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Background: Patients with chronic obstructive pulmonary disease (COPD) often
present with atrial fibrillation (AF), but the common pathophysiological
mechanisms between the two are unclear. This study aimed to investigate the
common biological mechanisms of COPD and AF and to search for important
biomarkers through bioinformatic analysis of public RNA sequencing databases.
Methods: Four datasets of COPD and AF were downloaded from the Gene
Expression Omnibus (GEO) database. The overlapping genes common to both
diseases were screened by WGCNA analysis, followed by protein-protein
interaction network construction and functional enrichment analysis to elucidate
the common mechanisms of COPD and AF. Machine learning algorithms were
also used to identify key biomarkers. Co-expression analysis, “transcription factor
(TF)-mRNA-microRNA (miRNA)” regulatory networks and drug prediction were
performed for key biomarkers. Finally, immune cell infiltration analysis was
performed to evaluate further the immune cell changes in the COPD dataset
and the correlation between key biomarkers and immune cells.
Results: A total of 133 overlapping genes for COPD and AF were obtained, and the
enrichment was mainly focused on pathways associated with the inflammatory
immune response. A key biomarker, cyclin dependent kinase 8 (CDK8), was
identified through screening by machine learning algorithms and validated in the
validation dataset. Twenty potential drugs capable of targeting CDK8 were
obtained. Immune cell infiltration analysis revealed the presence of multiple
immune cell dysregulation in COPD. Correlation analysis showed that CDK8
expression was significantly associated with CD8+ T cells, resting dendritic cell,
macrophage M2, and monocytes.
Conclusions: This study highlights the role of the inflammatory immune response
in COPD combined with AF. The prominent link between CDK8 and the
inflammatory immune response and its characteristic of not affecting the basal
expression level of nuclear factor kappa B (NF-kB) make it a possible promising
therapeutic target for COPD combined with AF.
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Introduction

Chronic obstructive pulmonary disease (COPD) is

characterized by progressive airway obstruction. It is estimated

that COPD will be the third most deadly disease in the world by

2030 (1). In clinical practice, COPD is often combined with

multiple cardiovascular diseases, including heart failure, coronary

atherosclerotic heart disease, and atrial fibrillation (AF) (2). AF,

the most common type of arrhythmia, has been shown in

epidemiological surveys to affect at least 33.5 million people

worldwide (3). Heart failure and stroke are severe complications

of AF, and the risk of heart failure in AF patients is about twice

as high as normal, and the risk of stroke is 4–5 times higher (4, 5).

There is a strong association between COPD and AF, with

studies showing a 2.23-fold increased risk of AF in COPD

patients compared to non-COPD patients (6). Similarly, the

prevalence of COPD in patients with AF reached 25% (7). In

addition, combined COPD increases the recurrence rate and

the incidence of adverse events after catheter ablation in

patients with AF (8, 9). A meta-analysis that included 46

studies involving 4,232,784 AF patients showed that AF

patients with comorbid COPD had a significantly increased

risk of bleeding, cardiovascular event death, and all-cause

mortality compared to AF patients without COPD (10). It is

currently thought that enhanced sympathetic activity, altered

cardiac structure, immune dysfunction, inflammation, and

oxidative stress may be involved in the development of AF in

patients with COPD. However, the exact mechanisms have not

been fully elucidated (11). Meanwhile, drugs commonly used

to treat COPD, such as beta-blockers, theophylline, and

glucocorticoids, have been linked to an increased risk of AF

development (12, 13). Therefore, it is of practical clinical

significance to explore the potential mechanisms of COPD and

AF co-morbidity at the genetic level and to find promising

therapeutic targets for application.

The field of bioinformatics is developing rapidly, and large

amounts of genetic data are publicly available to uncover many

unknown pathophysiological mechanisms in the development of

diseases and potential connections between diseases. Machine

learning, an essential artificial intelligence component, has also

been widely applied to bioinformatics research and has become

an important tool (14). Based on this, this study integrates

COPD and AF mRNA datasets in public databases and attempts

to reveal the common biological mechanisms of COPD and AF

co-morbidity through weighted gene co-expression network

analysis (WGCNA), protein-protein interaction (PPI) network

construction, and enrichment analysis. Random forest (RF),

support vector machine (SVM), extreme gradient boosting

(XGBoost), and generalized linear model (GLM) were used to

screen potential biomarkers. A comprehensive analysis of key

biomarkers was performed, including co-expression analysis,

construction of “transcription factor (TF)-mRNA-microRNA

(miRNA)” regulatory networks, and drug prediction. An

examination of immune cell infiltration on the COPD dataset

was also carried out. Figure 1 depicts the study flowchart.
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Materials and methods

Data source

We applied the Gene Expression Omnibus (GEO) database

(15) (http://www.ncbi.nlm.nih.gov/geo/) to filter gene expression

datasets for microarrays by qualifying the keywords “COPD”

and “AF” with the filter criteria “Homo Sapiens” and “tissues.”

Four datasets were finally obtained. In the COPD group,

GSE76925 (lung tissue samples from 111 COPD patients and

40 control patients) (16) and GSE106986 (lung tissue samples

from 14 COPD patients and 5 control patients) were selected.

In the AF group, GSE79768 (left and right atrial tissue samples

from 7 AF patients and 6 control patients) (17) and GSE115574

(left and right atrial tissue samples from 15 AF patients and 15

control patients) (18) were selected. GSE76925 and GSE79768

were used as training sets, GSE106986 and GSE115574 were

used as the external validation set.
Weighted gene co-expression network
analysis

WGCNA analysis was performed on GSE76925 and GSE79768,

respectively, to obtain modules closely associated with COPD and

AF. WGCNA analysis was constructed using the “WGCNA”

package in R (19). The genes were ranked based on the standard

deviation of gene expression. The top 25% of genes with the

largest fluctuations were selected for subsequent analysis, and

outlier samples were excluded by hierarchical clustering. The R2

was set greater than 0.9, and a suitable soft threshold (β) was

calculated to make the network conform to the scale-free

distribution. The co-expression modules are identified by

hierarchical clustering to obtain a hierarchical clustering tree.

Finally, the module feature values and the correlation between

module feature values and clinical features are calculated to

obtain the expression spectrum of each module, which is

expressed by the correlation coefficient as well as the p-value.

Finally, we select the genes in the modules closely related to the

disease for subsequent analysis.
Identification of overlapping genes and PPI
network analyses

The genes in the modules closely related to disease in

GSE76925 and GSE79768 obtained by WGCNA analysis were

taken to intersect. The Venn diagram was used to visualize the

overlapping genes. After that, the overlapping genes were

imported into the “Search Tool for Interacting Genes”

(STRING) online platform (https://cn.string-db.org/) (20). The

species was limited to “Homo sapiens,” with the confidence

score set to an intermediate value (confidence score > 0.4) to

construct the PPI network. The results were exported to

Cytoscape 3.7.2 for visualization (21).
frontiersin.org

http://www.ncbi.nlm.nih.gov/geo/
https://cn.string-db.org/
https://doi.org/10.3389/fcvm.2023.1121102
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

Study flowchart. GSE, gene expression omnibus series; WGCNA, weighted gene co-expression network analysis; RF, Random forest support vector
machine; SVM, support vector machine; XGBoost, extreme gradient boosting; GLM, generalized linear model.
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Functional enrichment analysis

To further understand the commonbiologicalmechanisms between

the two diseases, the protein information in the PPI network was

enriched for Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways using the “clusterProfiler” package

in R (22). The GO includes biological process (BP), cellular

component (CC), and molecular function (MF) (23). The screening

condition was set at adjust -P < 0.05, and the visualization was

presented using the Sangerbox platform (http://vip.sangerbox.com/).

Meanwhile, Gene set enrichment analysis (GSEA) enrichment analysis

was performed on the GSE76925 and GSE79768 datasets to
Frontiers in Cardiovascular Medicine 03
comprehensively analyze the key pathways associated with COPD and

AF pathogenesis. The reference dataset was “c5.kegg.v7.4.symbols.

gmt” from the MSigDB database (24). The significantly enriched

pathways were identified with the screening criteria of P < 0.05 and

FDR< 0.25, and the “enrichplot” package was used for visualization.
Identification of candidate genes based on
machine learning algorithms

Machine learning is now widely used to identify characteristic

genes. To identify key genes associated with COPD and AF, four
frontiersin.org
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machine learning algorithms, including RF, SVM, XGBoost, and

GLM, were used to screen for key genes in COPD and AF,

respectively. In both training datasets, the response variable was

set to whether the diagnosis was COPD and AF, and the

overlapping genes were set as explanatory variables. Use 70% of

the data for model construction and 30% for model validation.

Models for RF, SVM, XGBoost, and GLM were constructed

separately using the “caret” R package (25). It is well known

that while building a machine learning model with good

results, it is equally important to evaluate the interpretation of

the model, as only an interpretable machine learning model is

likely to be more widely understood and adopted. The

“DALEX” R package is a model interpretation package that has

been developed to help understand the links between input

variables and model outputs (26). It uses the size of the

residuals to assess the quality of the model (smaller residuals

mean better model quality) and the root mean square error

(RMSE) to assess the importance of the variables (defined as

how much the absence of a variable affects the predicted value

of the response variable). Once modelling was completed,

residual box plots were drawn for the four models using

the “DALEX” R package and the RMSE was used to assess

the importance of each gene in the model. Also, we use the

“predict” function in R to verify the accuracy of the predictions

of the model constructed by “caret”. Receiver operating

characteristic (ROC) curves were then plotted using the

“pROC” R package (27) and the area under the curve (AUC)

was reported to assess the predictive effectiveness of models.

Finally, we selected models with high predictive accuracy based

on the quality of the model (assessed by the size of the

residuals) and the area of the AUC. According to the gene

importance score, select the top 20 genes from the constructed

models for COPD and AF respectively, and then perform the

intersection for these genes. Afterwards, we compared the

differential expression of intersecting genes between the two

datasets, with P < 0.05 considered to be significantly different,

and used the “ggpubr” R package to plot boxplots. Finally,

genes that were differentially expressed in the disease and

control groups in both sets of data and that showed the same

expression trend in both microarrays were identified as

candidate hub genes.
Validation of hub genes and evaluation of
prediction accuracy

The identified candidate genes were validated in the validation

sets for COPD and AF, respectively. The comparison of gene

expression between disease group and control group with

P < 0.05 was considered to be significantly different. The

candidate genes with significant differences were finally

considered to be hub genes and the boxplot was drawn for

visualization. Afterwards, ROC curves of the diagnostic value of

hub genes in the training set and validation set were plotted

using “pROC” R package, and AUC was calculated to evaluate

the accuracy of hub gene prediction.
Frontiers in Cardiovascular Medicine 04
Comprehensive analysis of hub genes

Hub genes were entered into the GeneMANIA online website

(28) (http://genemania.org) for co-expression and functional

enrichment analyses. The JASPAR database (29) (http://jaspar.

genereg.net/) were used to predict TFs regulating hub genes.

Prediction of miRNAs regulated by hub genes using the

miRTarBase database (30) (https://mirtarbase.cuhk.edu.cn/), and

experimentally validated miRNAs were selected. The results were

visualized using Cytoscape to demonstrate the “TF-mRNA-

miRNA” regulatory network. In addition, we used the DGIDB 3.

0 database (31) (http://www.dgidb.org/) to predict potential drugs

that could target the hub gene.
Immune cell infiltration analysis

CIBERSORT can calculate the proportion of different immune

cells in the gene expression profile through a deconvolution

algorithm (32). We performed an immune cell infiltration

analysis of the COPD gene expression matrix (GSE76925) using

the CIBERSORT algorithm. The “barplot” and “vioplot” packages

were used to show the relative proportions and differences of

immune cell types in the expression profile between the control

and COPD groups. The “corrplot” package was used to show the

correlation heat map of immune cells in the expression profile.

The hub gene’s expression was then taken from the expression

profile. The correlation between the hub gene and immune cells

was analyzed by Spearman correlation analysis, with P < 0.05 as

the screening condition, and visualized by the “ggplot” package.
Results

Construction of co-expressed gene
modules

WGCNA analysis was performed on the GSE76925 and

GSE79768 datasets to identify co-expression modules associated

with COPD and AF, respectively. The β selection analysis of

GSE76925 showed that the network was closer to the scale-free

network when the β = 4 (Figure 2A). Six modules were also

identified, of which the yellow module was positively associated

with COPD (correlation coefficient = 0.35, P = 9e-06) and

contained 745 genes (Figures 2B,C). The β selection analysis of

GSE79768 showed that the network was closer to the scale-free

network when the β = 10 (Figure 2D). Eleven modules were

identified, among which blue (correlation coefficient = 0.55,

P = 0.004), pink (correlation coefficient = 0.42, P = 0.03),

turquoise (correlation coefficient = 0.73, P = 3e-05), and yellow

(correlation coefficient = 0.61, P = 0.001) were positively

correlated with AF and contained 3,444 genes (Figures 2E,F).

Among them, 952 were blue modules, 287 were pink modules,

1,526 were turquoise modules, and 705 were yellow modules.

Detailed gene information is listed in Supplementary Table S1.
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FIGURE 2

Identification of COPD and AF module genes viaWGCNA. (A) The scale-free fit index for soft-thresholding powers and mean connectivity (GSE76925). (B)
Dendrogram of the genes clustered (GSE76925). (C) Module-trait relationships heatmap (GSE76925). The numbers in each cell means the correlation
coefficient and p-value. (D) The scale-free fit index for soft-thresholding powers and mean connectivity (GSE79768). (E) Dendrogram of the genes
clustered (GSE79768). (F) Module-trait relationships heatmap (GSE79768).
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Identification of overlapping genes and
construction of PPI network

By taking the intersection of the genes of COPD and AF-

related modules obtained by WGCNA, 133 genes common to

COPD and AF were obtained (Figure 3A). After that, we

constructed a PPI network of overlapping genes and excluded

genes that did not interact. Finally, we obtained 77 interacting

genes in the network (Figure 3B).
FIGURE 3

Construction of overlapping gene PPI networks and enrichment analysis. (A)
pathway analysis of genes. Different colors represent various significant pat
colors represent various significant pathways and related enriched genes. (E)
GSEA enrichment analysis of upregulated genes in the AF dataset.
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Functional enrichment analysis

77 genes in the PPI network were analyzed for GO and KEGG

enrichment to reveal the underlying molecular biological

processes shared between COPD and AF. The GO enrichment

analysis revealed that 77 genes were primarily enriched in the

“Leukocyte migration,” “Response to chemokine,” “Cellular

response to chemokine,” “Myeloid leukocyte migration,”

“Activation of immune response,” “Regulation of inflammatory
Venn diagram of COPD and AF module genes. (B)PPI network. (C) KEGG
hways and related enriched genes. (D) GO analysis of genes. Different
GSEA enrichment analysis of upregulated genes in the COPD dataset. (F)
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response”(BP); “External side of plasma membrane,”

“Immunological synapse,” “Plasma membrane signaling

receptor complex,” (CC); “Immune receptor activity,”

“Phosphatidylethanolamine binding,” “Coreceptor activity,”

(MF) (Figure 3C, Supplementary Table S2). Also, KEGG

analysis showed that genes were enriched in “Hematopoietic

cell lineage,” “Intestinal immune network for IgA production,”

“Cytokine-cytokine receptor interaction,” “Chemokine signaling

pathway,” “Cell adhesion molecules,” “T cell receptor signaling

pathway” (Figure 3D, Supplementary Table S3). GSEA

enrichment analysis revealed that genes upregulated in the

GSE76925 dataset were mainly enriched in signaling pathways

such as “Cytokine-cytokine receptor interaction,” “Primary

immunodeficiency,” “Alanine aspartate and glutamate

metabolism,” “Hematopoietic cell lineage,” “Complement and

coagulation cascade” (Figure 3E). The genes upregulated in the

GSE79768 dataset were mainly enriched in “RNA degradation,”

“Ubiquitin-mediated proteolysis,” “Spliceosome,” “Leukocyte

transendothelial migration,” and “Natural killer cell-mediated

cytotoxicity” (Figure 3F).
Identification of hub genes based on
machine learning algorithms

To identify key genes associated with COPD and AF, we

constructed models using four machine learning methods and

evaluated the models based on residuals and ROC. Box line

plots of residuals and ROC are shown in Figures 4A–D. It can

be seen that the SVM, XGB and RF models all exhibit similar

excellent performance. Therefore, we selected the top 20 genes

predicted by RF, SVM, and XGB in each of these two datasets

based on the importance scores of the genes assessed by

RMSE. Forty-five genes in total in the GSE76925 dataset and

39 in GSE79768, and 11 intersecting genes were obtained after

taking the intersection. (Figure 4E, Supplementary Tables S4, S5).

After verifying the differential expression and expression trends,

three candidate genes, cyclin dependent kinase 8 (CDK8), solute

carrier family 22 member 15 (SLC22A15), and TNF receptor

superfamily member 17 (TNFRSF17), were finally obtained, and

the box plots of differential expression are shown in Figure 5.
Validation of hub genes and assessment of
predictive accuracy

The differential expression of CDK8, SLC22A15, and

TNFRSF17 was confirmed in the external validation set. Only

CDK8 showed a significant increase in expression in both the

training and validation sets (P < 0.05) Figure 5. Thus, CDK8 was

finally identified as a hub gene that may be related to AF and

COPD. the CDK8′s ROC curves demonstrated that in all four

data sets, the AUC was near to or greater than 0.7 (Figure 6). It

is suggested that CDK8 may be effective for detecting COPD

combined with AF.
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Comprehensive analysis of hub genes

Twenty genes associated with hub genes were predicted by

GeneMANIA, along with 1,326 interactions. This suggests a

complex interaction between the hub gene and the remaining

20 genes. The functional enrichment results were mainly

associated with DNA-templated transcription, positive regulation

of DNA-templated transcription, and regulation of transcription

initiation from the RNA polymerase II promoter (Figure 7A).

The “TF-mRNA-miRNA” regulatory network contains 11 TFs

that regulate CDK8, and five miRNAs (Figure 7B). DGIDB

predicted 20 drugs targeting CDK8, including ALVOCIDIB,

ACACETIN, and RONICICLIB (Figure 7C).
Immune cell infiltration analysis

By observing the enrichment analysis results, we found that

immune-related pathways were significantly enriched, suggesting

that immune dysfunction may be involved in the development of

AF in COPD patients. Therefore, we performed an immune cell

infiltration analysis of gene expression profiles in COPD.

Figure 8A shows the ratio of immune cells in the control group

to the COPD group. Compared to the control group, the COPD

group had higher levels of plasma cells, CD8+ T cells,

T follicular helper cells, Gamma-delta (γδ) T cells, macrophage

M0, and resting dendritic cells, and lower levels of monocytes,

macrophage M1, and activated dendritic cell (Figure 8B).

Positive correlations were found between activated mast cells and

neutrophils (r = 0.60), T cells and plasma cells (r = 0.42), and γδ

T cells and T follicular helper cells (r = 0.42). In contrast,

Macrophage M1 and activated dendritic cells were negatively

correlated (r =−0.54) (Figure 8C). This suggests that patients

with COPD have a different immune pattern compared to

normal patients and that there are interactions between different

types of immune cells. Detailed results of the immune cell

infiltration analysis are shown in Supplementary Table S6.

Correlation analysis of CDK8 and immune cells showed that

CDK8 expression correlated with four immune cell types,

positively with CD8+ T cells, resting dendritic cells, and

macrophage M2, and negatively with monocytes (Figure 8D).
Discussion

COPD affects more than 300 million people worldwide and

causes approximately 3 million deaths yearly (33). COPD increases

the incidence of AF and the risk of subsequent cardiovascular

death. Similarly, comorbid AF increases the incidence of ischemic

stroke, respiratory failure, and heart failure events in patients with

COPD (34–37). The vicious circle relationship between COPD and

AF, and the contradiction of pharmacological treatment, makes it

urgent to explore the mechanisms of COPD and AF co-morbidity

and to find potential therapeutic targets. It is generally believed

that COPD-induced structural changes in the heart, increased
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FIGURE 4

Construction and assessment of machine learning models for COPD and AF. (A) Boxplots of the residuals of the COPD. Red dot stands for root mean
square of residuals. (B) ROC curves for model prediction accuracy in COPD dataset. (C) Boxplots of the residuals of the AF. (D) ROC curves for model
prediction accuracy in AF dataset (E) Venn diagram of COPD and AF model prediction genes.
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sympathetic activity, and hypoxia-induced oxidative stress accelerates

the development of AF. But recent studies have highlighted the role of

immune dysfunction in the pathogenesis of both diseases, finding
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that immune dysfunction may play a prominent role in the

subsequent inflammatory response, cardiac remodeling, structural

remodeling, and neural remodeling (11, 38). However, the exact
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https://doi.org/10.3389/fcvm.2023.1121102
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 5

Validation of Hub gene expression levels in training and validation sets. The red box represents the disease group, and the blue represents the control
group.
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mechanisms have not been fully elucidated. In this context, we

performed the first joint analysis of genetic datasets from both

diseases to reveal common mechanisms and key biomarkers for the

development of both diseases and to reveal changes in immune

cells in COPD by immune cell infiltration analysis.

After screening of overlapping genes and the construction of PPI

networks, 77 genes with interactions were obtained. They are mainly

involved in biological processes such as activation of the immune

response, regulation of inflammatory response, leukocyte

migration, response to chemokines, immune receptor activity, and

signaling pathways such as hematopoietic cell lineage, IgA-

producing intestinal immune network, cytokine-cell receptor

interactions, and T cell receptors. Combined with the results of

GSEA enrichment analysis, we suggest that immune and

inflammatory responses are the key mechanisms linking these two

diseases, as confirmed by the results of previous studies (39–41).

COPD is accompanied by a long-term and persistent chronic

inflammatory response in the airways and lung parenchyma,

leading to subsequent airway remodeling and destruction of the

lung parenchyma (42). After inhalation of smoke or other toxic

particles, the immune response is activated, after which

macrophages release various cytokines and chemokines, including

tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β),

interleukin 6 (IL-6), C-X-C motif chemokine ligand 1 (CXCL1),

and C-X-C motif chemokine ligand 8 (CXCL8), which attract

circulating neutrophils, monocytes, and lymphocytes in the lungs

leading to an inflammatory response (39, 43). At the same time,

the activation of immune and inflammatory responses is not

limited to the lungs, as studies have shown that COPD patients

are accompanied by elevated circulating c-reactive protein (CRP),

IL-6, CXCL8, and TNF-α (44). Changes in immune cells,

especially macrophages, and increases in cytokines and

chemokines such as TNF-α, IL-6, IL-1β, C-X-C motif chemokine
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ligand 1 (CXCL1), and C-X-C motif chemokine ligand 2 (CXCL2)

have also been observed in AF (45, 46).

In response to these results, we performed an immune cell

infiltration analysis in GSE76925, which showed a higher

proportion of plasma cells, CD8+ T cells, T follicular helper cells,

γδ T cells, macrophage M0, and resting dendritic cells, and a

lower proportion of monocytes, macrophage M1, and activated

dendritic cells in COPD lung tissue compared with controls.

Studies have shown that CD8+ T lymphocytes increase in

number and activity in COPD and produce many cytokines such

as Interferon gamma (IFN-γ) and TNF-α (47). γδ T cells are

nontraditional T cells, and despite their small number, a study

by Murdoch (48) et al. found that γδ T cells increase interleukin

17A (IL-17) production during acute allergic airway disease and

are involved in disease pathogenesis. Plasma cells are widely

present in the connective tissue of the lamina propria of the

respiratory tract and participate in the adaptive humoral immune

response by synthesizing antibodies in response to the invasion

of the respiratory tract (49). Studies have shown that the severity

of COPD is positively correlated with the development of tertiary

lymphoid organs (TLOs), and IL-21 T-follicular-helper (Tfh)-like

cells have been observed in TLOs of COPD patients, suggesting

that Tfh may be involved in the formation of TLOs (50, 51).

Dendritic cells are critical antigen-presenting cells involved in

adaptive immune activation in COPD. However, Givi (52) et al.

found that chronic exposure to harmful particles impairs

dendritic cells maturation and inhibits antigen-presenting

capacity. Macrophages are differentiated from monocytes and

play a key role in chronic inflammation in COPD patients. Naive

macrophage M0 can be induced to differentiate into M1- and

M2-type macrophages under different conditions, with M1-type

mainly playing a pro-inflammatory role (53). Interestingly, our

study found a lower proportion of M1-type macrophages in the
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FIGURE 6

Validation hub genes are used as marker genes.

Sun et al. 10.3389/fcvm.2023.1121102
COPD group compared with controls, the reason for which needs

to be further investigated. Similarly, immune cells are the primary

cell type in the heart, and one study showed that immune cells

accounted for 10.4% of all cell types in atrial tissue (54). More

dendritic cells were found in the left atrial myocardium of

patients with AF compared to those with sinus rhythm.

Increased numbers of neutrophils, lymphocytes, and

macrophages were also observed in the atrial adipose tissue (55,

56). These findings suggest that immune cell changes in COPD

may also be involved in developing AF.

A biomarker, CDK8, was identified by a machine learning

algorithm and validated in the validation set, and it was

significantly upregulated in both COPD and AF groups. CDK8 is

a serine/threonine protein kinase that plays an important role in

transcriptional regulation by binding to cell cycle protein C (57).

Recent studies have shown that CDK8 is also involved in the
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inflammatory response, as Chen et al. (58) found that in

response to TNF-α stimulation, nuclear factor kappa B (NF-kB)

and CDK8 are jointly recruited to the promoters of response

genes, driving the expression of NF-kB early response genes

CXCL8, CXCL2, and C-X-C motif chemokine ligand 3 (CXCL3).

In addition, CDK8 is involved in the activation of hypoxia

inducible factor 1 subunit alpha (HIF1A) (59). lungs of COPD

patients overexpress HIF1A, which is associated with hypoxia

and inflammatory response (60). Elevated expression of HIF1A is

also observed during AF, which may be involved in the structural

remodeling of the left atrium (61). CDK8 also highlights

potential advantages as a therapeutic target, and NF-kB plays an

important role in activating immune inflammatory responses in

COPD and AF by encoding chemokines and cytokines (62, 63).

Transcription of NF-kB requires activation of CDK8. Studies have

shown that reducing CDK8 activity inhibits NF-kB-driven
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FIGURE 7

(A) Co-expression network of CDK8. (B) The “TF-mRNA-miRNA” regulatory network of CDK8. Blue hexagons are TFs; green diamonds are miRNAs. (C)
Drug prediction for CDK8 based on DIGDB database. Blue squares are potential drugs.
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transcription but has no effect on the basal expression of NF-kB-

regulated genes or promoters (58). This avoids the detrimental

effects of NF-kB blockers due to reduced NF-kB expression levels,

making CDK8 a more promising therapeutic target. In addition,

we performed a co-expression analysis of CDK8, “TF-mRNA-

miRNA” network construction, and drug prediction. These

CDK8-associated mRNAs, TFs, and miRNAs also contribute to

understanding the CDK8 association network. At the same time,

the results predicted by DGIDB may become new drugs for

treating COPD combined with AF. Several studies have shown

that inhibitors of CDK8 have an inhibitory effect on

inflammatory immune responses (64, 65). Studies by Schmerwitz

et al. (66) have found that ALVOCIDIB (also known as

Flavopiridol) is able to against inflammation by effectively
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blocking the activation of endothelial cells through the inhibition

of NF-kB consensus promoter activity and thereby disrupting the

interaction between inflammatory-induced leukocytes and

endothelial cells. This suggests that drugs targeting CDK8 may be

promising for treating COPD combined with AF.

Analysis of the correlation between CDK8 and immune cell

infiltration showed a positive correlation between CDK8 and

CD8+ T cells, resting dendritic cells, and macrophage M2 and a

negative correlation with monocytes. Patients with COPD have

increased infiltration of CD8+ T cells in lung tissue and produce

pro-inflammatory factors such as TNF-α (47). The involvement

of TNF-α in AF involves multiple mechanisms, and TNF-α has

been shown to disrupt intracellular calcium homeostasis in atrial

myocytes by decreasing the expression of T-type calcium channel
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FIGURE 8

Immune cell infiltration analysis of GSE76925 and immune cell correlation analysis of CDK8. (A) The proportion of immune cells in different samples. (B)
Comparison of immune cell ratios in the COPD and control groups. (C) Heat map of correlation analysis between immune cells. (D) Analysis of the
correlation between CDK8 and immune cells.
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α1G subunit (TCCA 1G) and sarcoplasmic reticulum Ca-ATPase

(SERCA2a) thereby participating in AF (67, 68). In addition,

TNF-α directly reduces collagen synthesis in cardiomyocytes,

enhances matrix metallopeptidase 2 (MMP-2) and matrix

metallopeptidase 9 (MMP-9) activities, promotes collagen

breakdown, and exacerbates myocardial fibrosis (69, 70). M2

macrophage infiltration in the lungs of patients with COPD is

significantly increased. A study by Kaku (71) et al. showed that

M2 macrophages are strongly associated with the severity of

COPD and a predicted reduction in expiratory force volume in

one second (FEV), suggesting the involvement of M2

macrophages in the development of COPD. Macrophages also

secrete elastolytic enzymes, such as MMP-2 and MMP-9, which

directly lead to the destruction of lung structures and fibrosis of

the atria (72–74). Increased sympathetic nervous system activity

triggered by COPD promotes the development of AF (11).

Studies have revealed that high catecholamine levels induce

sympathetic remodeling by acting on the β1-adrenergic receptors

on macrophages to produce inflammatory factors such as TNF-α,

nerve growth factor (NGF), and interleukin 1 alpha (IL-1). This
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process may cause the onset of AF (75). Dendritic cell function

in AF and COPD is still being studied. Ravi (76) et al. found

that monocyte migration capacity was reduced in COPD

patients, which may partially explain the negative correlation

between CDK8 and monocytes. However, the exact mechanism

still needs further investigation. In conclusion, our findings

provide a new perspective on the pathogenesis of COPD

combined with AF from the viewpoint of the inflammatory

immune response and suggest a biomarker CDK8 that could

potentially be a therapeutic target.

This study also has several limitations. First, the data in this

study were obtained based on the GEO database. Although a

dataset containing more samples was selected and validated in an

external dataset, the results may be biased due to the different

platforms from which they were obtained. Additionally, due to

COPD being a heterogeneous disease, there are various

phenotypes of COPD, such as small airway-predominant disease,

frequent exacerbators, and asthma-COPD overlap, which have

different pathophysiological mechanisms that are not completely

the same (77). Recent studies have shown that within 90 days of
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an acute exacerbation of COPD, patients are at a significantly

increased risk of an emergency department visit or hospital

admission related to AF (78). Another cohort study also found

an increased risk of AF in asthmatic patients (79). However, our

study was unable to analyze the association between the different

phenotypes of COPD and AF separately, so further research is

needed to investigate the relationship between these different

COPD phenotypes and AF at the genetic level. Secondly, the

AUC area of CDK8 in the COPD training set was less than 0.7,

and although the AUC area was improved in the validation set,

its value in practical clinical applications still needs further

validation. Finally, the specific mechanisms of immune

inflammatory response and CDK8 in COPD with AF and the

association between CDK8 and immune cells need further proof

from subsequent in vivo and in vitro experiments.
Conclusion

In this study, through bioinformatic analysis, we found that

disturbances in immune regulation and subsequent activation of

the inflammatory response may have a significant role in COPD

combined with AF. Through machine learning algorithms, CDK8

was finally identified as a key biomarker, and inhibitors targeting

CDK8 may be able to be promising therapeutic agents for COPD

combined with AF by inhibiting NF-kB-induced immune

inflammatory responses.
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