Yeast,
Tokyo, Japan

Atherogenic diet:
14g fat
1.25% cholesterol
High fat diet
60g fat
1.25% cholesterol

12–24 weeks Enhanced steatosis, inflammation,
and fibrosis observed in atherogenic
and high fat diet combined, but not
atherogenic diet alone

Matsuzawa et
al. (101)

NASH Mouse (C57BL/6J) Research Diets,
New Brunswick,
NJ
Envigo

High-fat diet (D12492):
60% fat
0.03% cholesterol
Choline-deficient high fat
diet (D05010402)
60% fat
0.03% cholesterol
Choline deficient
Western diet (TD.88137):
42% fat, 0.2% cholesterol

15 weeks Enhanced steatosis. Inflammation
only observed in Western diet.
Fibrosis only observed in choline
deficient high fat diet and Western
diet.

Smati et al.
(124)

NASH Mouse (C57BL/6J) Teklad Fructose-palmitate-
cholesterol (TD.140154):
190g/kg hydrogenated
vegetable shortening
40g/kg anhydrous milk fat
1.25% cholesterol
~35% reduction in choline
55% glucose/45% fructose
w/w in the drinking water

8–28 weeks Enhanced steatohepatitis and fibrosis Wang et al.
(74)

NASH Mouse (C57BL/6J) Envigo Fructose-palmitate diet
(TD.160785):
190g/kg hydrogenated
vegetable shortening
40g/kg anhydrous milk fat
1.25% cholesterol
~35% reduction in choline
55% glucose/45% fructose
w/w in the drinking water

16 weeks Enhanced steatohepatitis and fibrosis Wang et al.
(76)

NASH Mouse
(Lepob/Lepob)

Research Diets,
New Brunswick,
NJ

High trans-fat, high
fructose, high cholesterol
diet (HTF):
40% kCal fat from
vegetable shortening
22% w/w fructose
2% cholesterol

12 weeks for
trans-fat diet

Enhanced hepatic steatosis and
fibrosis

Trevaskis et
al. (104)

NASH Mouse (C57BL/6J) Research Diets,
New Brunswick,
NJ

NASH diet (D17010103):
40% kCal fat with 50g/kg
primex shortening (non-
transfat), 122g/kg corn oil,
partially hydrogenated
22% w/w fructose
2% cholesterol

24 weeks Enhanced AST, ALT, and ALP, with
enhanced steatohepatitis and fibrosis

Rom et al.
(96, 97)

NASH-HCC Mouse (C57BL/6J) Specialty Feeds,
Glenn Forrest,
WA

High-fat/high-cholesterol
diet:
43.7% fat
0.203% cholesterol

8–14 months Enhanced AST, ALT, steatohepatitis,
and fibrosis beginning at 8 months,
and HCC observed by 10 months

Zhang et al.
(102)

(Continued)
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TABLE 1. (Continued)

Disease Model Animal Model Diet Source Diet Components Time on Diet Phenotype References

NASH and
Atherosclerosis

Mouse (C56BL/6J)
Ldlr-/-.Leiden

Research Diets,
New Brunswick,
NJ

High-fat diet (D12451):
45% kCal fat from lard
35% kCal carbohydrates
from sucrose
0.01% w/w cholesterol
Fast food diet:
41% kCal fat from milk fat
44% kcal carbohydrates
from fructose
0.05% w/w cholesterol

28 weeks Enhanced AST, ALT, hepatic
steatohepatitis, fibrosis, and
atherosclerosis

Van den
Hoek et al.

(86)

Non-murine models
Coronary artery disease Ossabaw pig No information

provided
Western diet:
38% kCal fat
1.5% cholesterol w/w

6 months Significant increases in ALP, ALT,
AST (but no liver histology noted),
and coronary artery lesions
compared with control diet

Matthan et al.
(133)

NASH Ossabaw pig Purina TestDiet,
Inc., Richmond,
IN

Atherogenic diet:
46% kCal fat
20% kCal fructose
2% cholesterol
900 ppm choline
Modified atherogenic diet:
43% kCal fat
17.8% fructose
2% cholesterol
700ppm choline

24 weeks Enhanced AST and ALT,
steatohepatitis, ballooning, and
fibrosis in modified atherogenic diet
group. Enhanced ALT and steatosis
in atherogenic diet group.

Lee et al.
(134)

NASH with fibrosis by
NaNO2 injections

Wistar rat Research Diets,
New Brunswick,
NJ

Choline deficient high fat
diet (A06071302):
60% kcal fat
0.03% cholesterol
0.1% methionine
Choline deficient
NaNO2 injections:
10-30mg/kg

10 weeks, with
NaNO2

administered
following 4 weeks

Enhanced fibrosis Schwabl et al.
(126)

NASH and
atherosclerosis

Japanese white
rabbit

No information
provided

High-fat and -cholesterol
diet:
12% corn oil
0.75% cholesterol

9 months Enhanced steatohepatitis, hepatic
fibrosis, and aortic atheroma

Ogawa et al.
(135)

NASH and
atherosclerosis by aortic
endothelial injury by
balloon catheter

Rabbit TestDiet, Saint
Louis, MO

Cholesterol containing
chow diet:
2.4% fat w/w
1% cholesterol

3 months Enhanced hepatocyte ballooning and
fibrosis. Atherosclerosis only
enhanced with cholesterol diet and
injury

Taylor et al.
(139)

NASH Cynomologus
monkey

Kunming Biomed
International

High fat diet:
20% fat, 5% cholesterol

3 years Enhanced steatohepatitis, fibrosis,
and NAS score

Lyu et al.
(142)

NASH Cynomologus
monkey

Beijing Keao Xieli
Feed Co., Ltd,
Beijing, China

High fat high cholesterol
diet:
10% lard
15% cholesterol

24 weeks Enhanced steatohepatitis, hepatic
ballooning, fibrosis, and NAS score

Jian et al.
(143)

NASH Cynomologus
monkey

Keao Xieli High fat high cholesterol
diet:
10% lard
1% cholesterol

16 weeks Enhanced NAS score, steatosis, and
fibrosis

Zang et al.
(144)

Finney et al. 10.3389/fcvm.2023.1116861
Supplementation of a high-fat diet with cholesterol appears to

be a major contributor to the pathogenesis of NASH. Analysis of

liver biopsies from patients with NASH demonstrated that free

cholesterol accumulation associates with hepatic steatosis and

continues to increase with the progression of NASH (93). In

addition, unlike triglycerides or free fatty acids, cholesterol

loading is sufficient to deplete mitochondrial glutathione in

hepatocytes resulting in sensitivity to inflammatory cytokines

(94). Following extended high-fat, high-cholesterol feeding for 14

months, cholesterol induces gut microbiota dysbiosis, enhanced

gut leakiness, endotoxemia, and bile acid biosynthesis in C57BL/

6 mice, which result in NASH with fibrosis and HCC (89).

However, the effects of dietary cholesterol and the risk of CVD
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remains unclear (95). Since conventional atherogenic diets

parallel human consumption of cholesterol (96, 97), but typically

contain approximately one-tenth that of murine NASH diets

(0.2% and 2%, respectively (83, 92)), excessive cholesterol

supplementation may be inappropriate for the comparative

studies of CVD and NASH together. Thus, other components

such as dietary sugars may be considered when addressing

models for concurrent NASH and ASCVD.

Since fructose largely replaced sucrose as a source of sweeteners

in soft drinks in the 1970’s, an association between high-fructose

corn syrup consumption and obesity became increasingly

observed (98). In addition, beyond increasing hepatic steatosis,

fructose enhances aortic wall thickness and foam cell count in
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Sprague-Dawley rats fed a high-fat diet (99). Van den Hoek and

colleagues fed Ldlr−/−.Leiden mice an obesogenic diet for 28

weeks containing 41% calories from fat, 0.05% cholesterol, and

44% calories from fructose (100), which recapitulated multiple

aspects of NASH like inflammation (100), fibrosis (101), and

circulating AST and ALT (102), as well as established

atherosclerotic lesions (100). Since Ldlr−/−.Leiden mice are

susceptible to diet-induced obesity and metabolic syndrome

compared with conventional Ldlr−/− mice (103), this model

proved effective in examining both fibrotic NASH and

atherosclerosis (100). While normal consumption of fructose

feeds into glycogen biosynthesis (104), excessive fructose

consumption suppresses fatty acid β-oxidation (FAO) in the liver

(105) and induces DNL by the induction of sterol regulatory

element-binding protein-1 (SREBP1), acetyl-CoA carboxylase-1

(ACC1), and fatty acid synthase (FAS) (105, 106). By comparing

the supplementation of fructose to glucose in humans and mice,

Stanhope et al. and Softic et al. demonstrated that inhibition of

FAO and induction of DNL are caused specifically by high intake

of fructose, and not glucose (107–109). In the gastrointestinal

tract, fructose deteriorates the gut barrier and promotes chronic

inflammation by endotoxemia (110). Since endotoxemia is

associated with liver disease and atherosclerosis (111, 112), the

effects of fructose on the development of NAFLD/NASH and

ASCVD may be due to chronic inflammation secondary to

enhanced gastrointestinal permeability. Thus, the contribution of

high-fructose intake for the concurrent development on NASH

and atherosclerosis warrants further research.

Although diets with excess nutrients elicit NASH or ASCVD

pathology, diets lacking key nutrients are an additional avenue

for inducing disease. Choline and methionine deficiency

diminishes VLDL assembly and reduces triglyceride clearance but

results in weight loss (113), contrasting with typical weight gain

associated with most human NASH. The MCD diet was

previously viewed as a conventional NASH model; however,

multiple groups demonstrated that MCD does not cause insulin

resistance (114) and enhances weight loss despite hepatic

steatosis (115), highlighting the disconnect between human

disease characteristics and disease in MCD diet-fed mice. Since

the MCD model clearly has its deficiencies in application with

NASH pathology, researchers have developed modifications of

this model to align the diet-induced phenotype more closely with

human NASH. For example, the high-fat, choline-deficient diet

induces steatosis, inflammation, and fibrosis over a 15-week

period; however, it does not induce ballooning (116). Choline

deficiency reduces pro-atherogenic VLDL assembly (113) but

choline supplementation has no effect on atherosclerotic plaque

area (117). The choline-deficient high-fat diet with no added

choline but 0.1% methionine has approximately 0.03%

cholesterol and induces steatohepatitis (116); however, to develop

fibrosis the addition of 25 mg/kg NaNO2 (118) is required to

induce hypoxemia (119). Enhancing methionine to 0.2% does

prevent weight loss while enhancing NASH and hepatic fibrosis

(113). While enhancing liver fat accumulation, the choline-

deficient high-fat diet actually attenuates fasting plasma insulin

and improves glucose tolerance (120). Patients with NAFLD
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develop hyperinsulinemia as a result of impaired whole-body

insulin clearance, which may further drive hepatic steatosis (121).

The positive correlation between hyperinsulinemia and

atherosclerosis has been long-established (122). Therefore,

models mimicking hyperinsulinemia, should be considered in

appropriate models of both NASH and ASCVD.
3.2. Non-murine models

The utilization of mice for pathological modelling has its benefits.

For example, mice gestate and grow rapidly, require small spaces for

housing, are relatively inexpensive to care for, and are easily

genetically manipulated. While numerous mouse models have been

implemented to study NAFLD/NASH or ASCVD, each provides a

unique set of limitations. For example, atheroprone mice must first

be “humanized” with genetic manipulation to shift their endogenous

plasma cholesterol composition. Furthermore, as outlined in section

2.1, many mouse models of NASH do not completely mimic all

aspects of the human disease, particularly hepatocellular ballooning

and fibrosis (123). Additionally, dietary models alone are insufficient

to induce atherosclerosis in mice due to their plasma lipid

composition (77). Therefore, the use of non-murine or large animal

models that spontaneously develop atherosclerosis may provide a

more accurate representation of both human NASH and ASCVD.

Porcine models of atherosclerosis are closely related to the

human disease due to similar lipoprotein composition; thus, pigs

do not require genetic modification to induce ASCVD (124). In

addition to their use as an atherogenic model (125), miniature

Ossabaw pigs develop metabolic syndrome with abnormal liver

pathology indicative of NASH when fed a modified high-fat, low-

choline diet for 24 weeks (126). However, pigs require larger

housing facilities, utilize more resources, and are therefore not as

cost-effective. Rabbits may be a useful alternative to pigs or mice

because they require less resources than pigs and are able to

develop NASH with fibrosis following 9 months of a modified diet

containing 0.75% cholesterol and 12% corn oil (127). Rabbits were

pivotal in the initial discovery of atherosclerosis in which the

Russian physician Ignatowski observed aortic plaques in rabbits

fed an enriched animal fat and protein diet (128). Since then,

rabbits are widely used for atherosclerosis studies due to their

similarities to human lipoproteins, and both diet-and genetically-

induced atherosclerotic models have been implemented (129).

Furthermore, 1% cholesterol-fed rabbits develop both

atherosclerosis (130) and fibrotic NASH, representing a simple

model to investigate both diseases simultaneously (131). However,

rabbits show wide genetic variability compared with mice (129)

and therefore require larger cohorts to observe meaningful

differences between treatment groups. Perhaps the most

translatable model of either NASH or atherosclerosis is the use of

nonhuman primates. For example, cholesterol metabolism between

humans and Baboons is remarkably similar (132), and baboons

given a high-sugar, high-fat diet leads to weight gain and

hyperlipidemia similar to humans (133). Cynomolgus monkeys

given a diet containing 20% fat with 5% cholesterol developed

NASH with fibrosis (134). In addition, a high-fat, high-cholesterol
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(1%) diet can accelerate NASH in Cynomolgus monkeys with

spontaneously-developed NASH symptoms (135, 136). However,

the ethical considerations of these animals should be heavily

weighed when deciding which models are the most appropriate.

Despite their obvious similarities with humans, the advanced

cognition of nonhuman primates sheds light on the moral

obligations of scientific researchers (137).
4. Emerging biomarkers linking
NAFLD/NASH and ASCVD offer
potential therapeutic strategies

The circulating levels of liver enzymes (aspartate transaminase

[AST], and alanine transaminases [ALT]), other nonenzymatic

proteins (albumin) and metabolites of heme (bilirubin) are

routinely used to diagnose and monitor liver diseases, including

NAFLD/NASH (138). While liver function tests are routinely

preformed, their interpretation is often challenging and their

relevance to CVD, the main cause of death in patients with

NASH (7–12, 139–141) is limited. Furthermore, predictive

biomarkers of NASH are lacking, resulting in invasive biopsy as

the only method for diagnosis (51). Established biomarkers for

CVD including C-reactive protein (CRP), cardiac troponins I and

T, B-type natriuretic peptides, and D-dimer, are widely used for

diagnosis and management of various CVDs including

atherosclerosis, myocardial infarction, acute coronary syndrome,

cardiac arrest, thrombosis, and ischemic cardiac diseases (142–

144). Despite the wide use of these biomarkers for diagnosis and
FIGURE 2
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monitoring, there remains a need to identify new pathological

pathways and pertinent biomarkers that can be useful for

concurrent diagnosis and monitoring of NAFLD and CVD.

Herein, we explore established and newly identified biomarkers

that are closely related to NAFLD/NASH and ASCVD (Figure 2).
4.1. Lipids, lipoproteins, and lipid
peroxidation products

The liver is the major site of lipid and lipoprotein metabolism

and regulates the production and clearance of all classes of

lipoprotein particles (145). In addition, the liver regulates the

metabolism of the major lipoprotein components including

triglycerides and cholesterol (146, 147). Dysregulation of hepatic

lipid metabolism leading to excess lipid accumulation is a

hallmark feature of NAFLD which further promotes atherogenic

dyslipidemia and the risk of ASCVD (147, 148). Thus, alteration

in circulating lipoproteins in patients with NAFLD is considered

an early biomarker to predict the risk of ASCVD. Preclinical and

clinical reports showed that improvement in NAFLD improves

dyslipidemia (149–151); however, statins or other lipid-lowering

agents did not reduce the risk of cardiovascular mortality in

patients with NAFLD (152). In contrast, pemafibrate, a PPARα

modulator that lowers triglycerides, VLDL, and cholesterol, did

not reduce the incidence of cardiovascular events but lowered the

incidence of NAFLD (153). These studies highlight the need to

improve our understanding of the role of other lipid and non-

lipid metabolites, not only as biomarkers linking these two

diseases, but also as potential targets for concurrent therapy.
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Enhanced influx of free fatty acids to the liver, oxidative stress

and inflammatory stimuli promotes the synthesis of hepatic

ceramides in NAFLD (154, 155). Ceramides are active lipid

intermediates of the sphingolipid family that are produced

mainly in the liver (156). Beyond their increased levels in the

liver, circulating ceramides are elevated in animal models and

patients with NAFLD (157, 158), particularly in those with

NASH (159), where they are found mainly in VLDL and LDL

particles (159, 160). Moreover, various ceramide species (mainly

Cer16:0, Cer18:0 and Cer24:1) are consistently associated with

adverse cardiovascular outcomes and mortality (161–163), and

have been suggested as biomarkers for ASCVD beyond the

currently exciting risk factors (164). Ceramides are not only

associated with ASCVD but can also increase atherosclerosis by

promoting endothelial dysfunction (154, 165). Pharmacological

(myriocin) and genetic (hepatic deletion of dihydroceramide

desaturase-1) approaches targeting ceramide synthesis not only

lowered hepatic steatosis and fibrosis (166, 167), but also

reversed endothelial dysfunction and atherosclerosis in rodent

models (168, 169).

In NAFLD, and particularly in NASH, hepatic mitochondrial

dysfunction augments ROS production promoting lipid

peroxidation, the oxidation of polyunsaturated fatty acids via

lipid-peroxyl radical reaction (54, 170–172). Beyond enhanced

hepatic lipid peroxidation, an increase in systemic markers of lipid

peroxidation (e.g., malonaldehyde, MDA) is well-documented in

both experimental models and in patients with NAFLD

(173–175). Furthermore, higher circulating MDA in patients with

NAFLD is associated with lower antioxidant capacity of HDL and

subclinical atherosclerosis (176). Peroxidation of lipoproteins

(mainly ox-LDL) plays critical roles in various steps of

atherosclerosis development (177), including endothelial activation

and dysfunction (178, 179), monocyte adhesion (180, 181),

macrophage-foam cell formation (182–185), and proliferation and

migration of vSMCs (186, 187). Indeed, circulating ox-LDL is a

useful marker in predicting the risk of coronary artery diseases

(CAD) (188) as well as NAFLD severity (189). In addition,

circulating ox-LDL in the form of MDA-LDL is not only

increased in individuals with NAFLD, but is also associated with

high-risk atherosclerotic plaques in the same patients (190).
4.2. Amino acids

While dysregulated lipid metabolism in NAFLD/NASH and

ASCVD has been extensively studied, recent evidence strongly

suggests altered amino acid metabolism as a common factor in

both diseases (83, 191–203). Gaggini et al. (192) found that most

circulating amino acids were elevated among obese subjects with

NAFLD and further increased in the presence of insulin

resistance (IR) and obesity. Patients with more advanced liver

damage and fibrosis had higher levels of the branched-chain

amino acids (BCAAs, leucine, isoleucine and valine) (204) and

aromatic amino acids (AAAs tryptophan, phenylalanine, and

tyrosine) (192, 205). Furthermore, BCAAs and AAAs are

consistently reported to be positively associated with increased
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risk for ASCVD independent of hypertension and metabolic

disease (206–209).

Despite the associations between elevated circulating amino

acids and NAFLD or ASCVD, a causative role of BCAAs and

AAAs remains unclear. In mice with NAFLD, BCAAs promote

liver injury and apoptosis by downregulating lipid-induced

autophagy (210). In contrast, BCAA supplementation to mice fed

high-fat or choline-deficient, high-fat diets lowered hepatic

steatosis and injury through suppression of hepatic lipogenic genes

and modulation of intestinal microbiota-mediated production of

acetic acid (211, 212). These contrasting effects may be due to

specific BCAAs, since the adverse metabolic effects in obese mice

appear to be mediated by isoleucine and valine but not by leucine,

whose restriction aggravated hepatic steatosis (213). In addition,

leucine protects against macrophage foam cell formation by

inhibiting lipid biosynthesis, promoting cholesterol efflux and

enhancing mitochondrial respiration (191, 197, 214, 215).

Furthermore, Apoe−/− mice supplemented with leucine showed

enhanced hepatic cholesterol efflux, which effectively reduced

circulating LDL and atherosclerosis (216). The effects of BCAAs

on different cell types may differentially regulate the pathogenesis

of atherosclerosis. For example, supraphysiological levels of BCAAs

(6 mmol/L) enhanced ROS and activated endothelial cells (217). In

contrast, physiological levels of leucine (0.2 mmol/L) protect

against macrophage foam cell formation by inhibiting lipid

biosynthesis, promoting cholesterol efflux and enhancing

mitochondrial respiration (191, 197, 214, 215). Thus, future studies

are warranted to clarify the causative role of exogenous BCAAs

and determine the effects of individual BCAAs in NAFLD/NASH

and ASCVD.

In individuals with histologically confirmed NAFLD, plasma

phenylalanine was increased only in those with NASH, while

tyrosine was increased in both patients with simple steatosis and

NASH (218). Tyrosine and total AAAs were associated with

NAFLD severity assessed by hepatocellular ballooning,

inflammation and fibrosis in patients with NASH (192, 205).

Also, serum AAAs were reported to be higher in patients with

NASH, but when compared to patients with simple steatosis,

only tryptophan was higher in those with NASH. In addition,

serum tryptophan and tyrosine were positively correlated with

total and LDL-cholesterol (219), suggesting that alterations in

circulating AAAs are associated with the risk of NAFLD-

associated CVD. Indeed, in a large cohort of adults Finns,

circulating tyrosine was positively associated with subclinical

atherosclerosis assessed by carotid intima-media thickness (IMT)

(200). In addition, phenylalanine and tyrosine were associated

with CAD, ischemic stroke, and cardiovascular events (220).

While the above studies demonstrate increased circulating AAAs

in NAFLD/NASH and ASCVD, studies addressing the causative

role of altered AAA metabolism and the effects of individual

AAAs in the development of these diseases are lacking.

Whereas circulating BCAAs and AAAs are increased, glycine,

the simplest amino acid, is consistently reported to be lower in

association with suppressed hepatic glycine biosynthetic genes

(e.g., alanine-glyoxylate aminotransferase [AGXT] and serine

hydroxymethyltransferase [SHMT]) and inversely associated with
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the risk or severity of NAFLD/NASH, CVD and related

cardiometabolic diseases in both mouse models and patients (83,

192, 195, 196, 199, 201, 221–225). While these reports highlight

lower circulating glycine as an emerging biomarker for both

NAFLD/NASH and ASCVD, studies in humans and mice

support a causative role of reduced glycine availability and the

potential of glycine-based treatment in both diseases (83, 199,

201). Glycine is a nonessential amino acid mainly synthesized in

the liver (226). In patients and mice with NAFLD, glycine is a

limiting substrate for de novo synthesis of glutathione (GSH), the

most abundant endogenous antioxidant (83, 199). Therefore, the

decrease in circulating glycine in NAFLD may be explained by

insufficient hepatic production coupled with enhanced demand

for GSH biosynthesis. Furthermore, glycine restriction aggravates

atherosclerosis in Apoe−/− mice (83, 195). Glycine or glycine-

based treatments [e.g., serine, trimethylglycine (betaine) and a

glycine-based tripeptide, DT-109] lowered hepatic steatosis,

inflammation and fibrosis as well as atherosclerosis in various

rodent models (83, 195, 227) and humans (199) through

mechanisms involving hepatic GSH biosynthesis, enhanced fatty

acid utilization, suppression of proinflammatory/fibrotic

responses and modulation of the gut microbiome. In addition

to glycine, glutamate, another component of GSH, is increased

in NAFLD/NASH, which has been attributed to gamma-

glutamyltransferase-mediated glutamate release during GSH

transamination and upregulation of hepatic glutaminase-1

(192, 203). This, together with alternations is serine

metabolism in NAFLD (192, 198), serve as a basis for the

glutamate-serine-glycine (GSG) index, which recently emerged

as a potential biomarker for the severity of NAFLD and

fibrosis (192, 228).
4.3. Polyamines

Polyamines including putrescine, spermidine, and spermine are

present in all living organisms. These aliphatic polycation

compounds play a role in various biological events including

maintenance of chromatin structure, gene transcription and

translation, cell growth, and proliferation. The biological effects of

polyamines are believed to be mediated by modulation of protein-

protein and protein-DNA interactions (229–231). Emerging

evidence suggests that polyamines modulate the risk of CVD,

metabolic diseases, neurological disorders, and cancer (232–235).

Nevertheless, the role of polyamine metabolism as a potential link

between NAFLD/NASH and CVD remains to be explored.

Dysregulated metabolism of polyamines in NASH has been

identified in human and rodent studies. A metabolomics-based

study demonstrated that circulating spermidine was more than 2-

fold lower in individuals with advanced NASH and fibrosis

compared to those with the early disease (236). Alternations in

polyamine metabolism during NASH could be attributed to the

availability of S-adenosylmethionine (SAMe), a universal methyl

donor and a polyamine precursor. In NASH, glycine-N-methyl

transferase (GNMT), which catalyzes the transfer of a methyl

group from SAMe to glycine, is reduced, promoting an increase
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in SAMe and subsequent accumulation of putrescine associated

with enhanced lipid peroxidation (237). While changes in

circulating putrescine in NAFLD/NASH have not been reported

yet and the evidence for decreased spermidine is limited (236), a

number of studies reported a protective role of spermidine in

mouse models of NAFLD. In diet-induced obese mice,

supplementation with spermidine lowered hepatic steatosis

associated with downregulation of lipogenic genes and

upregulation of genes driving FAO, including Ppara (233, 238).

Also, spermidine ameliorated obesity-associated NAFLD in mice

by increasing the phosphorylation of hepatic AMP-activated

protein kinase (AMPK), which in turn inhibited the expression

of the lipogenic genes Srebf1c and Fas (239). In addition,

spermidine treatment restored the hypusination of translation

factor EIF5A, which was decreased in NASH, leading to

enhanced mitochondrial FAO and protection against diet-

induced NASH in mice (240). While the studies above suggest

dysregulated polyamine metabolism in NASH and indicate a

protective role of spermidine, further research is needed to

establish the use of polyamines as biomarkers for NAFLD/NASH.

With regards to CVD, the association with spermidine has been

evaluated in a number of recent studies. In individuals with AMI,

serum spermidine was associated with improved prognosis and

reduced rates of major adverse cardiac events (241). On the other

hand, a higher risk of stroke was found with an increasing

baseline serum spermidine (242). Moreover, obese and overweight

subjects were found to have higher serum spermidine along with

increased atherogenic markers including triglycerides, total and

LDL-cholesterol (243). While the above association studies appear

to be conflicting, intervention studies in mouse models

consistently demonstrated athero/cardioprotective properties of

spermidine. In Apoe−/− mice, spermidine supplementation lowered

plaque lipid accumulation and necrotic cores. Spermidine triggered

cholesterol efflux in autophagy-competent but not in autophagy-

deficient VSMCs or macrophages lacking autophagy related 7

(Atg7) (244). In addition, spermidine and spermine protected

against LDL oxidation resulting in reduced uptake of ox-LDL by

macrophages (245). Furthermore, spermidine decreased cardiac

hypertrophy and preserved diastolic function in old mice

concomitant with enhanced cardiac autophagy, mitophagy and

mitochondrial respiration. These cardioprotective effects were

abolished in mice lacking Atg5 in cardiomyocytes (232),

supporting the notion that induction of autophagy by spermidine

may be useful to prevent CVD. Interestingly, in humans, higher

consumption of dietary spermidine was associated with lower

CVD incidence (232). Together, while spermidine supplementation

appears to be protective against NAFLD/NASH and CVD in

mouse models, the use of spermidine or other polyamines as

biomarkers and the therapeutic potential of spermidine in clinical

settings warrant further research.
4.4. Oxalate

Oxalate is the ionic form of oxalic acid, and is an end-product

of glyoxylate metabolism in the liver, which accounts for 80%–90%
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of total circulating oxalate (246–248). The vast majority of oxalate

(>90%) is eliminated through the kidneys (249, 250). Although

humans have no enzymes capable of degrading oxalate (251),

specific hepatic enzymes can prevent oxalate overproduction via

the detoxification of glyoxylate to glycolate (by glycolate

reductase/hydroxypyruvate reductase, GRHPR) or glycine (by

AGXT) (252). Genetic defects in these enzymes result in primary

hyperoxaluria, in which toxic levels of oxalate are produced by

the liver (252). Furthermore, increased systemic oxalate can also

be caused by impaired oxalate excretion in chronic kidney

disease (250, 253). Beyond this, increased serum or urine oxalate

has recently been linked with NAFLD/NASH (83, 248) and CVD

(83, 248, 253, 254).

Suppression of glyoxylate detoxifying genes, particularly AGXT,

has been consistently reported in both in humans and mice with

NAFLD/NASH. Assessment of hepatic gene expression in patients

who had undergone bariatric surgery revealed that AGXT is

downregulated in those with NASH (255). In support, AGXT and

GRHPR were recently reported to be downregulated in steatotic

hepatocytes isolated from patients with NAFLD (248). Analysis of

liver transcriptomic data from several cohorts of patients with

various degrees of liver disease (steatosis, NASH, cirrhosis, and

HCC) combined with data from mice with NAFLD or NASH

revealed that AGXT was consistently downregulated in all human

and mouse cohorts (83, 196, 248, 256). Furthermore, aggravated

NASH and fibrosis in Agxt−/− mice fed a NASH-inducing diet

suggest a causative role of oxalate in NAFLD (83). Nevertheless,

future studies evaluating the liver and circulating levels of oxalate in

patients with NAFLD/NASH are warranted.

With regards to CVD, increased circulating oxalate has been

associated with increased cardiovascular morbidity and mortality.

Among hemodialysis patients, serum oxalate was positively

associated with cardiovascular risk factors including elevated pulse

wave velocity, central aortic systolic and diastolic blood pressures,

and risk for cardiovascular events (253, 257). In patients with end-

stage renal disease, increased circulating oxalate was not only

associated with CVD events, but also with aggravated dyslipidemia

(increased triglycerides and VLDL-cholesterol, and decreased

HDL-cholesterol) and proatherogenic cytokines and chemokines

(IL-6, TNFα, and monocyte chemoattractant protein-1) (254). In

patients with significant CAD and normal kidney function, and in

atherosclerotic Apoe−/− mice, we found a significant decrease in

the glycine to oxalate ratio aligned with downregulated hepatic

AGXT. In mice deficient with both Agxt and Apoe, as well as in

Apoe−/− mice challenged with exogenous oxalate, atherosclerosis

was increased with enhanced superoxide and CCL5 in

atherosclerotic lesions. These effects were reversed by AAV-

mediated overexpression of AGXT in livers of Apoe−/− mice,

indicating a causative role of oxalate overproduction in

atherosclerosis (196). At the cellular level, oxalate was reported to

induce mitochondrial dysfunction, oxidative stress and the release

of proinflammatory chemokines and cytokines in endothelial cells,

monocytes, and macrophages (196, 258–260). Together, the

association between circulating oxalate, NAFLD/NASH and

ASCVD should be further studied in larger cohorts including

patients without kidney disease.
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4.5. Hepatokines

The liver secretes various proteins known as hepatokines that

can regulate systemic metabolic homeostasis through a crosstalk

with other organs including skeletal muscle, adipose tissue, the

central nervous system and blood vessels (261). In addition to

their metabolic role, systemic alterations in hepatokines are

implicated in several pathological conditions including IR,

diabetes and CVD (261, 262); however, evidence regarding the

role of hepatokines as modulators of atherosclerosis is limited.

Angiopoietin-like 3 (ANGPTL3) is a glycoprotein that is

expressed and secreted primarily by the liver (263). Secreted

ANGPTL3 binds lipoprotein lipase and inhibits its activity to

hydrolyze lipoprotein triglycerides into fatty acids that are taken

up by metabolic tissues. As a result, circulating triglycerides are

increased (264, 265). Indeed, individuals with loss-of-function

mutations in ANGPTL3 have lower plasma triglycerides (266). In

a cross-sectional investigation of obese subjects, both hepatic and

plasma ANGPTL3 were higher in individuals with NALFD and

positively correlated with hepatic steatosis and histological

markers of NASH (267). Among patients with various degrees of

NAFLD, serum ANGPTL3 was increased in individuals with

NASH, but not in those with simple steatosis (268). With regards

to CVD, a study involving 1,493 MI cases and 3,231 controls

demonstrated that individuals with lower plasma ANGPTL3 had

a reduced risk of MI (269). In line, increased plasma ANGPTL3

was positively associated with the severity of coronary stenosis

among patients with angina (270). Beyond its potential as a

biomarker, the efficacy of ANGPTL3 inhibition has been studied

extensively in preclinical and clinical settings. Both in Ldlr−/−

mice treated with antisense oligonucleotides (ASO) targeting

Angptl3 and in APOE*3Leiden.CETP mice treated with an

antibody against ANGPTL3 (evinacumab), hypercholesterolemia,

hypertriglyceridemia and atherosclerosis were significantly

decreased (271, 272). Evinacumab also lowered fasting

triglycerides and LDL-cholesterol in a phase I trial (271). In a

phase IIb trial, administration of vupanorsen, an ASO targeting

hepatic ANGPTL3, to patients with hypercholesterolemia and

hypertriglyceridemia significantly reduced triglycerides together

with a modest decrease in LDL-cholesterol. Unfortunately, at

higher doses, vupanorsen administration was associated with

increased hepatic fat, and over 3-fold elevations in ALT and AST

(273). These studies highlight the potential complications in

determining dosage for therapeutics like vupanorsen.

Fibroblast growth factor-21 (FGF-21) is a hormone primarily

produced and secreted by the liver (274, 275). The hepatic

expression and circulating levels of FGF21 are consistency

reported to be higher in NAFLD, and are associated with

enhanced hepatic necroinflammation and fibrosis (276–280).

Furthermore, FGF21 was positively correlated with total

cholesterol and triglycerides, and multivariate regression analysis

indicated that FGF21 is an independent risk factor of CAD

(281). Moreover, serum FGF21 predicted the incident of ASCVD

events independent of NAFLD and other traditional

cardiovascular risk factors (282, 283). Despite these findings

indicating elevated circulating FGF21 as a common biomarker
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for NAFLD and ASCVD, FGF21 is known for its protective

properties in both diseases. An extensive body of literature have

demonstrated the protective effects of recombinant FGF21 or

FGF21 analogues in preclinical models of NASH (284, 285) and

atherosclerosis (286, 287) as well as in patients with NASH (288,

289), serving as an attractive therapeutic marker for both diseases.

Fetuin-A, also known as α2-Heremans-Schmid glycoprotein

(AHSG), is synthesized and secreted predominantly by the liver

and is among the first hepatokines identified to regulate

metabolism through multiorgan crosstalk (290–292). Elevated

fetuin-A levels are positively correlated with liver fat, patients

with NAFLD, IR, and hepatic fibrosis (293–295). The link

between fetuin-A, NAFLD and other metabolic disorders has

sparked interest in its involvement in CVD; however, these

studies yielded inconsistent results. In a case-cohort investigation,

higher circulating fetuin-A was associated with MI and ischemic

stroke after adjustment for confounders (296). In contrast, lower

plasma fetuin-A, independent of traditional CVD risk factors,

was found to be associated with increased CVD mortality among

1,620 patients with CAD (297). Therefore, while fetuin-A may

serve as a potential biomarker in NAFLD, the conflicting

findings above indicate that fetuin-A may not be a useful

biomarker in ASCVD.
5. Dual-targeting of NASH and ASCVD:
Limitations, caveats, and potential
directions

Significant advances in our understanding of the mechanisms

that drive NASH have led to the development of numerous of

drug candidates that target different pathways in the

pathogenesis of NASH. As extensively reviewed (298, 299), these

candidates include drugs that target insulin/glucose homeostasis,

lipid metabolism, proinflammatory/profibrotic responses, and the

gut-liver axis, alongside pharmacological/surgical approaches

aimed at lowering body weight. A limited number of drugs that

demonstrated efficacy in phase IIb trials were or are currently

evaluated in phase III trials. A few drugs approved for other

metabolic diseases (e.g., T2D, and obesity) are evaluated as

potential treatments for NAFLD/NASH in phase IV trials. While

the current therapeutic pipeline in NASH (298, 299) and

emerging approaches to treat ASCVD via modifying

inflammation (300) have been comprehensively reviewed, in this

section we discuss (1) potential cardiovascular consequences of

promising drug candidates for NASH, and (2) the effects of

commonly used (lipid-lowering) and new (anti-inflammatory)

drugs for ASCVD on NASH.
5.1. Antidiabetic drugs for concurrent
treatment of NASH and ASCVD

The prevalence of NAFLD and NASH in patients with T2D is

higher than the general population and was estimated at 55% and

37%, respectively (5). As T2D is closely associated with NASH, a
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number of antidiabetic drugs have been considered as potential

treatments for NASH. Among these drugs, pioglitazone, a

PPARγ agonist and insulin sensitizer, is currently evaluated in a

phase IV clinical trial for NASH (NCT00994682). Pioglitazone

administered for 18 months to prediabetic or T2D patients with

biopsy-proven NASH effectively lowered NAS and fibrosis scores

while improving insulin sensitivity (300–302). However,

pioglitazone treatment was associated with weight gain compared

to placebo (302). Moreover, pioglitazone was associated with

other adverse effects including enhanced risk of hospitalization

for heart failure due to fluid retention (303–305). Despite this,

accumulating evidence suggests a protective effect of pioglitazone

on atherosclerosis-driven events including MI and ischemic

stroke. In patients with impaired glucose tolerance or T2D,

pioglitazone reduced carotid IMT (306, 307) and atherosclerotic

plaque inflammation in association with decreased CRP and

increased HDL-cholesterol (308, 309). Furthermore, pioglitazone

treatment was associated with reduced total and LDL-cholesterol,

triglycerides, and lipoprotein (a) (310–312). Therefore, the

cardiovascular consequences of pioglitazone in patients with

NASH warrant further research in long-term, large clinical trials.

Newer antidiabetic drug classes, including glucagon-like peptide

1 (GLP1) receptor agonists and sodium-glucose cotransporter-2

(SGLT2) inhibitors, have emerged as potential therapies for

NASH. GLP1, an incretin secreted from intestinal L-cells,

enhances glucose-stimulated insulin secretion and promotes satiety

(313–316). Liraglutide is a GLP1 analogue known to lower body

weight (317). In a phase II trial including overweight patients with

biopsy-confirmed NASH, 48 weeks of liraglutide treatment was

associated with higher rates of NASH resolution and attenuation

of fibrosis (318). Stable isotope studies in patients treated with

liraglutide, supported by lipid flux studies in human primary

hepatocytes, demonstrated that liraglutide inhibits hepatic DNL

(319), suggesting additional benefits beyond lowering body weight.

Semaglutide, another GLP1 receptor agonist, has more

pronounced body weight-lowering effects (320). In a phase II trial

including patients with biopsy-confirmed NASH and fibrosis,

semaglutide administered for 72 weeks led to a 13% reduction in

body weight and was associated with higher rates of NASH

resolution and improvement of fibrosis (321). With regards to

ASCVD, liraglutide administered to patients with T2D has been

consistently reported to improve circulating lipid profile (reduce

triglycerides, total and LDL-cholesterol, and increase HDL-

cholesterol) and reduce carotid IMT (322–324). The effects of

semaglutide on atherosclerosis are currently being evaluated in

phase IV trials (NCT03985384). Together, the above studies

indicate the potential of GLP1 receptor agonists for concurrent

treatment of NASH and ASCVD, which should be confirmed in

long-term studies assessing cardiovascular outcomes in patients

with NASH. Furthermore, considering that the expression of

GLP1 receptor is not detected in livers (325, 326) and aortas (327)

from mice, monkeys and humans, the mechanisms by which

GLP1 receptor agonists protect against NASH and ASCVD,

beyond lowering body weight, warrant further investigation.

SGLTs are membrane proteins that regulate nutrient transport

across the intestinal epithelium and the proximal renal tubules.
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While SGLT1 is expressed primarily in enterocytes and absorbs

glucose from the gut lumen, SGLT2 is expressed in the proximal

tubule and regulates glucose reabsorption from the glomerular

filtrate (328). Thus, by decreasing renal glucose reabsorption and

increasing urinary glucose excretion, SGLT2 inhibitors, such as

empagliflozin, reduce hyperglycemia in patients with T2D (329).

Empagliflozin has been evaluated for NAFLD treatment in phase

IV trials (NCT02637973, NCT02686476, NCT02964715). In

patients with T2D, empagliflozin administrated for 20 weeks

reduced circulating ALT and liver fat assessed by MRI-derived

proton density fat fraction (MRI-PDFF) (330). Although

including a small sample size (n = 9), a study in patients with

T2D and biopsy-proven NASH reported that empagliflozin

treatment for 24 weeks improved histological components of

NASH including steatosis, ballooning and fibrosis while reducing

blood glucose, body weight and total cholesterol (331).

Dapagliflozin, another SGLT2 inhibitor given to patients with

T2D and NAFLD for 12 weeks, lowered circulating ALT and

AST together with glucose and body weight. However, compared

with placebo, reduction in hepatic fat was found when

dapagliflozin was combined with omega-3 carboxylic acids, but

not as a monotherapy (332). Also, although lowering body

weight, dapagliflozin administered to insulin-resistant overweight/

obese individuals for 12 weeks did not improve hepatic steatosis

(333). However, when given to patients with T2D and NAFLD

for 24 weeks, dapagliflozin lowered circulating ALT, hepatic

steatosis and fibrosis assessed by MRI-PDFF and magnetic

resonance elastography (MRE) (334). Interestingly, a recent phase

II study including patients with NASH reported that 12 weeks of

treatment with licogliflozin, a dual SGLT1/2 inhibitor, reduced

circulating ALT and hepatic fat assessed by MRI-PDFF (335).

Importantly, dramatic beneficial cardiovascular outcomes have

been reported in T2D patients treated with SGLT2 inhibitors. In

long-term and large phase III trials including patients with T2D

with or at risk for ASCVD, treatment with empagliflozin or

dapagliflozin was associated with lower rates of cardiovascular

death (336, 337). Considering that SGLT2 is primarily expressed

in the kidneys, the mechanisms by which SGLT2 inhibitors reduce

the cardiovascular risk and directly affect the atherosclerotic

plaque, beyond glucose- and body weight-lowering effects, are not

completely clear (338, 339). Furthermore, whether long-term

treatment with SGLT2 inhibitors concurrently lowers NASH and

ASCVD remains unknown.
5.2. Targeting lipid metabolism for
simultaneous treatment of NASH and
ASCVD: Challenges and opportunities

Lipid overload is central to the pathogenesis of NASH. Fatty

acids are supplied in excess to the liver via 1) enhanced flow

from lipolysis of triglycerides in adipose tissue, and 2) increased

synthesis from carbohydrates, primarily fructose, via DNL (50,

340). In addition to increased lipogenesis, fructose also

suppresses hepatic FAO (109). Enhanced DNL coupled with

impaired FAO result in the formation of lipotoxic species that
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induce hepatic oxidative stress, proinflammatory and profibrotic

responses to promote NASH (50, 341, 342). Therefore,

pharmacological strategies aimed at inhibiting DNL or enhancing

FAO can reduce hepatic lipotoxicity and attenuate NASH.

Nevertheless, considering the major role of the liver as a

regulator of systemic lipids, such approaches may have

detrimental or beneficial effects on circulating lipids that may

affect ASCVD.

In the initial step of fatty acid biosynthesis, acetyl-CoA is

converted to malonyl-CoA by ACC (343). In phase II trials,

patients with NASH treated for 12 weeks with the ACC

inhibitor, firsocostat (GS-0976), showed reduced circulating ALT,

hepatic steatosis and markers of fibrosis (344) mediated by

inhibition of hepatic DNL assessed by heavy water labeling (345).

However, similar to other ACC inhibitors [MK-4074 (346) or

PF-05221304 (347)] treatment with firsocostat increased

circulating triglycerides (344), which can be attributed to the

upregulation of hepatic SREBP-1, enhanced VLDL production

and impaired triglyceride clearance (348). While these findings

raise concerns that targeting ACC may aggravate atherogenic

dyslipidemia, co-administration of PF-05221304 with a

diacylglycerol acyltransferase 2 inhibitor (PF-06865571), reduced

liver fat assessed by MRI-PDFF and mitigated the increase in

circulating triglycerides in patients with NAFLD (347).

Nevertheless, the cardiovascular consequences of ACC inhibition

either as a monotherapy or in combination with other drugs

warrant further research in long-term clinical trials.

The conversion of acetyl-CoA and malonyl-CoA to palmitate is

catalyzed by FAS, which controls the liver capacity to synthesize

fatty acids through DNL (349). In a phase IIa trial including

individuals with hepatic steatosis and fibrosis, treatment for 12

weeks with a FAS inhibitor, TVB-2640, dose-dependently

decreased circulating ALT, AST and liver fat determined by

MRI-PDFF. Importantly, TVB-2640 treatment significantly

decreased circulating total and LDL-cholesterol. Although HDL-

cholesterol was also decreased, lipidomics revealed beneficial

effects including reduced triglycerides enriched in palmitate-

containing species, diacylglycerols, bile acids and ceramides

(350). Therefore, apart from the decrease in HDL-cholesterol,

improved circulating lipid profile, reduced markers of hepatic

steatosis and injury, indicate TVB-2640 as a promising candidate

for dual treatment of NASH and ASCVD. Currently, TVB-2640

is evaluated in a phase IIb trial recruiting patients with NASH

that will be treated for 52 weeks (NCT04906421). Longer-term

studies are needed to determine the cardiovascular outcomes of

TVB-2640 in patients with NASH.

The rate-limiting step in the synthesis of monounsaturated

fatty acids is catalyzed by stearoyl-CoA desaturase 1 (SCD1)

(351). The partial inhibitor of hepatic SCD1, aramchol, is a

conjugate of cholic acid and arachidic acid, and is currently the

most advanced drug candidate for NASH among those targeting

hepatic DNL. In a 52-weeks, phase IIb trial including 247

patients with NASH, aramchol led to a time- and dose-

dependent reduction in circulating ALT and AST. Histological

analysis revealed that treatment with aramchol was associated

with higher rates of NASH resolution and improvement in
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fibrosis compared with placebo (352). Of note, no significant

differences in circulating lipid profile were found between the

groups (352, 353). While the cardiovascular outcomes of SCD1

inhibition have not been addressed in humans, loss of SCD1 in

Ldlr−/− mice (354) or its inhibition in Ldlr−/− / Apob 100/100

mice via ASO (355) enhanced atherosclerosis while reducing

hepatic steatosis. Plans to test aramchol in the phase III/IV

ARMOR trial (NCT04104321) in patients with biopsy-proven

NASH and fibrosis for 5 years will shed light on the long-term

effects of aramchol treatment on NASH and perhaps its

cardiovascular consequences.

In addition to DNL inhibition, drugs that promote FAO can

also lower hepatic lipotoxicity and NASH. This approach has

been pursued by activation of key regulators of hepatic FAO,

mainly PPARɑ and PPARβ/δ. Among the three PPAR isotypes

(PPARα, PPARβ/δ and PPARγ), PPARα is the most abundant in

hepatocytes where it acts as a master regulator of mitochondrial/

peroxisomal FAO (356). In mice, hepatocyte-specific loss of

PPARα enhances steatohepatitis, which is aggravated in whole-

body Ppara−/− mice, indicating a protective role for both hepatic

and extrahepatic PPARα in NASH (357–359). Accordingly, the

PPARα agonist, Wy-14,643, lowers MCD diet-induced NASH

and fibrosis in mice (360). Few clinical studies evaluated the

effects of the PPARα agonists, fibrates, in NASH. In patients

with biopsy-confirmed NASH, treatment with fenofibrate for 48

weeks reduced circulating transaminases, triglycerides and

glucose while increasing apolipoprotein A1. Histological

assessment revealed improved hepatocellular ballooning, but no

significant changes in steatosis, inflammation, and fibrosis (361).

Interestingly, in patients with NASH and fibrosis, fenofibrate

administered 2 weeks before the addition of the ACC inhibitor,

firsocostat, not only mitigated hypertriglyceridemia, but also

improved liver biochemistry compared to icosapent ethyl

(Vascepa) (362). Pemafibrate, a selective PPARα modulator,

lowers NASH in mice fed the MCD or AMLN diet (363). In a

phase II trial including 117 patients with NAFLD, pemafibrate

administered for 48 weeks lowered circulating ALT and LDL-

cholesterol. Although liver fat assessed by MRI-PDFF was not

altered, MRE-based liver stiffness was significantly reduced (364).

The concurrent improvement in plasma lipids and liver

biochemistry suggest beneficial effects of PPARα agonism in both

NASH and ASCVD. Although this notion was supported by

studies in Apoe−/− (365) and ApoE*3Leiden mice (366) in which

fenofibrate reduced atherosclerosis, a multinational trial including

over 10,000 patients with CVD, demonstrated that pemafibrate

was not associated with lower incidence of cardiovascular events

although NAFLD incidence was reduced (153).

PPARβ/δ is ubiquitously expressed, including in hepatocytes,

Kupffer cells and hepatic stellate cells (367, 368). Studies in mice

lacking PPARβ/δ indicated its roles in regulating hepatic FAO

and antiinflammatory responses in Kupffer cells (369, 370). The

dual PPARα/δ agonist, elafibranor (GFT505), showed promising

outcomes in preclinical NASH models (371) and in a phase IIb

trial (372) in which 52 weeks of treatment with elafibranor led to

higher rates of NASH resolution and reduction in fibrosis.

Importantly, elafibranor not only decreased circulating
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transaminases, but also lowered triglycerides and LDL-

cholesterol, increased HDL-cholesterol and improved glycemic

control, indicating significant improvement of overall

cardiometabolic risk (372). These promising findings led to the

evaluation of elafibranor in a phase III trial (RESOLVE IT)

including over 2,000 patients with histologically confirmed

NASH (NCT02704403). Unfortunately, results of the week 72

interim analysis revealed that elafibranor did not achieve NASH

resolution without worsening of fibrosis, and the RESOLVE-IT

trial was discontinued.

The beneficial effects of elafibranor and the PPARγ agonist,

pioglitazone, have raised interest in pan-PPAR agonism as a

potential therapy for NASH. In preclinical studies, selective

PPARα (fenofibrate), PPARγ (pioglitazone) and PPARδ

(GW501516) were compared to the pan-PPAR agonist,

lanifibranor, and indicated that pan-PPAR agonism lowers

experimental NASH by combining the beneficial effects of the

three PPAR isotypes (373). Indeed, in a phase IIb trial including

247 patients with biopsy-proven NASH, lanifibranor

administered for 24 weeks led to higher rates of NASH

resolution and improvement in fibrosis compared with placebo.

Importantly, in addition to lowering circulating transaminases,

lanifibranor had beneficial effects on plasma lipid profile and

glycemic control. Nevertheless, a mild increase in body weight

(≈3%) was noted (374). Currently, the phase 3 NATiV3 trial

(NCT04849728) is recruiting patients with NASH and fibrosis to

assess the long-term efficacy of lanifibranor for up to 7 years.

Findings from this study will provide important insight of the

cardiometabolic consequences of pan-PPAR agonism in patients

with NASH.

Statins reduce circulating cholesterol through inhibition of

HMG-CoA reductase and remain the leading therapeutic in

reducing the risk of cardiovascular events (375). Although

dyslipidemia is a hallmark of both NAFLD/NASH and

atherosclerosis, whether cholesterol-lowering by statin therapy

improves NASH outcome remains inconsistent and thus is not a

current recommendation for NASH management (376). Despite

this, statin therapy may have pleotropic beneficial effects for the

treatment of NAFLD/NASH. In MCD diet-fed mice, fluvastatin

reduces hepatic steatosis and improves inflammation and fibrosis

through activation of PPARɑ and its target genes enhancing FAO

(377). Rosuvastatin blunts NASH-induced pro-inflammatory

cytokine expression in livers from high-fat diet-fed STAM mice

(378), while simvastatin reduces inflammation and fibrosis in

Apoe−/− mice fed a high-fat, high-cholesterol diet for 7 weeks

with corresponding inhibition of Ras and Rho signaling (379).

Treating obese mice with atorvastatin reduces cholesterol

accumulation in isolated hepatocytes and reduces cholesterol-

induced mitochondrial depletion of GSH (94), and atorvastatin is

currently being evaluated in phase II trials for the treatment of

NAFLD/NASH (NCT04679376). However, high-intensity

atorvastatin therapy appears to enhance insulin secretion in

patients with an increased risk of developing T2D (380). Since

hyperinsulinemia is an early marker for metabolic disease (381)

and is strongly associated with NAFLD (121), chronic use of

statins in the treatment of NASH and ASCVD warrants further
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investigation with potential contraindications. Furthermore, statin

users appear to have higher caloric intake, which is associated

with weight gain and complicates disease progression (382).

A potential complicating factor is the presence of genetic

variants or single-nucleotide polymorphisms (SNPs). In

particular, SNPs in patatin-like phospholipase domain-containing

protein 3 (PNPLA3), or transmembrane 6 super family 2

(TM6SF2) are known as strong predictors of NAFLD risk

independent of associated metabolic confounding factors, despite

these variants promoting lipotoxicity (383). However, the

presence of the PNPLA and TM6SF2 variants reduces the risk of

ASCVD in patients with NAFLD (384). In contrast, mutations in

Angiopoietin-like 3 (ANGPTL3) lead to hypolipidemia (385),

since circulating ANGPTL3 inhibits lipoprotein lipase and is

positively associated with NASH (386). Thus, therapeutics

targeting PNPLA3, but not ANGPTL3, may be contraindicated

should the outcome yield exacerbated ASCVD. These studies

highlight the importance of identifying and considering genetic

factors in both NAFLD and ASCVD which has been thoroughly

discussed previously (14).
5.3. Ectopic fat as a potential link and
therapeutic target in NAFLD/NASH and CVD

Patients with metabolic disease and obesity who have undergone

bariatric surgery have marked improvement in insulin resistance

(NCT03853590) and reduced risk of major cardiovascular events

(387). Since previous studies demonstrated an association between

bariatric surgery-induced weight loss and improved hepatic

inflammation and fibrosis (388), a retrospective cohort study of

nearly 1,200 patients with NAFLD and obesity was analyzed

following bariatric surgery (389). Patients who received gastric

bypass or sleeve gastrectomy demonstrated marked improvement

in both adverse liver and cardiovascular outcomes (389). Since

bariatric surgery effectively achieves weight loss in obese patients

(390), the relationship between the effects of bariatric surgery and

improved NASH and CVD outcome may be due to the effects of

reducing visceral and ectopic adipose tissue. Although the risk of

NASH and CVD rise with increasing BMI (391), ectopic fat [the

storage of fat in non-adipose tissues (392)] and visceral fat [the

storage of fat in the mediastinal and abdominal cavities (393)]

appear to be a more reliable correlation between cardiometabolic

disease compared with BMI alone (394). Similarly, CAD patients

with normal BMI have enhanced visceral fat accumulation (395).

Indeed, NAFLD patients with normal BMI have excessive visceral

fat compared with non-NAFLD patients (396). The detrimental

correlations between visceral fat, NASH and CVD are likely due in

part to adipokine secretion, like TNFɑ (397), which mediates

inflammatory responses locally and systemically. Independent of

BMI, reducing visceral fat improves comorbidities of CVD and

NASH (398). Consistent with this, calorie restriction improves

NAFLD-related biomarkers such as transaminases, liver steatosis

and fibrosis scores (399), as well as reducing the risk for

atherosclerosis (400). The benefits for calorie restriction and

improvement of NASH and ASCVD are multifactorial. Calorie
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restriction (1) reduces adipokine release which attenuates systemic

inflammatory signaling (401), (2) reduces serum lipids and

comorbidities associated with disease exacerbation (e.g.,

hypertension) (400), (3) activates autophagy, which protects

against hepatic steatosis and inflammation (402), and (4) activates

various molecular pathways (e.g., AMPK) which are associated

with protection against NASH and atherosclerosis (403, 404).

AMPK responds to energy demand by sensing the ratio of ATP

to ADP/AMP. Activation of AMPK enhances catabolism and

reduces anabolism, but additionally protects against oxidative

stress-induced endothelial activation in atherosclerosis (405).

AMPK additionally augments reverse cholesterol transport in

atherosclerosis and polarizes macrophages to an M2 phenotype

(404), which are associated with plaque stability and regression

(406). In murine models of NAFLD, AMPK activation is inhibited

due to overnutrition (407). Thus, activation of AMPK yields

improvement in both CVD and NASH outcome in mouse models.

Metformin activates AMPK, which reduces hepatic steatosis (408),

and activation of AMPK with PF-06409577 reduces dyslipidemia

and liver transaminases in rats and non-human primates (409).

Another AMPK activator, PXL770, attenuates DNL, hepatic

steatosis, inflammation, and ballooning in mouse NASH models

(403). These effects may be due to inhibition of mTORC1, which

is inhibited by AMPK through phosphorylation of raptor (410).

mTOR activates lipogenesis by inducing SREBP-1c activation

(411). Selective inhibition of mTORC1 by folliculin (FCLN)

deletion protects against NASH by TFE3 transcription factor-

induced inhibition of lipogenesis (412); however, the impact of

FCLN deletion has not been investigated in atherosclerotic mice.

While clinical trials for NASH are ongoing and activation of

AMPK by PXL770 in mice improves atherosclerotic outcome (403,

413, 414), whether these results extend to human atherosclerotic

patients has yet to be explored.
5.4. Lowering inflammation for
dual-targeting of NASH and ASCVD

Since primary components of the pathophysiology of NASH

and atherosclerosis involve the regulation of inflammatory

cytokines, leukocyte response, and the crosstalk between these

mediators (300, 415), systemic therapy reducing inflammation

may yield benefits across both pathologies. Given the potent

effects of IL-1β signaling and its central role in inflammation, the

monoclonal antibody targeting IL-1β (canakinumab) has been

implemented in the CANTOS phase III clinical trials

(NCT01327846) for the treatment of CVD (416). It is well-

established that the proinflammatory cytokine, IL-1β, activates

endothelial cells to express adhesion molecules, secrete

chemokines, and vSMC proliferation to augment atherogenesis

(417). Furthermore, IL-1β gene expression increases in livers of

mice fed a high-fat, high-cholesterol (1.25%) diet for 18 weeks,

and deletion of IL-1β reduces steatosis, inflammation, ballooning,

and fibrosis in these mice (418). Thus far, the CANTOS trial has

proved promising since inhibition of IL-1β reduces the total

number of serious cardiovascular events in patients with prior
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MI history (416); however, it has not examined whether IL-1β

inhibition by canakinumab improves characteristics of NASH.

Since deletion of IL-1β reduces steatohepatitis, and fibrosis in

mice fed a NASH-inducing diet (418), further investigation on

the effects of canakinumab in human NASH are warranted. Such

studies should also consider the potential risk of infection or

sepsis considering that treatment with canakinumab was found

to be associated with a higher incidence of fatal infection in the

CANTOS trial (419).

While the effects of IL-1β inhibition remain unexplored in

NASH clinical trials, several preclinical and clinical studies have

analyzed the potential benefits of targeting TNFα for NASH.

Antibody therapy against TNFα yielded promising results with

diet-induced NASH in mouse and rat models showing

improvement in circulating AST, ALT, steatohepatitis, and

fibrosis (420–422). However, retrospective studies of patients

receiving anti-TNFα for immune-related diseases reported no

reduction in the incidence of new onset NAFLD, NASH, or

cirrhosis (423). While antagonism of TNFα with monoclonal

antibodies yielded effective results in patients with rheumatoid

arthritis (424) and inflammatory bowel disease (425), clinical

trials for anti-TNFα in patients with chronic heart failure

(RECOVER and RENAISSANCE) were terminated prematurely

due to no observable benefit (426). Furthermore, the anti-TNFα

monoclonal antibody CNTO5048 (CNT) enhanced plasma

triglycerides, VLDL, and atherosclerosis in Ldlr−/− mice (427),

suggesting the use of anti-TNFα antibodies for atherosclerosis

may be contraindicated.

While the effects of targeting cytokines in NASH and ASCVD

warrant further investigation, chemokine signaling appears to be a

promising direction in targeting inflammation. Since mice fed a

choline-deficient diet have enhanced hepatic CCR2 (60) and

clinical trials demonstrated efficacy and safety with antagonism

of CCR2 and CCR5 in patients with HIV (428), the CENTAUR

clinical trial (NCT02217475) proceeded with the CCR2/CCR5

dual antagonist cenicriviroc over the course of 2 years (429). At

the completion of this phase IIb trial, patients with NASH and

fibrosis who received cenicriviroc demonstrated marked

improvement in fibrosis without worsening of NASH (429).

Despite the completion of phase II clinical trial, phase III

(AURORA, NCT03028740) was terminated early due to lack of

efficacy. CCL2 signals through its receptor CCR2, which is

required for monocyte emigration from the bone marrow

during an inflammatory response (430), and deletion of CCR2

significantly reduces atherosclerosis (431). Inhibition of CCR2

with the MLN1202 monoclonal antibody reduced the levels

circulating CRP, a marker of cardiovascular risk (432).

Although the effects of cenicreviroc on CVD were studied in an

early clinical trial (NCT01474954), the trial was terminated due

to low enrollment. Taken together, the effects of CCR2/CCR5

inhibition may improve some aspects of ASCVD; however,

since activation of both CCR2 and CCR5 receptors directly

activate hepatic stellate cells which promote hepatic fibrosis

(433), further investigation on the effects of cenicreviroc on

vSMCs are indicated to determine whether treatment affects

atherosclerotic plaque stability.
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5.5. Targeting fibrosis in NASH and
atherosclerosis: A potential
contraindication

Despite the numerous studies investigating the mechanisms

behind NASH or ASCVD, those that utilize genetic manipulation

often do so with subsequent onset of disease. These studies,

while informative, may not be appropriate for identifying

therapeutic targets since intervention of NASH and ASCVD does

not occur until they become symptomatic. More advanced

disease, both for NASH and ASCVD, involve the accumulation

of fibrous tissue in the liver and vessels, respectively. In NASH,

advanced fibrosis is correlated with worse prognosis (434). In

contrast, fibrous or fibrocellular atherosclerotic plaques confer

stability against plaque rupture and catastrophic events (435).

Therefore, systemic targeting of fibrosis to improve NASH may

be contraindicated for maintaining stable fibroatheromas.

Currently, several clinical trials for the treatment of NASH seek

to improve clinical outcome which includes lowering fibrosis

(374, 436, 437). However, it is unknown whether these will affect

cardiovascular morbidity and mortality.

PPARs regulate lipid homeostasis through transcriptional

control of FAO and DNL (438). Since the relationship between

dysregulated lipid metabolism and NASH or ASCVD is well-

established, therapeutics targeting of PPARs may yield successful

results. Indeed, the PPARγ agonist pioglitazone and PPARα

fenofibrate reduced atherosclerosis and hepatic steatosis in mice

lacking both ApoE and Farnesoid x receptor (FXR) (439), which

modeled NASH and atherosclerosis simultaneously. FXR, a

nuclear receptor responsible for bile acid and cholesterol

synthesis, suppresses hepatic lipogenesis and VLDL assembly by

attenuating SREBP1-c (440). In addition, FXR activity promotes

PPARα transcription through binding directly to the PPARα

reporter (441). Currently the non-steroidal FXR agonist Cilofexor

is undergoing Phase II clinical trials for NASH treatment and

has shown promising results in the reduction of hepatic steatosis,

inflammation, and fibrosis (436). While deletion of FXR from

Apoe−/− mice enhanced atherosclerosis (442), it remains

unknown if the anti-fibrotic effects of FXR in stellate cells is

conserved in plaque associated vSMCs. Since Cilofexor primarily

acts in the intestine (443), it may reduce the potential side effects

of systemic FXR activation; however, further investigation on its

effects on atherosclerotic plaques is warranted. FXR additionally

induces FGF-19, which enhances cholesterol efflux and HDL

assembly through modulation of hepatic ABCA1 and ApoA1

(444). Administration of the FGF-19 analog NGM282 reduces

atherosclerosis in Apoe−/− mice, enhances plasma HDL-

cholesterol in healthy subjects (444), and improved NASH and

fibrosis in phase II clinical trials (445). However, NGM282

increases plasma LDL-cholesterol (437), suggesting a potentially

exacerbating factor in atherosclerosis. Furthermore, NGM282

reduces atherosclerotic fibrosis in mice (444), implicating the

potential for plaque rupture with sustained therapy. In addition

to NGM282, the synthetic bile acid obetacholic acid agonizes

FXR and has been implemented in phase III clinical trials for the

treatment of NASH (NCT02548351). Since patients receiving
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obetacholic acid have enhanced circulating VLDL and LDL but

reduced circulating HDL (21), its administration in the context

of atherosclerosis may be contraindicated. Since these studies

terminated at 72 weeks (21), the long-term effects of obetacholic

acid on atherosclerosis remain unknown. Overall, the long-term

effects of these NASH/fibrosis-targeting drugs must consider the

potential effects on atherosclerotic plaque instability.
6. Concluding remarks and future
directions

In this review, we highlighted our current gaps in knowledge

with particular emphasis on modelling both diseases, common

biomarkers and potential therapeutics, and the potential caveats

we currently face by targeting specific aspects of each disease.

In the past decade cardiovascular-related mortality rates are

steadily increasing concomitant with a rapid rise in obesity and

NAFLD/NASH incidences (1, 2), currently afflicting one-third

of the population worldwide (6). Despite this prevalence, no

FDA-approved drugs exist for the treatment of NASH. Since

NASH serves as an independent risk factor for ASCVD, and

individuals with NASH are at a greater risk of ASCVD-related

mortality compared with liver-related mortality (7–12,

139–141), further understanding of the link between these two

diseases is clearly indicated (8). Future studies establishing

accepted models of NASH and atherosclerosis will provide a

translational understanding of the relationship between NASH

and ASCVD. By identifying new biomarkers shared between

NASH and ASCVD, early detection and intervention will help

to reverse the incline in NASH- and ASCVD-related mortality.

Lastly, clinical trials seeking an effective therapeutic for NASH

must heavily consider the potential influences on atherosclerotic

plaque burden.
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