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Machine learning-based
in-hospital mortality risk
prediction tool for intensive care
unit patients with heart failure
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Objective: Risk stratification of patients with congestive heart failure (HF) is vital in
clinical practice. The aim of this study was to construct a machine learning model
to predict the in-hospital all-cause mortality for intensive care unit (ICU) patients
with HF.
Methods: eXtreme Gradient Boosting algorithm (XGBoost) was used to construct a
new prediction model (XGBoost model) from the Medical Information Mart for
Intensive Care IV database (MIMIC-IV) (training set). The eICU Collaborative
Research Database dataset (eICU-CRD) was used for the external validation (test
set). The XGBoost model performance was compared with a logistic regression
model and an existing model (Get with the guideline-Heart Failure model) for
mortality in the test set. Area under the receiver operating characteristic cure
and Brier score were employed to evaluate the discrimination and the
calibration of the three models. The SHapley Additive exPlanations (SHAP) value
was applied to explain XGBoost model and calculate the importance of its
features.
Results: The total of 11,156 and 9,837 patients with congestive HF from the
training set and test set, respectively, were included in the study. In-hospital all-
cause mortality occurred in 13.3% (1,484/11,156) and 13.4% (1,319/9,837) of
patients, respectively. In the training set, of 17 features with the highest
predictive value were selected into the models with LASSO regression. Acute
Physiology Score III (APS III), age and Sequential Organ Failure Assessment
(SOFA) were strongest predictors in SHAP. In the external validation, the
XGBoost model performance was superior to that of conventional risk predictive
methods, with an area under the curve of 0.771 (95% confidence interval,
0.757–0.784) and a Brier score of 0.100. In the evaluation of clinical
effectiveness, the machine learning model brought a positive net benefit in the
threshold probability of 0%–90%, prompting evident competitiveness compare
to the other two models. This model has been translated into an online
calculator which is accessible freely to the public (https://nkuwangkai-app-for-
mortality-prediction-app-a8mhkf.streamlit.app).
Conclusion: This study developed a valuable machine learning risk stratification
tool to accurately assess and stratify the risk of in-hospital all-cause mortality in
ICU patients with congestive HF. This model was translated into a web-based
calculator which access freely.
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Introduction

Congestive heart failure (HF) is a complex clinical syndrome

caused by structural and/or functional disorders. These disorders

lead to high mortality rate in HF patients. Despite significant

advances in its treatment in recent years, HF mortality has not

yet reached a decreasing inflection point (1). In the United

States, approximately 10% of hospitalized patients with HF

require admission to the intensive care unit (ICU) for a higher

level of intensive care (2, 3), which imposes a heavy economic

and social burden. The risk stratification of the ICU patients has

become an important strategy in management of HF. Studies

have also demonstrated that accurate event risk assessment and

active intervention can help improve cardiac disease outcomes

(4). Therefore, effective stratification tools are needed to achieve

this goal. The Get with the guideline-Heart Failure (GWTG-HF

model) risk score uses common clinical features (race and

systolic blood pressure) to predict in-patient mortality. However,

it was developed more than a decade ago and has unsatisfactory

applicability in current clinical practice (5, 6). Additionally, with

the increasing availability of clinical data, traditional prediction

models based on logistic regression analysis may not be able to

capture nonlinear relationships from high-dimensional data.

Machine learning algorithms, which provide researchers with

powerful tools, have been applied in several medical fields,

ranging from disease diagnosis, outcome prediction, and efficacy

prediction to medical image interpretation (7–9). It has also been

used to develop new HF risk prediction models. These models

show a better prediction performance (7–9). However, most of

these models were verified only in the same cohort, and

independent external verification was seldom performed.

Moreover, the degree of model calibration has not been reported

(8, 10). Based on the above, in this study, a machine learning

algorithm was introduced to construct an in-patient mortality

risk prediction model for ICU HF patients, and an independently

validation was performed in the test dataset.
Methods

Study population

The study population was enrolled from two different

databases: The Medical Information Mart for Intensive Care IV

database (MIMIC-IV) and the eICU Collaborative Research

Database dataset (eICU-CRD). MIMIC-IV (version 2.2) is a

single-center database that contains data from over 190,000 ICU

patients between 2008 and 2019, including demographic records,

hourly vital signs from bedside monitors, laboratory tests,

international classification of diseases (ICD-9 and ICD-10) code

diagnostics, and other clinical features (11). The eICU-CRD is a

multi-center intensive care database that contains data of 335

ICU patients in the United States from 2014 to 2015 (12).

Inclusion criteria: All patients with congestive heart failure. The

data of patients with congestive heart failure were obtained from
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the two databases by ICD-9 and ICD-10 code (Supplementary

Material). Exclusion criteria: (a) patients less than 18 years of

age; (b) patients not admitted to ICU for the first time; (c)

patients with ICU stay less than 24 h. Ultimately, as shown in

the flow chart (Figure 1), 11,156 and 9,837 patients were

enrolled in the study from the MIMIC-IV and eICU-CRD,

respectively. This study was a secondary analysis based on the

data described above, and all patient’ information was

anonymized; therefore, the requirement of informed patient

consent was waived.
Data acquisition and outcome definition

According to previous researches (13, 14), this study

documented demographic characteristics (age, sex, weight and

height), severity score [Sequential Organ Failure Assessment

(SOFA) and Acute Physiology Score III (APS III)], comorbidities

[diabetes, hypertension, severe liver disease, chronic obstructive

pulmonary disease (COPD), and myocardial infarction],

medication information [dopamine, norepinephrine, dobutamine,

epinephrine, phenylephrine, vasopressin, milrinone, furosemide,

beta blocker and angiotensin converting enzyme I (AECI)/

Angiotensin II receptor blocker (ARB)], mechanical ventilation,

continuous renal replacement therapy (CRRT), vital signs at

admission (heart rate, respiratory rate, SpO2, systolic blood

pressure and mean blood pressure), and laboratory tests [white

blood cell count (WBC), basophils, eosinophils, lymphocytes,

monocytes, neutrophils, red blood cells count (RBC), hematocrit,

hemoglobin, mean corpuscular volume (MCV), mean

corpuscular hemoglobin content (MCHC), mean hemoglobin

concentration (MHC), red blood cell distribution width (RDW),

platelets, albumin, aspartate aminotransferase (AST) alanine

aminotransferase (ALT), alkaline phosphatase (ALP), total

bilirubin, urea nitrogen (BUN), creatinine, glucose, sodium,

calcium, chloride, potassium, anion gap, bicarbonate,

international normalized ratio (INR), thromboplastin time (PTT),

prothrombin time (PT)] at admission. The same features in

eICU-CRD were extracted to achieve external validation of those

models. The primary endpoint was defined as all-caused in-

hospital mortality based on survival at discharge. Data extraction

process was performed using the PostgreSQL programming

language.
Model construction and validation

The MIMIC-IV and eICU-CRD datasets were used as training

set and test set, respectively. In the training set, the Least Absolute

Shrinkage and Selection Operator (LASSO) regression was used to

select the features from items (15). The eXtreme Gradient Boosting

(XGBoost) is an optimal implementation of gradient boosting

which is based on the ensemble of weak learners with high bias

and low variance (15). Taking the primary endpoint and the

screened features as the prediction outcome and the prediction

features, respectively, XGBoost was applied to obtain the optimal
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1119699
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

Study flow chart. According to the inclusion and exclusion criteria of the study, the population of the training set and the test set were obtained.
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model super parameters (such as the number of trees, the

maximum depth of the trees, the learning rate, and the like)

through 10-fold cross-validation and Bayesian optimization. This

machine learning model designated as XGBoost model. Logistic

regression was applied to obtain a generalized linear regression

model (Logistic model). The GWTG-HF model was obtained

according to the previous study (6).

Machine learning models are considered black boxes due to

difficulty in explaining how an algorithm provides accurate

predictions for a specific population. Therefore, we introduced

the SHapley Additive exPlanations (SHAP) value to explain the

XGBoost model and calculate the importance of its features.

SHAP is a unified framework for explaining machine learning

algorithm prediction proposed by Lundberg and Lee as a new

method for explaining various black box models, with verified

interpretable properties (16).

Subsequently, the XGBoost model, Logistic model and GWTG-

HF model were independently validated and compared with each

other in the test set. Model discrimination was assessed using the

area under the receiver operating characteristic curve (AUC). The

calibration evaluation of the model was assessed using the

calibration map and the Brier score. Clinical effectiveness

evaluation of models was assessed by using decision curve analysis.
Statistical analysis

Continuous variables are expressed as mean and standard

deviation, and the t-test was used for comparisons between the

groups. Categorical variables are expressed as absolute values and

proportions, and the chi-squared test was used for comparison
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between the groups. In this study, it was assumed that the

missing clinical features occurred randomly, and multiple

interpolations were performed using the random forest method

in the multivariate imputation by chained equation (MICE)

function of the MICE package, assuming missing clinical

features. P value <0.05 was considered as statistically significant.

All statistical analyses were performed using R 4.1.3 software

(The R Foundation for Statistical Computing, Vienna, Austria).
Results

Population baseline characteristics

A total of 11,156 and 9,837 HF patients from the MIMIC-IV

(training set) and eICU-CRD (test set), were included in the

study respectively (Table 1). Among them, the median age was

73 and 71 years, and 55.9% and 53.0% were men, respectively.

The proportions of patients with diabetes, hypertension, severe

liver disease, COPD and myocardial infarction were 40.3%,

77.2%, 2.9%, 20.4%, 32.9%, 40.8%, 66.4%, 1.3%, 20.4% and

17.3%, respectively. The proportions of patients requiring

mechanical ventilation were 39.3% and 46.4%, respectively.

Endpoint events occurred in 13.3% (1,484/11,156) and 13.4%

(1,319/9,837) of patients, respectively.
Feature selection

In the training set, the LASSO regression was used for the

automatic features selection (Figure 2). LASSO regression
frontiersin.org
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TABLE 1 Clinical data of the study population.

Medical information mart for intensive care IV v2.2
database (training set)

eICU Collaborative research
database (test set)

P value

Total, n 11,156 9,837

Age [mean (SD)] 72.97 (13.62) 70.66 (13.64) <0.001

Male, n (%) 6,238 (55.9) 5,210 (53.0) <0.001

BMI [mean (SD)] 28.92 (6.62) 29.65 (7.27) <0.001

Diabetes, n (%) 4,493 (40.3) 4,016 (40.8) 0.425

Hypertension, n (%) 8,610 (77.2) 6,533 (66.4) <0.001

Severe_liver_disease, n (%) 320 (2.9) 129 (1.3) <0.001

COPD, n (%) 2,274 (20.4) 2,009 (20.4) 0.958

Myocardial_infarct, n (%) 3,667 (32.9) 1,700 (17.3) <0.001

SOFA [mean (SD)] 5.83 (3.62) 5.51 (3.06) <0.001

APS III [mean (SD)] 51.90 (22.52) 47.44 (22.70) <0.001

Heart rate [mean (SD)] 88.24 (20.31) 91.26 (22.86) <0.001

Respiratory rate [mean (SD)] 19.84 (6.19) 22.03 (6.60) <0.001

SpO2 [mean (SD)] 96.58 (4.29) 95.17 (6.65) <0.001

MBP [mean (SD)] 80.47 (18.78) 85.59 (21.91) <0.001

WBC [mean (SD)] 12.37 (8.67) 11.52 (6.46) <0.001

Hematocrit [mean (SD)] 33.00 (7.14) 35.74 (7.26) <0.001

Hemoglobin [mean (SD)] 10.71 (2.38) 11.57 (2.44) <0.001

Platelets [mean (SD)] 215.44 (106.62) 226.82 (105.98) <0.001

RBC [mean (SD)] 3.62 (0.82) 3.96 (0.83) <0.001

MCH [mean (SD)] 29.77 (2.77) 29.34 (2.92) <0.001

MCV [mean (SD)] 91.77 (7.34) 90.69 (7.75) <0.001

MCHC [mean (SD)] 32.46 (1.71) 32.34 (1.57) <0.001

RDW [mean (SD)] 15.42 (2.32) 16.06 (2.49) <0.001

Basophils [mean (SD)] 0.03 (0.04) 0.07 (0.08) <0.001

Eosinophils [mean (SD)] 0.11 (0.24) 0.19 (0.30) <0.001

Lymphocytes [mean (SD)] 1.57 (4.45) 1.52 (2.49) 0.323

Monocytes [mean (SD)] 0.65 (0.69) 0.83 (0.64) <0.001

Neutrophils [mean (SD)] 10.11 (6.21) 8.81 (5.32) <0.001

Albumin [mean (SD)] 3.27 (0.61) 3.18 (0.61) <0.001

ALT [mean (SD)] 83.68 (333.33) 71.36 (327.86) 0.007

AST [mean (SD)] 129.44 (596.34) 91.44 (444.39) <0.001

ALP [mean (SD)] 109.72 (104.02) 110.85 (86.86) 0.399

Total bilirubin [mean (SD)] 1.06 (1.92) 0.93 (1.09) <0.001

BUN [mean (SD)] 33.95 (24.96) 35.06 (23.96) 0.001

Creatinine [mean (SD)] 1.74 (1.68) 1.96 (1.93) <0.001

Glucose [mean (SD)] 154.98 (89.08) 163.11 (93.86) <0.001

Sodium [mean (SD)] 137.96 (5.41) 137.05 (5.47) <0.001

Calcium [mean (SD)] 8.50 (1.08) 8.75 (0.79) <0.001

Chloride [mean (SD)] 102.13 (6.97) 100.65 (6.64) <0.001

Potassium [mean (SD)] 4.41 (0.86) 4.34 (0.81) <0.001

Aniongap [mean (SD)] 15.74 (4.72) 11.75 (5.00) <0.001

Bicarbonate [mean (SD)] 23.57 (5.22) 25.82 (5.85) <0.001

INR [mean (SD)] 1.66 (1.26) 1.68 (1.17) 0.185

PT [mean (SD)] 18.02 (12.72) 18.79 (11.96) <0.001

PTT [mean (SD)] 40.47 (26.22) 36.92 (18.51) <0.001

CRRT [mean (SD)] 0.06 (0.23) 0.07 (0.25) 0.001

Dopamine, n (%) 507 (4.5) 294 (3.0) <0.001

Norepinephrine, n (%) 2,436 (21.8) 1,027 (10.4) <0.001

Dobutamine, n (%) 317 (2.8) 327 (3.3) 0.047

Phenylephrine, n (%) 2,102 (18.8) 252 (2.6) <0.001

Epinephrine, n (%) 956 (8.6) 111 (1.1) <0.001

Vasopressin, n (%) 622 (5.6) 184 (1.9) <0.001

Milrinone, n (%) 382 (3.4) 211 (2.1) <0.001

Blocker, n (%) 5,953 (53.4) 1,788 (18.2) <0.001

ACEI/ARB, n (%) 515 (4.6) 453 (4.6) 0.007

Furosemide, n (%) 5,517 (49.5) 2,507 (25.5) <0.001

(continued)
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FIGURE 2

Features selection process. Automated feature selection for 57 clinical factors was performed using Least Absolute Shrinkage and Selection Operator,
which minimized the loss function binomial deviance, shrank coefficients, and produced some coefficients that are zero, allowing efficient feature
selection (A). The algorithm outputted 17 filtered features with non-zero coefficients that were included in model generation subsequently (B).

TABLE 1 Continued

Medical information mart for intensive care IV v2.2
database (training set)

eICU Collaborative research
database (test set)

P value

Ventilation, n (%) 4,379 (39.3) 4,567 (46.4) <0.001

In-hospital mortality, n (%) 1,484 (13.3) 1,319 (13.4) 0.837

BMI, body mass index; SOFA, sequential organ failure assessment; APS III, acute physiology score III scores; COPD, chronic obstructive pulmonary disease; AECI/ARB,

angiotensin converting enzyme I/Angiotensin II receptor blocker; CRRT, continuous renal replacement therapy; WBC, white blood cell count; RBC, red blood cells

count; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin content; MHC, mean hemoglobin concentration; RDW, red blood cell distribution

width; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; BUN, urea nitrogen; INR, international normalized ratio; PTT,

thromboplastin time; PT, prothrombin time.
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minimizes the loss function (binomial deviance) by changing the

regularization coefficient lambda (λ) to generate zero coefficients.

Finally, 17 features with the highest predictive value were

introduced into the models.
Model establishment construction

The selected 17 features were input into a machine learning

algorithm to establish the XGBoost model in the training set. The

same procedure was performed using the traditional linear

regression method to establish the Logistic model. The super-

parameters of the XGBoost model were obtained: number of trees

(nrounds) = 95; maximum depth of the tree (max depth) = 3;

learning rate (eta) = 0.1527683; sample resampling ratio

(subsample) = 0.6293208; minimum loss split (gamma) =

0.1934144; minimum sample weight required on child nodes

(min childweight) = 10; characteristic random sampling ratio

(colsample bytree) = 0.6447264; and the single maximum

increment allowed in the weight estimation of the tree (max
Frontiers in Cardiovascular Medicine 05
delta step) = 10. The importance of each prediction feature of the

XGBoost model was obtained using the SHAP algorithm, and the

importance graph listed the features in descending order

(Figure 3).

The SHAP values represented the contribution of each feature

to the final prediction and are useful for elucidating and

interpreting model predictions for a single patient. The combined

effect of all factors provided the final SHAP value that

corresponded to the predicted score. APS III, age and SOFA

were the three strongest predictors (Figure 3).
Model validation

The XGBoost model, Logistic model, and GWTG-HF model

were independently validated in the test set. The XGBoost model

performed best in the discrimination evaluation (Figure 4A),

with an AUC of 0.771 [95% confidence interval (CI): 0.757–

0.784] compared to the Logistic model (AUC 0.725, 95% CI:

0.710–0.740, P < 0.001) and the GWTG-HF model (AUC 0.649,
frontiersin.org
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FIGURE 3

Chart of feature importance ranking in all ICU patients with congestive heart failure. The importance ranking of the 17 risk factors with stability and
interpretation using the optimal model in the training set. Each point in the graph represents the SHAP value for each sample; a color month closer
to purple indicates a larger value, while that closer to yellow indicates a smaller value. The more scattered the points in the graph, the greater the
influence of the variable on the model. APS III, age and SOFA were strongest predictors. SHAP, SHapley additive exPlanations; SOFA, sequential organ
failure assessment; APS III, acute physiology score III scores; MCHC, mean corpuscular hemoglobin content; RDW, red blood cell distribution width.
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95% CI: 0.633–0.665, P < 0.001). The calibration degree evaluation

was performed to demonstrate the consistency between the

predicted probability of the model and the actual probability.

The results showed that the three models had a good degree of

calibration (Figure 5). The XGBoost model achived better Brier

scores than the Logistic model and the GWTG-HF model (Brier

score: 0.100, 0.107 and 0.112, respectively), which indicated

better model calibration. In addition, in the evaluation of clinical

effectiveness, the analysis of the decision curve showed that the

net benefit level using the XGBoost model was higher than “zero

risk of mortality” and “all mortality”, and superior to the other

two models in the threshold probability of 0%–90% (Figure 4B).
Model deployment

An internet-based version of the XGBoost model has been

accessible for all physicians (https://nkuwangkai-app-for-
Frontiers in Cardiovascular Medicine 06
mortality-prediction-app-a8mhkf.streamlit.app). This web-based

tool will automatically predict the outcome for ICU patients with

HF when the values of the 17 features required for this model

are entered as shown in Figure 6. Moreover, the online tool

provides users with the explanation of the prediction of the

model. It can predict the outcome of patients with missing values.
Discussion

In this study, we established and validated an interpretable

machine learning-based risk stratification tool for in-hospital all-

cause mortality in ICU HF patients. Compared with traditional

risk prediction methods, machine learning technology captures

both the linear and the nonlinear relationships between risk

prediction factors and mortality endpoints from high-

dimensional datasets. Our model achieved the most satisfactory

risk stratification and calibration.
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FIGURE 4

The receiver operating characteristic curves and the decision curve analysis of all models in test dataset. (A). The brown transverse line = net benefit when
all patients are considered to not have the outcome (in-hospital all-cause mortality); red oblique line = net benefit when all patients were considered to
have the outcome; the decision curve analysis of all models showed that the proportion of the benefit for the population was the highest when the risk
assessment of the XGBoost model was used for treatment, while the treatment threshold probability was from 0% to 90% (B).
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Data from 341 hospitals in the United States showed the median

ICU admission rate for hospitalized HF patients was 10%

(interquartile range, 6%–16%) (3), and the in-hospital mortality rate

of HF patients admitted to the ICU was significantly higher than

that of patients in general wards. The all-cause in-hospital mortality

rates were 17.3% and 6.5% for ICU-admitted HF patients and all

HF patients, respectively, in the RO-AHFS study (17), and 17.8%

and 4.5% in the ALARM-HF study (18). The in-hospital mortality

rates in our study were 13.3% and 13.4%, respectively, similar to

those in the above studies. Although the high in-hospital mortality

in ICU HF patients was primarily due to the underlying disease

severity, accurate prognostic evaluation is the basis of clinical

decision-making in ICU patients with HF. Therefore, this study has

potentially important clinical implications.

A major challenge in themanagement of HF is the identification of

mortality risk. Those previously prediction models (GWTG-HF model

and Logistic model) were mostly based on traditional generalized

linear regression, such as logistic regression, which is highly

explanatory. However, faced with a large data volume and high data

latitude, they may be useless, as the clinical processes are often

unpredictable and the clinical factors of HF are highly variable, which

makes it difficult for physicians to obtain accurate predictions using

single-factor analysis. The application of machine learning integrated

provides more powerful support for clinical decision-making (19–21).

Similar to these studies, our study obtained a novel XGBoost model by

applying a more flexible integrated machine learning algorithm. This

model was derived from a comprehensive consideration of clinical

features, comorbidities, and medication. Distinct from other machine

learning models (7–9, 13, 22, 23), our study established an

independent external test set and reported the calibration degree of

the models in detail. Independent validation confirmed that our

XGBoost model significantly improved prediction performance
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compared with the Logistic model and the GWTG-HF model in all-

cause mortality risk for ICU patients with HF. It is worth mentioning

that population characteristics between the training set and the test set

were significantly different, but our XGBoost model overcame this

difference and achieved good risk stratification (Table 1, Figures 4, 5).

This excellent risk stratification performance may indicate that our

XGBoost model can be generalized to other HF patients, not just the

test set. This improvement also confirmed the nonlinear correlation

between the clinical features of patients with HF and the risk of in-

hospital mortality from another perspective. The good prediction

alerts doctors and patients to the disease’s the severity to prepare for

higher-level life support, such as mechanical circulatory support and

heart transplantation or hospice care. This finding requires

confirmation in future studies.

Another important challenge is capacity building for the

primary management of HF. With the formation of a hierarchical

diagnosis and treatment system, most primary hospitals have set

up ICU wards to admit critically ill patients. Previous studies

attempted to incorporate more biochemical indicators or cardiac

magnetic resonance imaging parameter into models to obtain

superior prediction performance (24). However, imaging

parameters limited their generalized application to a certain extent.

In contrast, in our study, 17 variables with the most predictive

value were screened into the model by LASSO, which were all

easily accessible, making it possible for primary hospitals to

accurately assess patients’ risk through feature acquisition.

The third obvious challenge is to correctly explain the machine

learning prediction model and visually present the prediction

results to clinicians. We applied the SHAP value to the XGBoost

model for optimize prediction and interpretability. SHAP can

perform both local and global interpretability, and has a solid

theoretical basis compare to other methods (25). SHAP’s
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1119699
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 5

Calibration plots of all models in testing dataset. Calibration plots of predicted probabilities (X-axis) and actual proportions (Y-axis) for different prediction
models. With the calibration slope closest to 1.0 (an ideal model), the eXtreme Gradient Boosting (XGBoost model) from the machine learning algorithm
obtained a fairly satisfactory calibration, while the other models calibrated poorly.
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evaluation includes the importance of the output of all the

combinations of elements, and provides a consistent and locally

accurate attribute value for each element in the prediction model.

This visual interpretation was applied to the black box tree

integration model XGBoost. Furthermore, we developed a website

calculator to help physicians intuitively understand both the key

features and the decision-making process. These means may

promote and strengthen individualized treatment strategies.

The fourth challenge is how to translate machine learning

model into clinical practical solution. Few studies develop a

website or application to facilitate the accession to the tool (26).

We built a new website calculator to public as shown in Figure 6
Frontiers in Cardiovascular Medicine 08
(https://nkuwangkai-app-for-mortality-prediction-app-a8mhkf.

streamlit.app). This calculator concisely displays the risk of in-

hospital all-cause mortality in ICU patients with HF.

Inevitably, this study had several limitations. First, there were

some missing values in the dataset, but multiple imputation

methods were used to fill in the missing values, which may make

the them closer to the true values. Second, the information

collected was structured or tabular. Further studies are needed to

mine and integrate the unstructured data such as medical records

and imaging biomarkers to improve the prediction. Third, since

out data are derived from ICU patients, this model is primarily

applicable for ICU patients accompanied with HF. The clinical
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FIGURE 6

Schematic diagram of online website calculator for the mortality
prediction in all ICU patients with congestive heart failure. Input the
patient information and click the “predict” button to get the patient’s
in-hospital mortality risk assessment results.
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characteristics of ICU patients with HF might be different from

those admitted to the cardiovascular care unit, so evidence is

needed for the application of this model in cardiovascular care

unit patients with HF. Fourth, it is difficult to tell whether or not

the heart failure is the primary cause of ICU admission in
Frontiers in Cardiovascular Medicine 09
MIMIC-IV. Although we validated our model in an independent

external data, further research is needed to validate this model in

patients with different heart failure etiologies.
Conclusion

In this study, machine learning techniques were used to build a

new risk stratification model to stratified the risk of in-hospital all-

cause mortality in ICU patients with HF. This model was translated

into a web-based calculator which can accessed freely. We believe

that this stratification model and calculator provide a clear

explanation for individualized risk prediction and serve as a

simple rapid estimation tool.
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